Math 6170 C, Lecture on April 20, 2020

Yongchang Zhu

Plan

(1). VIII. §1. The Weak Mordell-Weil Theorem (continued).
(2) VIII. §2. The Kummer Pairing via Cohomology.
(3) VIII. §3. The Decent Procedure.
(4) VIII. §5. Heights on Projective Spaces.

Main Theorem in VIII (Mordell-Weil Theorem). Let E be an elliptic curve over a number field K, then $E(K)$ is finitely generated.

So

$$
E(K) \simeq E_{\text {tors }}(K) \times \mathbb{Z}^{r}
$$

VIII. § 1. The Weak Mordell-Weil Theorem (continued).

Theorem VIII 1.1. (Weak Mordell-Weil Theorem). Let E be elliptic curve over a number field K, and m is a positive integer. Then

$$
E(K) / m E(k)
$$

is a finite group.

Lemma 1.1.1. Let L / K be a finite Galois extension. If $E(L) / m E(L)$ is finite, then $E(K) / m E(K)$ is also finite.

In the view of Lemma 1.1.1, it is enough to prove the Weak Mordell-Weil theorem under the assumption that

$$
E[m] \subset E(K)
$$

Definition. The Kummer pairing

$$
\kappa: E(K) \times G_{\bar{K} / K} \rightarrow E[m]
$$

is defined as follows. Let $P \in E(K)$, and choose $Q \in E(\bar{K})$ satisfying

$$
[m] Q=P
$$

Then

$$
\kappa(P, \sigma)=Q^{\sigma}-Q
$$

Proposition VIII 1.2.

(a) The Kummer pairing is well defined.
(b) The Kummer pairing is bilinear.
(c) The kernel of the Kummer paring on the left is $m E(K)$.
(d) The kernel of the Kummer paring on the right is $G_{\bar{K} / L}$, where

$$
L=K\left([m]^{-1} E(K)\right)
$$

Hence the Kummer paring induces a perfect bilinear pairing

$$
E(K) / m E(K) \times G_{L / K} \rightarrow E[m] .
$$

Proof of (a). Existence of Q with $[m] Q=P$. We embed $K \subset \mathbb{C}$. Existence of $Q \in E(\mathbb{C})$ with $[m] Q=P$ is obvious since $E(\mathbb{C})=S^{1} \times S^{1}$ as an abelian group.

$$
\left|[m]^{-1} P\right|=m^{2}
$$

$\operatorname{Aut}(\mathbb{C} / K)$ acts on $[m]^{-1} P$.
Then $[m]^{-1} P \subset E(\bar{K})$ by the following lemma:

Proof of (a) (continued). Lemma. If $S \subset \mathbb{C}$ is a finite set, and it is stable under the action of $\operatorname{Aut}(\mathbb{C} / K)$, then

$$
S \subset \bar{K}=\overline{\mathbb{Q}} .
$$

Let T be a maximal subset in \mathbb{C} that is algebraically independent over \bar{K}. Then $\bar{K}(T)$. Any permutation of T can be extended to an automorphism of \mathbb{C}.

Proof of (a) (continued). We now prove $Q^{\sigma}-Q$ is independent of the choice of Q :

Suppose $Q^{\prime} \in E(\bar{K})$ also satisfies $[m] Q^{\prime}=P$, then $[m]\left(Q^{\prime}-Q\right)=0$, so $T \stackrel{\text { def }}{=} Q^{\prime}-Q \in E[m] \subset E(K)$,

$$
Q^{\prime \sigma}-Q^{\prime}=(Q+T)^{\sigma}-(Q+T)=Q^{\sigma}+T^{\sigma}-Q-T=Q^{\sigma}-Q
$$

Proof of (b). Let $P_{1}, P_{2} \in E(K)$, choose $Q_{1}, Q_{2} \in E(\bar{K})$ with $[m] Q_{1}=P_{1},[m] Q_{2}=P_{2}$, then $[m]\left(Q_{1}+Q_{2}\right)=P_{1}+P_{2}$,

$$
\begin{aligned}
& \kappa\left(P_{1}+P_{2}, \sigma\right) \\
& =\left(Q_{1}+Q_{2}\right)^{\sigma}-\left(Q_{1}+Q_{2}\right) \\
& =Q_{1}^{\sigma}-Q_{1}+Q_{2}^{\sigma}-Q_{2} \\
& =\kappa\left(P_{1}, \sigma\right)+\kappa\left(P_{2}, \sigma\right)
\end{aligned}
$$

