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Main Theorem in VIII (Mordell-Weil Theorem). Let E be an elliptic
curve over a number field K , then E (K ) is finitely generated.

So
E (K ) ' Etors(K )× Zr
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VIII. § 1. The Weak Mordell-Weil Theorem (continued).

Theorem VIII 1.1. (Weak Mordell-Weil Theorem). Let E be elliptic
curve over a number field K , and m is a positive integer. Then

E (K )/mE (k)

is a finite group.
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Lemma 1.1.1. Let L/K be a finite Galois extension. If E (L)/mE (L) is
finite, then E (K )/mE (K ) is also finite.

In the view of Lemma 1.1.1, it is enough to prove the Weak Mordell-Weil
theorem under the assumption that

E [m] ⊂ E (K ).
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Definition. The Kummer pairing

κ : E (K )× GK̄/K → E [m]

is defined as follows. Let P ∈ E (K ), and choose Q ∈ E (K̄ ) satisfying

[m]Q = P.

Then
κ(P, σ) = Qσ − Q.
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Proposition VIII 1.2.

(a) The Kummer pairing is well defined.

(b) The Kummer pairing is bilinear.

(c) The kernel of the Kummer paring on the left is mE (K ).

(d) The kernel of the Kummer paring on the right is GK̄/L, where

L = K ([m]−1E (K ))

Hence the Kummer paring induces a perfect bilinear pairing

E (K )/mE (K )× GL/K → E [m].
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Proof of (a). Existence of Q with [m]Q = P. We embed K ⊂ C.
Existence of Q ∈ E (C) with [m]Q = P is obvious since E (C) = S1 × S1

as an abelian group.

|[m]−1P| = m2

Aut(C/K ) acts on [m]−1P.

Then [m]−1P ⊂ E (K̄ ) by the following lemma:
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Proof of (a) (continued). Lemma. If S ⊂ C is a finite set, and it is stable
under the action of Aut(C/K ), then

S ⊂ K̄ = Q̄.

Let T be a maximal subset in C that is algebraically independent over K̄ .

Then K̄ (T ). Any permutation of T can be extended to an automorphism
of C.
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Proof of (a) (continued). We now prove Qσ − Q is independent of the
choice of Q:

Suppose Q ′ ∈ E (K̄ ) also satisfies [m]Q ′ = P, then

[m](Q ′ − Q) = 0, so T
def
= Q ′ − Q ∈ E [m] ⊂ E (K ),

Q ′σ − Q ′ = (Q + T )σ − (Q + T ) = Qσ + T σ − Q − T = Qσ − Q.
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Proof of (b). Let P1,P2 ∈ E (K ), choose Q1,Q2 ∈ E (K̄ ) with
[m]Q1 = P1, [m]Q2 = P2, then [m](Q1 + Q2) = P1 + P2,

κ(P1 + P2, σ)

= (Q1 + Q2)σ − (Q1 + Q2)

= Qσ
1 − Q1 + Qσ

2 − Q2

= κ(P1, σ) + κ(P2, σ)
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Proof of (b) (continued). For σ, τ ∈ GK̄/K , P ∈ E (K ), [m]Q = P,

κ(P, στ)

= Qστ − Q

= (Qσ − Q)τ + Qτ − Q

= Qσ − Q + Qτ − Q

= κ(P, σ) + κ(P, τ)

Yongchang Zhu Short title 12 / 40



Proof of (c). Suppose P ∈ mE (K ), so P = [m]Q for some Q ∈ E (K )

κ(P, σ) = Qσ − Q = Q − Q = 0

Suppose κ(P, σ) = 0 for all σ ∈ GK̄/K ,

For Q ∈ E (K̄ ) with [m]Q = P,

0 = κ(P, σ) = Qσ − Q

for all σ ∈ GK̄/K , Q is fixed by all elements in GK̄/K , Q ∈ E (K )
so P = [m]Q ∈ mE (K ).
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Proof of (d).

