Math 6170 C, Lecture on April 15, 2020

Yongchang Zhu

Plan

(1). VI. §2. Elliptic Functions (Review)
(2). VI. §3. Constructions of Elliptic Functions (Continued).
(3). VI. §4. Maps - Analytic and Algebraic.
(4). VIII. §1. The Weak Mordell-Weil Theorem.

VI. §2. Elliptic Functions (Review)

A lattice in \mathbb{C} is a free \mathbb{Z}-submodule $\Lambda \subset \mathbb{C}$ of rank two such that a basis of Λ is \mathbb{R}-linearly independent.

A lattice can be written as

$$
\Lambda=\mathbb{Z} \omega_{1}+\mathbb{Z} \omega_{2}
$$

where ω_{1} and ω_{2} are \mathbb{R}-linear independent.

Definition. An elliptic function (relative to the lattice Λ) is a meromorphic function $f(z)$ on \mathbb{C} such that

$$
f(z+\omega)=f(z)
$$

for all $\omega \in \Lambda$ and all $z \in \mathbb{C}$.

Constant functions are elliptic functions relative to any lattice.
We denote the space of elliptic functions for Λ by

$$
\mathbb{C}(\Lambda)
$$

$\mathbb{C}(\Lambda)$ is a field.

Definition. Let $\Lambda \subset \mathbb{C}$ be a lattice, a fundamental parallelogram is a set of the form

$$
D=\left\{a+t_{1} \omega_{1}+t_{2} \omega_{2} \mid 0 \leq t_{1}, t_{2}<1\right\}
$$

where ω_{1}, ω_{2} is a \mathbb{Z}-basis for Λ and $a \in \mathbb{C}$.

Figure: The domain $D=\left\{t_{1}+t_{2}(1+i) \mid 0 \leq t_{1}, t_{2} \leq 1\right\}$.

Theorem VI 2.2.

Let $f \in \mathbb{C}(\Lambda), f \neq 0$, then
(a) $\sum_{w \in \mathbb{C} / \Lambda} \operatorname{res}_{w}(f)=0$
(b) $\sum_{w \in \mathbb{C} / \Lambda} \operatorname{ord}_{w}(f)=0$
(c) $\sum_{w \in \mathbb{C} / \Lambda} \operatorname{ord}_{w}(f) w \in \Lambda$.

We define $\operatorname{Div}(\mathbb{C} / \Lambda)$ to the formal \mathbb{Z}-linear combination of points in \mathbb{C} / Λ. So an element in $\operatorname{Div}(\mathbb{C} / \Lambda)$ looks like

$$
k_{1}\left[w_{1}\right]+\cdots+k_{n}\left[w_{n}\right], \quad k_{i} \in \mathbb{Z}, \quad w_{i} \in \mathbb{C} / \Lambda .
$$

We have $\operatorname{deg}: \operatorname{Div}(\mathbb{C} / \Lambda) \rightarrow \mathbb{Z}$,

$$
\operatorname{deg}\left(k_{1}\left[w_{1}\right]+\cdots+k_{n}\left[w_{n}\right]\right)=k_{1}+\cdots+k_{n} .
$$

We write $\operatorname{Div}_{0}(\mathbb{C} / \Lambda)$ for $\operatorname{Ker}(\operatorname{deg})$.

We have a group homomorphism

$$
\begin{aligned}
& \operatorname{div}: \mathbb{C}(\Lambda)^{*} \rightarrow \operatorname{Div}(\mathbb{C} / \Lambda) \\
& \operatorname{div}(f)=\sum_{w \in \mathbb{C} / \Lambda} \operatorname{ord}_{w}(f)[w]
\end{aligned}
$$

(b) in Theorem VI 2.2. implies that $\operatorname{deg}(\operatorname{div}(f))=0$
(c) in Theorem VI 2.2. implies that the composition

$$
\mathbb{C}(\Lambda)^{*} \rightarrow \operatorname{Div}(\mathbb{C} / \Lambda) \rightarrow \mathbb{C} / \Lambda
$$

is 0 , where the 2 nd arrow is

$$
S: k_{1}\left[w_{1}\right]+\cdots+k_{n}\left[w_{n}\right] \mapsto k_{1} w_{1}+\cdots+k_{n} w_{n} .
$$

So we have

$$
\operatorname{div}\left(\mathbb{C}(\Lambda)^{*}\right) \subset \operatorname{Div}_{0}(\mathbb{C} / \Lambda) \cap \operatorname{Ker}(S)
$$

We have (Proposition 3.4)

$$
\operatorname{div}\left(\mathbb{C}(\Lambda)^{*}\right)=\operatorname{Div}_{0}(\mathbb{C} / \Lambda) \cap \operatorname{Ker}(S)
$$

See also my notes for Math 4991 for a proof using theta functions.