Proof of (b) (continued). For $\sigma, \tau \in G_{\bar{K} / K}, P \in E(K),[m] Q=P$,

$$
\begin{aligned}
& \kappa(P, \sigma \tau) \\
& =Q^{\sigma \tau}-Q \\
& =\left(Q^{\sigma}-Q\right)^{\tau}+Q^{\tau}-Q \\
& =Q^{\sigma}-Q+Q^{\tau}-Q \\
& =\kappa(P, \sigma)+\kappa(P, \tau)
\end{aligned}
$$

Proof of (c). Suppose $P \in m E(K)$, so $P=[m] Q$ for some $Q \in E(K)$

$$
\kappa(P, \sigma)=Q^{\sigma}-Q=Q-Q=0
$$

Suppose $\kappa(P, \sigma)=0$ for all $\sigma \in G_{\bar{K} / K}$,
For $Q \in E(\bar{K})$ with $[m] Q=P$,

$$
0=\kappa(P, \sigma)=Q^{\sigma}-Q
$$

for all $\sigma \in G_{\bar{K} / K}, Q$ is fixed by all elements in $G_{\bar{K} / K}, Q \in E(K)$ so $P=[m] Q \in m E(K)$.

Proof of (d).

Suppose $\sigma \in G_{\bar{K} / L}$, For every $P \in E(K), Q \in E(\bar{K})$ with $[m] Q=P$, Then $Q \in E(L)$, so

$$
\kappa(P, \sigma)=Q^{\sigma}-Q=Q-Q=0 .
$$

Conversely, if $\kappa(P, \sigma)=0$ for all $P \in E(K)$, For any $Q \in E(\bar{K})$ with $[m] Q=P, Q^{\sigma}=Q$. So $\sigma \in G_{\bar{K} / L}$.

Kummer Pairing in field theory.

Let F be a field with char $F=0, \bar{F}$ be the algebraic closure of F. Let m be a positive integer and let

$$
\mu_{m}=\left\{u \in \bar{F}^{*} \mid u^{m}=1\right\} .
$$

Then $\left|\mu_{m}\right|=m$. Suppose

$$
\mu_{m} \subset F
$$

The Kummer pairing is a pairing

$$
\kappa: F^{*} \times G_{\bar{F} / F} \rightarrow \mu_{m}
$$

defined as, for $a \in F^{*}, \sigma \in G_{\bar{F} / F}$, we choose $b \in \bar{F}^{*}$ with $b^{m}=a$.

$$
\kappa(a, \sigma)=\frac{b^{\sigma}}{b} .
$$

Analog of Proposition VIII 1.2.

(a) The Kummer pairing is well defined.
(b) The Kummer pairing is bilinear.
(c) The kernel of the Kummer paring on the left is $F^{* m}=\left\{c^{m} \mid c \in F^{*}\right\}$.
(d) The kernel of the Kummer paring on the right is $G_{\bar{F} / L}$, where L is the subfield of \bar{K} generated by F and the solutions of $x^{m}=a$ for $a \in F$.

The proof is parallel to that for elliptic curve case.

Proposition VIII 1.5. Let

$$
L=K\left([m]^{-1} E(K)\right)
$$

be the field in Proposition VIII 1.2., then
(a) $G_{L / K}$ is abelian and every element has order dividing m.
(b) L / K is unramified at almost all prime ideals of R_{K}. (where R_{K} is the ring of algebraic integers in K).

Proof of (a).

By Kummer pairing

$$
\kappa: E(K) / m E(K) \times G_{L / K} \rightarrow E[m]
$$

Every $\sigma \in G_{L / K}$ given a linear map

$$
\begin{gathered}
T_{\sigma}: E(K) / m E(K) \rightarrow E[m], \quad T_{\sigma}(P)=\kappa(P, \sigma) \\
T_{\sigma} \in \operatorname{Hom}_{\mathbb{Z}}(E(K) / m E(K), E[m])
\end{gathered}
$$

SO we have an injective group homomorphism

$$
G_{L / K} \rightarrow \operatorname{Hom}_{\mathbb{Z}}(E(K) / m E(K), E[m]),
$$

This $G_{L / K}$ is abelian and $\sigma^{m}=1$ for all $\sigma \in G_{L / K}$.