Suppose σ ∈ GK̄/L, For every P ∈ E (K ), Q ∈ E (K̄ ) with [m]Q = P,
Then Q ∈ E (L), so

κ(P, σ) = Qσ − Q = Q − Q = 0.

Conversely, if κ(P, σ) = 0 for all P ∈ E (K ), For any Q ∈ E (K̄ ) with
[m]Q = P, Qσ = Q. So σ ∈ GK̄/L.

�
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Kummer Pairing in field theory.

Let F be a field with charF = 0, F̄ be the algebraic closure of F . Let m
be a positive integer and let

µm = {u ∈ F̄ ∗ | um = 1}.

Then |µm| = m. Suppose
µm ⊂ F .
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The Kummer pairing is a pairing

κ : F ∗ × GF̄/F → µm

defined as, for a ∈ F ∗, σ ∈ GF̄/F , we choose b ∈ F̄ ∗ with bm = a.

κ(a, σ) =
bσ

b
.
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Analog of Proposition VIII 1.2.

(a) The Kummer pairing is well defined.

(b) The Kummer pairing is bilinear.

(c) The kernel of the Kummer paring on the left is F ∗m = {cm | c ∈ F ∗}.

(d) The kernel of the Kummer paring on the right is GF̄/L, where L is the

subfield of K̄ generated by F and the solutions of xm = a for a ∈ F .

The proof is parallel to that for elliptic curve case.
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Proposition VIII 1.5. Let

L = K ([m]−1E (K ))

be the field in Proposition VIII 1.2., then
(a) GL/K is abelian and every element has order dividing m.
(b) L/K is unramified at almost all prime ideals of RK . (where RK is the
ring of algebraic integers in K ).
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Proof of (a).

By Kummer pairing

κ : E (K )/mE (K )× GL/K → E [m]

Every σ ∈ GL/K given a linear map

Tσ : E (K )/mE (K )→ E [m], Tσ(P) = κ(P, σ)

Tσ ∈ HomZ(E (K )/mE (K ),E [m])

SO we have an injective group homomorphism

GL/K → HomZ(E (K )/mE (K ),E [m]),

This GL/K is abelian and σm = 1 for all σ ∈ GL/K .
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We will skip (b) and just explain the meaning of the terminology used.

For a number field K , let RK be the ring of algebraic integers in K . Then
RK is a Dedekind domain.

In any Dedekind domain, every non-zero ideal I can be factorized as a
product of prime ideals in a unique way:

I = pm1
1 · · · p

mn
n
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Let K ⊂ E be a finite algebraic extension, RE be the ring of algebraic
integers in E , a prime ideal p ⊂ RK is unramified in E if in the
factorization then the ideal pRE of RE can be factorized

pRE = qm1
1 · · · q

mn
n

q1, . . . , qn are distinct prime ideals of RE , all mi = 1.
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Let K ⊂ L be an infinite algebraic extension, a prime ideal p ⊂ RK is
unramified in L if it is unramified in E for every finite sub-extension
K ⊂ E ⊂ L.
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If C and D are smooth projective curves over some field K with K̄ = K .
Let φ : C → D be a non-constant map, we have corresponding field
extension

φ∗ : K (D)→ K (C ).

Recall a point P ∈ C (K ) is call unramified if φ∗(t) is a uniformizer at P
when t is a uniformizer at φ(P).

In this case, two notions of ”being unrmified” agree.
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Proposition. Let K be a number field, m be a positive integer. Suppose
K ⊂ L is an abelian extension such that σm = 1 for all σ ∈ GL/K and
almost all primes ideals in RK are unramified in L, then L is a finite
extension.
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Proof of Weak Mordell-Weil Theorem.

We have perfect pairing,

κ : E (K )/mE (K )× GL/K → E [m]

Since L is a finite extension of K , GL/K is a finite group, so E (K )/mE (K )
is a finite group.
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VIII. §2. The Kummer Pairing via Cohomology.