VI. § 3. Construction of Elliptic Functions (Review)

The Weierstrass elliptic function $\wp(z)$ for a lattice Λ is defined as

$$
\wp(z)=\frac{1}{z^{2}}+\sum_{\omega \in \Lambda \backslash\{0\}}\left(\frac{1}{(z-\omega)^{2}}-\frac{1}{\omega^{2}}\right)
$$

$\wp(z) \in \mathbb{C}(\Lambda)$.

Theorem.

$$
\begin{equation*}
\left(\wp^{\prime}(z)\right)^{2}=4(\wp(z))^{3}-g_{2} \wp(z)-g_{3} \tag{1}
\end{equation*}
$$

where

$$
g_{2}=60 \sum_{\omega \in \Lambda \backslash\{0\}} \frac{1}{\omega^{4}}
$$

and

$$
g_{3}=140 \sum_{\omega \in \Lambda \backslash\{0\}} \frac{1}{\omega^{6}} .
$$

Lemma. (1) $\wp(z)$ is an even function, i.e., $\wp(-z)=\wp(z)$.
(2) For every $c \in \mathbb{C}$, the equation $\wp(z)=c$ has exactly two solutions modulo Λ.

Proof of Lemma. (1)

$$
\begin{aligned}
\wp(-z) & =\frac{1}{(-z)^{2}}+\sum_{\omega \in \Lambda \backslash\{0\}}\left(\frac{1}{(-z-\omega)^{2}}-\frac{1}{\omega^{2}}\right) \\
& =\frac{1}{z^{2}}+\sum_{\omega \in \Lambda \backslash\{0\}}\left(\frac{1}{(z+\omega)^{2}}-\frac{1}{\omega^{2}}\right) \\
& =\frac{1}{z^{2}}+\sum_{\omega \in \Lambda \backslash\{0\}}\left(\frac{1}{\left(z-((-\omega))^{2}\right.}-\frac{1}{(-\omega)^{2}}\right) \\
& =\wp(z)
\end{aligned}
$$

Proof of Lemma (continued).

$f(z) \stackrel{\text { def }}{=} \wp(z)-c \in \mathbb{C}(\Lambda)$, by Theorem (b) Theorem VI 2.2.

$$
\sum_{w \in \mathbb{C} / \Lambda} \operatorname{ord}_{w}(f)=0
$$

$f(z)$ has only one pole $z=0$ modulo Λ and we have $\operatorname{ord}_{0} f(z)=-2$, there exists $a \in \mathbb{C}$ with $f(a)=0$. If $a=-a$ modulo Λ, then $\operatorname{ord}_{a} f \geq 2$, so

$$
\operatorname{ord}_{a} f=2
$$

and there are on other zeros.

If $a \neq-a$ modulo Λ, a and $-a$ are all the zeros of f modulo Λ, and

$$
\operatorname{ord}_{a} f=\operatorname{ord}_{-a} f=1
$$

Theorem.

The field $\mathbb{C}(\Lambda)$ is generated by $\wp(z)$ and $\wp^{\prime}(z)$ over \mathbb{C} subject to the relation

$$
\left(\wp^{\prime}(z)\right)^{2}=4(\wp(z))^{3}-g_{2} \wp(z)-g_{3}
$$

where

$$
\begin{aligned}
& g_{2}=60 \sum_{\omega \in \Lambda \backslash\{0\}} \frac{1}{\omega^{4}} \\
& g_{3}=140 \sum_{\omega \in \Lambda \backslash\{0\}} \frac{1}{\omega^{6}} .
\end{aligned}
$$

Proposition VI. 3.6.

Let g_{2}, g_{3} be the quantities associated to a lattice $\Lambda \subset \mathbb{C}$,
(a) The polynomial $f(x)=4 x^{3}-g_{2} x-g_{3}$ has distinct roots. Its discriminant

$$
\Delta(\Lambda)=g_{2}^{3}-27 g_{3}^{2} \neq 0
$$

(b) Let E / \mathbb{C} be the elliptic curve

$$
y^{2}=4 x^{3}-g_{2} x-g_{3}
$$

The map

$$
\phi: \mathbb{C} / \Lambda \rightarrow E \subset \mathbb{P}^{2}(\mathbb{C}), \quad z \mapsto\left[\wp(z), \wp^{\prime}(z), 1\right]
$$

is an isomorphism of complex Lie groups.

