Math 6170 C, Lecture on April 15, 2020
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(1). VI. §2. Elliptic Functions (Review)
(2). VI. §3. Constructions of Elliptic Functions (Continued).
(3). VI. §4. Maps — Analytic and Algebraic.

(4). VIII. §1. The Weak Mordell-Weil Theorem.
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VI. §2. Elliptic Functions (Review)

A lattice in C is a free Z-submodule A C C of rank two such that a basis
of A is R-linearly independent.

A lattice can be written as
N = Zwi + Zw»

where w; and wy are R-linear independent.
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Definition. An elliptic function (relative to the lattice A) is a
meromorphic function f(z) on C such that

f(z+w)="f(z)
for allw e A and all z € C.
Constant functions are elliptic functions relative to any lattice.
We denote the space of elliptic functions for A by

C(N).
C(A) is a field.
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Definition. Let A C C be a lattice, a fundamental parallelogram is a
set of the form

D={a+tiw1 +twr | 0< t1,t0 < 1}

where w1, wsy is a Z-basis for A and a € C.

Figure: The domain D = {t; + to(1+ ) |0 < t1,t < 1},
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Theorem VI 2.2.

Let f € C(A), f # 0, then
(@) Zwec/aresw(f) =0
(b) Xwec/nordw(f) =0

(¢) Zwecynordw(f)w € A.
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We define Div(C/A) to the formal Z-linear combination of points in C/A.

So an element in Div(C/A) looks like

kilwi]l + - + kn[wn], ki € Z, w; € C/A.

We have deg : Div(C/A) — Z,

deg(ki[wa] + -+ + kn[wn]) = k1 + - - + kn.

We write Divo(C/A) for Ker(deg).
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We have a group homomorphism

div : C(A)* — Div(C/A)

div(f) = > ordw(f)[w]

weC/A

(b) in Theorem VI 2.2. implies that deg(div(f)) =0
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(c) in Theorem VI 2.2. implies that the composition

C(A)* — Div(C/A) — C/A

is 0, where the 2nd arrow is

S ki[wi] + -+ kn[wa] = kiwa + -+ + kpw,.
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So we have

div(C(A)*) € Divo(C/N) NKer(S)
We have (Proposition 3.4)

div(C(A)*) = Divo(C/A) N Ker(S)

See also my notes for Math 4991 for a proof using theta functions.
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VI. § 3. Construction of Elliptic Functions (Review)

The Weierstrass elliptic function @ (z) for a lattice A is defined as

77+ 2 ( —w)? _w12>

weA{0}

p(z) € C(A).
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Theorem.

(¢ (2))° = 4(p(2))® — 20 (2) — &3 (1)
where
1
£=60 >
weA{0}
and

weA{0}
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Lemma. (1) p(z) is an even function, i.e., p(—z) = p(2).

(2) For every ¢ € C, the equation p(z) = ¢ has exactly two solutions
modulo A.
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Proof of Lemma. (1)

weA\{0}
1 1 1
2 +we/\Z\{o} <(Z +W)2 - ("’2)
1 1 1
==+ _
i weAZ\{O} <(z — () (—w>2>
= p(2)
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Proof of Lemma (continued).

f(z) o ©(z) — c € C(A), by Theorem (b) Theorem VI 2.2.

Z ordy,(f) =0
weC/A
f(z) has only one pole z =0 modulo A and we have ordgf(z) = —2, there

exists a € C with f(a) = 0. If a= —a modulo A, then ord,f > 2, so
ord,f =2

and there are on other zeros.

If a4 —a modulo A, a and —a are all the zeros of f modulo A, and

ord,f = ord_,f = 1.
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The field C(A) is generated by p(z) and ¢/(z) over C subject to the
relation

(¢ (2))° = 4(p(2)) — 20 (2) — &5

where

1
=60 ) —
weA{0}

1
g3 = 140 Z 5
weA{0}
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Proposition VI. 3.6.

Let g», g3 be the quantities associated to a lattice A C C,

(a) The polynomial f(x) = 4x> — gox — g3 has distinct roots. Its
discriminant

A(N) = g3 —27g3 #0.