We will skip (b) and just explain the meaning of the terminology used.
For a number field K, let R_{K} be the ring of algebraic integers in K. Then R_{K} is a Dedekind domain.

In any Dedekind domain, every non-zero ideal / can be factorized as a product of prime ideals in a unique way:

$$
I=\mathfrak{p}_{1}^{m_{1}} \cdots \mathfrak{p}_{n}^{m_{n}}
$$

Let $K \subset E$ be a finite algebraic extension, R_{E} be the ring of algebraic integers in E, a prime ideal $\mathfrak{p} \subset R_{K}$ is unramified in E if in the factorization then the ideal $\mathfrak{p} R_{E}$ of R_{E} can be factorized

$$
\mathfrak{p} R_{E}=\mathfrak{q}_{1}^{m_{1}} \cdots \mathfrak{q}_{n}^{m_{n}}
$$

$\mathfrak{q}_{1}, \ldots, \mathfrak{q}_{n}$ are distinct prime ideals of R_{E}, all $m_{i}=1$.

Let $K \subset L$ be an infinite algebraic extension, a prime ideal $\mathfrak{p} \subset R_{K}$ is unramified in L if it is unramified in E for every finite sub-extension $K \subset E \subset L$.

If C and D are smooth projective curves over some field K with $\bar{K}=K$. Let $\phi: C \rightarrow D$ be a non-constant map, we have corresponding field extension

$$
\phi^{*}: K(D) \rightarrow K(C) .
$$

Recall a point $P \in C(K)$ is call unramified if $\phi^{*}(t)$ is a uniformizer at P when t is a uniformizer at $\phi(P)$.

In this case, two notions of "being unrmified" agree.

Proposition. Let K be a number field, m be a positive integer. Suppose $K \subset L$ is an abelian extension such that $\sigma^{m}=1$ for all $\sigma \in G_{L / K}$ and almost all primes ideals in R_{K} are unramified in L, then L is a finite extension.

Proof of Weak Mordell-Weil Theorem.

We have perfect pairing,

$$
\kappa: E(K) / m E(K) \times G_{L / K} \rightarrow E[m]
$$

Since L is a finite extension of $K, G_{L / K}$ is a finite group, so $E(K) / m E(K)$ is a finite group.

VIII. §2. The Kummer Pairing via Cohomology.

If a group G acts on an abelian group A as automorphism (A is called a G-module), the fixed point

$$
A^{G}=\{a \in A \mid \sigma \cdot a=a \text { for all } \sigma \in G\}
$$

is a subgroup of A.
However $A \mapsto A^{G}$ doesn't preserve exact sequences:

If $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ is an exact sequence of G-modules.
Then $0 \rightarrow A^{G} \rightarrow B^{G} \rightarrow C^{G}$ is exact, but $0 \rightarrow A^{G} \rightarrow B^{G} \rightarrow C^{G} \rightarrow 0$ is not exact in general.

The theory of group cohomology allows to define groups

$$
H^{i}(G, M), i=0,1,2, \ldots
$$

for a G-module M with $H^{0}(G, M)=M^{G}$,

A short exact sequence

$$
0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0
$$

induces a long exact sequence

$$
\begin{aligned}
& 0 \rightarrow A^{G} \rightarrow B^{G} \rightarrow C^{G} \rightarrow \\
& \rightarrow H^{1}(G, A) \rightarrow H^{1}(G, B) \rightarrow H^{1}(G, C) \rightarrow H^{2}(G, A) \rightarrow \ldots
\end{aligned}
$$

For an elliptic curve E over K, we have exact sequence of $G_{\bar{K} / K^{-}}$-modules:

$$
0 \rightarrow E[m] \rightarrow E(\bar{K}) \xrightarrow{[m]} E(\bar{K}) \rightarrow 0
$$