Proof of (a). Note that $\wp^{\prime}(z)$ is an odd function. Let ω_{1}, ω_{2} be a basis of Λ, let $\omega_{3}=\omega_{1}+\omega_{2}$. Then $\frac{\omega_{i}}{2}(i=1,2,3)$ are the non-zero 2 torsion points of \mathbb{C} / Λ. We have

$$
\wp^{\prime}\left(\frac{\omega_{i}}{2}\right)=-\wp^{\prime}\left(-\frac{\omega_{i}}{2}\right)=-\wp^{\prime}\left(\frac{\omega_{i}}{2}\right)
$$

so $\wp^{\prime}\left(\frac{\omega_{i}}{2}\right)=0$. So

$$
4 \wp\left(\frac{\omega_{i}}{2}\right)^{3}-g_{2} \wp\left(\frac{\omega_{i}}{2}\right)-g_{3}=0
$$

$\wp\left(\frac{\omega_{i}}{2}\right)$ are zeros of $4 x^{3}-g_{2} x-g_{3}$. These three zeros are distinct. So $\Delta \neq 0$.
(b). First we note that $\phi(0)=[0,1,0]=O$. There are no other points that maps to O under ϕ. For arbitrary $[a, b, 1] \in E$, we can find $z \in \mathbb{C}$ such that $\wp(z)=a$, then $\wp(-z)=a$, then $b=\wp^{\prime}(z)$ or $\wp^{\prime}(-z)$. Suppose $b=\wp^{\prime}(z)$, then

$$
\phi(z)=[a, b, 1] .
$$

We see ϕ is surjective.
(to be continued)

To prove ϕ is a group homomorphism, we need to use the fact that there is $f \in \mathbb{C}(\Lambda)^{*}$ such that

$$
\operatorname{div}(f)=\left[z_{1}+z_{2}\right]-\left[z_{1}\right]-\left[z_{2}\right]+[0]
$$

We regard $f \in \mathbb{C}(E)$, its divisor in $\operatorname{Div}(E)$ is

$$
\left[\phi\left(z_{1}+z_{2}\right)\right]-\left[\phi\left(z_{1}\right)\right]-\left[\phi\left(z_{2}\right)\right]+[O]
$$

This implies

$$
\phi\left(z_{1}+z_{2}\right)=\phi\left(z_{1}\right)+\phi\left(z_{2}\right)
$$

so ϕ is a group homomorphism.

In the above proof, we need the fact that

$$
\operatorname{ord}_{w}(f)=\operatorname{ord}_{\phi(w)}(f)
$$

This follows the definition of $\operatorname{ord}_{\phi(w)}(f)$.

VI. §4. Maps - Analytic and Algebraic.

For lattices Λ_{1}, Λ_{2}, we have Riemann surfaces $\mathbb{C} / \Lambda_{1}, \mathbb{C} / \Lambda_{2}$. and the corresponding elliptic curves E_{1} and E_{2}
The main result of this section is the following 3 sets are in one-to-one correspondence:
$\operatorname{Hom}_{\text {an }}\left(\mathbb{C} / \Lambda_{1}, \mathbb{C} / \Lambda_{2}\right)=\left\{\phi: \mathbb{C} / \Lambda_{1} \rightarrow \mathbb{C} / \Lambda_{2} \mid \phi\right.$ is holomorphic $\left.\phi(0)=0\right\}$

$\operatorname{Hom}\left(E_{1}, E_{2}\right)$

$$
\left\{\alpha \in \mathbb{C} \mid \alpha \Lambda_{1} \subset \Lambda_{2}\right\}
$$

Given $\alpha \in \mathbb{C}$ satisfying $\alpha \Lambda_{1} \subset \Lambda_{2}$, we have

$$
\phi_{\alpha}: \mathbb{C} / \Lambda_{1} \rightarrow \mathbb{C} / \Lambda_{2}
$$

given by

$$
\phi_{\alpha}(z)=\alpha z
$$

Given a non-constant $\phi: \mathbb{C} / \Lambda_{1} \rightarrow \mathbb{C} / \Lambda_{2}$ in the first set, it induces a field extension

$$
\phi^{*}: \mathbb{C}\left(\Lambda_{2}\right) \rightarrow \mathbb{C}\left(\Lambda_{1}\right)
$$