If a group G acts on an abelian group A as automorphism (A is called a
G -module), the fixed point

AG = {a ∈ A |σ · a = a for all σ ∈ G}

is a subgroup of A.
However A 7→ AG doesn’t preserve exact sequences:
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If 0→ A→ B → C → 0 is an exact sequence of G -modules.
Then 0→ AG → BG → CG is exact, but
0→ AG → BG → CG → 0 is not exact in general.

The theory of group cohomology allows to define groups

H i (G ,M), i = 0, 1, 2, . . .

for a G -module M with H0(G ,M) = MG ,
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A short exact sequence

0→ A→ B → C → 0

induces a long exact sequence

0→ AG → BG → CG →
→ H1(G ,A)→ H1(G ,B)→ H1(G ,C )→ H2(G ,A)→ . . .
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For an elliptic curve E over K , we have exact sequence of GK̄/K -modules:

0→ E [m]→ E (K̄ )
[m]→ E (K̄ )→ 0

It induces a long exact sequence

0→ E (K )[m]→ E (K )
[m]→ E (K )→

→ H1(GK̄/K ,E [m])→ ....

It induces
0→ E (K )/mE (K )→ H1(GK̄/K ,E [m])
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In the case that E [m] ⊂ E (K ), E [m] is a trivial GK̄/K -module,

H1(GK̄/K ,E [m]) = Hom(GK̄/K ,E [m]).

This is the same as the map given by the Kummer pairing.
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VIII. §3. The Descent Procedure.

Proposition VIII 3.1 (Descent theorem) Let A be an abelian group.
Suppose there is a ”height” function

h : A→ R

with the following properties:

(1) Let Q ∈ A. There is a constant C1, depending on Q, so that for all
P ∈ A,

h(P + Q) ≤ 2h(P) + C1

(2) There is an integer m ≥ 2 and a constant C2, so that for all P ∈ A,

h(mP) ≥ m2h(P)− C2

(To be continued)
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(3) For every constant C3,

{P ∈ A | h(P) ≤ C3}

is a finite set.

Suppose further that |A/mA| <∞. Then A is finitely generated.
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VIII. §5. Heights on Projective Spaces.

For every point P ∈ PN(Q), we can find x0, x1, . . . , xN ∈ Z

P = [x0, x1, . . . , xN ]

such that
gcd(x0, x1, . . . , xN) = 1.

We define the height of P to be

H(P) = max(|x0|, |x1|, . . . , |xN |).
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Example. P = [ 2
3 ,−

4
5 , 1] ∈ P2(Q),

P = [10,−12, 15]

H(P) = 15.
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For arbitrary C , the set

{P ∈ PN(Q) |H(P) ≤ C}

is a finite set.
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We want to define heights for arbitrary number field.

Let F be a field.

Definition. An absolute value on F is a function

| | : F → R≥0

satisfying the following conditions:

(1) |a| = 0 iff a = 0.

(2) |ab| = |a| |b|.

(3) |a + b| ≤ |a|+ |b|.

(4) |F ∗| 6= {1}.
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Two absolute values | |1 and | |2 on F are equivalent if there exists r > 0
such that

|a|r1 = |a|2
for all a ∈ F .
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F = Q.
|a|∞ = max(a,−a)

is an absolute value (the usual absolute value).

For each prime p, every a ∈ Q− {0} can be written as

a = pm
b

c

where m ∈ Z, b, c ∈ Z, gcd(b, p) = gcd(c , p) = 1.

|a|p = p−m, |0|p = 0

| |p : Q→ R≥0

is an absolute value (call the p-adic absolute value).

The above absolute values are called standard eigenvalues on Q.
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Ostrowski Theorem.

Every absolute value on Q is either equal to | |∞ or equivalent to | |p for
some prime p.
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End
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