It induces a long exact sequence

$$
\begin{aligned}
& 0 \rightarrow E(K)[m] \rightarrow E(K) \xrightarrow{[m]} E(K) \rightarrow \\
& \rightarrow H^{1}\left(G_{\bar{K} / K}, E[m]\right) \rightarrow \ldots
\end{aligned}
$$

It induces

$$
0 \rightarrow E(K) / m E(K) \rightarrow H^{1}\left(G_{\bar{K} / K}, E[m]\right)
$$

In the case that $E[m] \subset E(K), E[m]$ is a trivial $G_{\bar{K} / K^{-m o d u l e, ~}}$,

$$
H^{1}\left(G_{\bar{K} / K}, E[m]\right)=\operatorname{Hom}\left(G_{\bar{K} / K}, E[m]\right)
$$

This is the same as the map given by the Kummer pairing.

VIII. §3. The Descent Procedure.

Proposition VIII 3.1 (Descent theorem) Let A be an abelian group. Suppose there is a "height" function

$$
h: A \rightarrow \mathbb{R}
$$

with the following properties:
(1) Let $Q \in A$. There is a constant C_{1}, depending on Q, so that for all $P \in A$,

$$
h(P+Q) \leq 2 h(P)+C_{1}
$$

(2) There is an integer $m \geq 2$ and a constant C_{2}, so that for all $P \in A$,

$$
h(m P) \geq m^{2} h(P)-C_{2}
$$

(To be continued)
(3) For every constant C_{3},

$$
\left\{P \in A \mid h(P) \leq C_{3}\right\}
$$

is a finite set.

Suppose further that $|A / m A|<\infty$. Then A is finitely generated.

VIII. §5. Heights on Projective Spaces.

For every point $P \in \mathbb{P}^{N}(\mathbb{Q})$, we can find $x_{0}, x_{1}, \ldots, x_{N} \in \mathbb{Z}$

$$
P=\left[x_{0}, x_{1}, \ldots, x_{N}\right]
$$

such that

$$
\operatorname{gcd}\left(x_{0}, x_{1}, \ldots, x_{N}\right)=1
$$

We define the height of P to be

$$
H(P)=\max \left(\left|x_{0}\right|,\left|x_{1}\right|, \ldots,\left|x_{N}\right|\right) .
$$

Example. $P=\left[\frac{2}{3},-\frac{4}{5}, 1\right] \in \mathbb{P}^{2}(\mathbb{Q})$,

$$
P=[10,-12,15]
$$

$$
H(P)=15
$$

For arbitrary C, the set

$$
\left\{P \in \mathbb{P}^{N}(\mathbb{Q}) \mid H(P) \leq C\right\}
$$

is a finite set.

We want to define heights for arbitrary number field.

Let F be a field.

Definition. An absolute value on F is a function

$$
\left|\mid: F \rightarrow \mathbb{R}_{\geq 0}\right.
$$

satisfying the following conditions:
(1) $|a|=0$ iff $a=0$.
(2) $|a b|=|a||b|$.
(3) $|a+b| \leq|a|+|b|$.
(4) $\left|F^{*}\right| \neq\{1\}$.

Two absolute values $\left\|\|_{1} \text { and }\right\|_{2}$ on F are equivalent if there exists $r>0$ such that

$$
|a|_{1}^{r}=|a|_{2}
$$

for all $a \in F$.
$F=\mathbb{Q}$.

$$
|a|_{\infty}=\max (a,-a)
$$

is an absolute value (the usual absolute value).
For each prime p, every $a \in \mathbb{Q}-\{0\}$ can be written as

$$
a=p^{m} \frac{b}{c}
$$

where $m \in \mathbb{Z}, b, c \in \mathbb{Z}, \operatorname{gcd}(b, p)=\operatorname{gcd}(c, p)=1$.

$$
\begin{gathered}
|a|_{p}=p^{-m}, \quad|0|_{p}=0 \\
\left|\left.\right|_{p}: \mathbb{Q} \rightarrow \mathbb{R}_{\geq 0}\right.
\end{gathered}
$$

is an absolute value (call the p-adic absolute value).
The above absolute values are called standard eigenvalues on \mathbb{Q}.

Ostrowski Theorem.

Every absolute value on \mathbb{Q} is either equal to $\left.\left|\left.\right|_{\infty}\right.$ or equivalent to $|\right|_{p}$ for some prime p.

End