(b) Let E/C be the elliptic curve

v =43 —gox — g3

The map
¢ :C/N— E CP(C), z— [p(2),¢(2),1]

is an isomorphism of complex Lie groups.
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Proof of (a). Note that ©'(z) is an odd function. Let wy,w, be a basis of

Wi

A, let w3 = w1 +wz. Then F (i = 1,2,3) are the non-zero 2 torsion
points of C/A. We have

A NI A N )

() = —p/ (<) = /()
so (%) = 0. So » B

40(5) -~ g 9(5) — g3 =0

©(%) are zeros of 4x3 — gox — g3. These three zeros are distinct. So

2
A £0.
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(b). First we note that ¢(0) = [0,1,0] = O. There are no other points
that maps to O under ¢. For arbitrary [a, b,1] € E, we can find z € C
such that p(z) = a, then p(—z) = a, then b = ¢(z) or /(—2z). Suppose
b= ¢'(z), then

¢(Z) = [a’ b, 1]'

We see ¢ is surjective.

(to be continued)
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To prove ¢ is a group homomorphism, we need to use the fact that there
is f € C(A\)* such that

div(f) = [21 + 22] — [z1] — [z2] + [0]
We regard f € C(E), its divisor in Div(E) is
[¢(21 + 22)] = [¢(21)] = [¢(22)] + [O]

This implies

(21 + 22) = ¥(z1) + &(22)

so ¢ is a group homomorphism.
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In the above proof, we need the fact that

ordw(f) = 0rd¢(w)(f)
This follows the definition of ordg,(f).
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VI. §4. Maps — Analytic and Algebraic.

For lattices A1, Ay, we have Riemann surfaces C/A;, C/A,. and the

corresponding elliptic curves E; and E;
The main result of this section is the following 3 sets are in one-to-one

correspondence:
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Hom,,(C/A1,C/Ny) ={¢: C/Ay — C/NAy | ¢ is holomorphic ¢(0) = 0}

HOITI(El, E2)

{a € C|aN C Ny}
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Given « € C satisfying aA\; C A2, we have

(ﬁa : (C//\l — (C//\Q
given by

da(z) = az
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Given a non-constant ¢ : C/A; — C/A;, in the first set, it induces a field
extension

gf)* . (C(/\z) — C(/\l)
because

we have

it induces E; — E>.
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C/NA1 and C/A, are isomorphic as Riemann surfaces iff they are equivalent

as elliptic curves over C iff there exists o € C* such that

a1 = No.

Two lattices A1, Ay are equivalent if
there exists o € C* such that

Oé/\l = /\2.
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VI. §5. Uniformization.

The main result is every elliptic curve over C corresponds a unique
equivalence class of lattices.
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We will skip Chapter VII.
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Chapter VIII. Elliptic Curves over Global Fields.

A number field is a field K of characteristic zero such that [K : Q] < oo.

Two types of global fields:
(1) Characteristic zero global fields = number fields.

(2) positive characteristic global fields: finitely generated field F over
kp = Z/pZ such that

trdeg(F/kp) = 1.

They are function fields of curves over kp.
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Main Theorem (Mordell-Weil Theorem). Let E be an elliptic curve over a
number field K, then E(K) is finitely generated.

So
E(K) =~ Epors(K) X Z"
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VIIl. § 1. The Weak Mordell-Weil Theorem.

Theorem VIII 1.1. (Weak Mordell-Weil Theorem). Let E be elliptic
curve over a number field K, and m is a positive integer. Then

E(K)/mE (k)

is a finite group.
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Lemma 1.1.1. Let L/K be a finite Galois extension. If E(L)/mE(L) is
finite, then E(K)/mE(K) is also finite.

Proof. Let ® be the kernel of the obvious map
E(K)/mE(K) — E(L)/mE(L)

Thus
o = (E(K)NmE(L))/mE(K).

For P € E(K) N mE(L), we choose Qp € E(L) such that

mQp = P

We define a map

Ap: GL/K — E(m), )\p(O') = Qg — Qp

Ap depends on the choice of Qp.
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m(Qf — Qp) = (mQp)” — mQp = P — P =0,

Suppose now that A\p = Aps for two points P, P’ € E(K) N mE(L). Then

(QP — QP/)U = QP — QPI forall o € GL/K'
so Qp — Qpr € E(K). Therefore,

P—P = ITI(QP — Qp/) S mE(K)

Yongchang Zhu Short title 33/36



Choose a set R C E(K) N mE(L), which is a set of representative
E(K)NmE(L)/mE(K),

For each P € R, we choose Qp so we have map A\p : G/ — E[m],
The map

R — Map(G,_/K — E[m]), P Ap

is 1-1. Since Map(G,/x — E[m]) is a finite set, so R is a finite set, thus
E(K) N mE(L)/mE(K) is a finite set.
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Now the result follows from the exact sequence

0 — E(K) N mE(L)/mE(K) — E(K)/mE(K) — E(L)/mE(L)
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End
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