because

$$
\mathbb{C}\left(\Lambda_{i}\right)=\mathbb{C}\left(E_{i}\right)
$$

we have

$$
\phi^{*}: \mathbb{C}\left(E_{2}\right) \rightarrow \mathbb{C}\left(E_{1}\right)
$$

it induces $E_{1} \rightarrow E_{2}$.
\mathbb{C} / Λ_{1} and \mathbb{C} / Λ_{2} are isomorphic as Riemann surfaces iff they are equivalent as elliptic curves over \mathbb{C} iff there exists $\alpha \in \mathbb{C}^{*}$ such that

$$
\alpha \Lambda_{1}=\Lambda_{2}
$$

Two lattices Λ_{1}, Λ_{2} are equivalent if there exists $\alpha \in \mathbb{C}^{*}$ such that

$$
\alpha \Lambda_{1}=\Lambda_{2}
$$

VI. §5. Uniformization.

The main result is every elliptic curve over \mathbb{C} corresponds a unique equivalence class of lattices.

We will skip Chapter VII.

Chapter VIII. Elliptic Curves over Global Fields.

A number field is a field K of characteristic zero such that $[K: \mathbb{Q}]<\infty$.
Two types of global fields:
(1) Characteristic zero global fields $=$ number fields.
(2) positive characteristic global fields: finitely generated field F over $k_{p}=\mathbb{Z} / p \mathbb{Z}$ such that

$$
\operatorname{tr} \operatorname{deg}\left(F / k_{p}\right)=1
$$

They are function fields of curves over k_{p}.

Main Theorem (Mordell-Weil Theorem). Let E be an elliptic curve over a number field K, then $E(K)$ is finitely generated.

So

$$
E(K) \simeq E_{\text {tors }}(K) \times \mathbb{Z}^{r}
$$

VIII. § 1. The Weak Mordell-Weil Theorem.

Theorem VIII 1.1. (Weak Mordell-Weil Theorem). Let E be elliptic curve over a number field K, and m is a positive integer. Then

$$
E(K) / m E(k)
$$

is a finite group.

Lemma 1.1.1. Let L / K be a finite Galois extension. If $E(L) / m E(L)$ is finite, then $E(K) / m E(K)$ is also finite.

Proof. Let Φ be the kernel of the obvious map

$$
E(K) / m E(K) \rightarrow E(L) / m E(L)
$$

Thus

$$
\Phi=(E(K) \cap m E(L)) / m E(K) .
$$

For $P \in E(K) \cap m E(L)$, we choose $Q_{P} \in E(L)$ such that

$$
m Q_{P}=P
$$

We define a map

$$
\lambda_{P}: G_{L / K} \rightarrow E(m), \quad \lambda_{P}(\sigma)=Q_{P}^{\sigma}-Q_{P}
$$

λ_{P} depends on the choice of Q_{P}.

$$
m\left(Q_{P}^{\sigma}-Q_{P}\right)=\left(m Q_{P}\right)^{\sigma}-m Q_{P}=P^{\sigma}-P=0
$$

Suppose now that $\lambda_{P}=\lambda_{P^{\prime}}$ for two points $P, P^{\prime} \in E(K) \cap m E(L)$. Then

$$
\left(Q_{P}-Q_{P^{\prime}}\right)^{\sigma}=Q_{P}-Q_{P^{\prime}} \text { for all } \sigma \in G_{L / K}
$$

so $Q_{P}-Q_{P^{\prime}} \in E(K)$. Therefore,

$$
P-P^{\prime}=m\left(Q_{P}-Q_{P^{\prime}}\right) \in m E(K) .
$$

Choose a set $R \subset E(K) \cap m E(L)$, which is a set of representative $E(K) \cap m E(L) / m E(K)$,
For each $P \in R$, we choose Q_{P} so we have map $\lambda_{P}: G_{L / K} \rightarrow E[m]$, The map

$$
R \rightarrow \operatorname{Map}\left(G_{L / K} \rightarrow E[m]\right), \quad P \mapsto \lambda_{P}
$$

is 1-1. Since $\operatorname{Map}\left(G_{L / K} \rightarrow E[m]\right)$ is a finite set, so R is a finite set, thus $E(K) \cap m E(L) / m E(K)$ is a finite set.

Now the result follows from the exact sequence

$$
0 \rightarrow E(K) \cap m E(L) / m E(K) \rightarrow E(K) / m E(K) \rightarrow E(L) / m E(L)
$$

End

