Math 6170 C, Lecture on April 20, 2020
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(1). VII. §1. The Weak Mordell-Weil Theorem (continued).
(2) VIII. §2. The Kummer Pairing via Cohomology.
(3) VIII. §3. The Decent Procedure.

(4) VIII. §5. Heights on Projective Spaces.
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Main Theorem in VIII (Mordell-Weil Theorem). Let E be an elliptic
curve over a number field K, then E(K) is finitely generated.

So
E(K) =~ Epors(K) X Z"
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VIII. § 1. The Weak Mordell-Weil Theorem (continued).

Theorem VIII 1.1. (Weak Mordell-Weil Theorem). Let E be elliptic
curve over a number field K, and m is a positive integer. Then

E(K)/mE (k)

is a finite group.
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Lemma 1.1.1. Let L/K be a finite Galois extension. If E(L)/mE(L) is
finite, then E(K)/mE(K) is also finite.

In the view of Lemma 1.1.1, it is enough to prove the Weak Mordell-Weil
theorem under the assumption that

Elm]  E(K).
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Definition. The Kummer pairing
Kk E(K) x Gg i — E[m]
is defined as follows. Let P € E(K), and choose Q € E(K) satisfying
[m]Q = P.

Then
K’('D’U) =Q7 - Q.
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Proposition VIII 1.2.

(a) The Kummer pairing is well defined.

(b) The Kummer pairing is bilinear.

(c) The kernel of the Kummer paring on the left is m E(K).

(d) The kernel of the Kummer paring on the right is Gg,, where

L= K([mE(K))

Hence the Kummer paring induces a perfect bilinear pairing

E(K)/mE(K) x Gy /x — E[m].
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Proof of (a). Existence of Q with [m]Q = P. We embed K C C.
Existence of @ € E(C) with [m]@ = P is obvious since E(C) = S* x S?
as an abelian group.

)P = 2

Aut(C/K) acts on [m]~1P.

Then [m]~1P C E(K) by the following lemma:
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Proof of (a) (continued). Lemma. If S C C is a finite set, and it is stable
under the action of Aut(C/K), then

ScK=0Q.

Let 7 be a maximal subset in C that is algebraically independent over K.
Then K(T). Any permutation of T can be extended to an automorphism
of C.
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Proof of (a) (continued). We now prove Q% — Q is independent of the
choice of Q:

Suppose Q' € E(K) also satisfies [m]Q" = P, then

[M(Q —Q)=0,50 T Q — Qe E[m] c E(K),

Q-Q=Q+T) - (Q+T=Q +T°-Q-T=Q - Q.
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Proof of (b). Let Py, P, € E(K), choose Q1, @ € E(K) with
[m] Q1 = P1,[m] Q2 = Py, then [m](@Q1 + Q2) = P1 + P2,

K;(Pl + PQ,U)

=(Q1+ @) — (Q1+ @)
=Q] — Q1+ Q7 — @

= k(P1,0) + k(P2,0)
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Proof of (b) (continued). For 0,7 € Gg i, P € E(K),[m]Q = P,

k(P,oT)

=Q7-Q
=(QT-Q)+Q"—-Q
=Q7-Q+Q"-Q

= k(P,o) + k(P,T)
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Proof of (c). Suppose P € mE(K), so P = [m]Q for some Q € E(K)

K(P,o)=Q"-Q=Q-Q=0

Suppose k(P,0) =0 for all o € GK/K'
For Q € E(K) with [m]Q = P,

0=kr(P,0)=Q% —Q

for all o € Gg k. Q is fixed by all elements in Gz, Q € E(K)
so P =[m|Q € mE(K).
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Proof of (d).

Suppose o € G, For every P € E(K), Q € E(K) with [m]Q = P,
Then Q € E(L), so

K(P,o)=Q —Q=Q—-Q=0.

Conversely, if k(P,0) = 0 for all P € E(K), For any Q € E(K) with
[MQ=P, RT=Q. Soo € GR/L-
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Kummer Pairing in field theory.

Let F be a field with char F = 0, F be the algebraic closure of F. Let m
be a positive integer and let

fim = {u € F*|um™ =1},

Then |m| = m. Suppose
im C F.
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The Kummer pairing is a pairing

KPS Geip = fim
defined as, for a € F*,0 € GF‘/F' we choose b € F* with b™ = a.

il

k(a,o) = =
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Analog of Proposition VIII 1.2.

(a) The Kummer pairing is well defined.

(b) The Kummer pairing is bilinear.

(c) The kernel of the Kummer paring on the left is F*™ = {c™ | c € F*}.
(d) The kernel of the Kummer paring on the right is Gg,,, where L is the

subfield of K generated by F and the solutions of x™ = a for a € F.

The proof is parallel to that for elliptic curve case.
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Proposition VIII 1.5. Let
L= K([m]*E(K))

be the field in Proposition VIII 1.2., then

(a) Gy k is abelian and every element has order dividing m.

(b) L/K is unramified at almost all prime ideals of Rx. (where Ry is the
ring of algebraic integers in K).
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Proof of (a).

By Kummer pairing
k: E(K)/mE(K) x G/ — E[m]
Every o € G /i given a linear map
T, : E(K)/mE(K) — E[m], T,(P)=k(P,0)

T, € Homz(E(K)/mE(K), E[m])

SO we have an injective group homomorphism
GL/K - HomZ(E(K)/mE(K)7 E[m])’

This Gk is abelian and ¢™ =1 for all 0 € Gy /.
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We will skip (b) and just explain the meaning of the terminology used.

For a number field K, let Rk be the ring of algebraic integers in K. Then
Ry is a Dedekind domain.

In any Dedekind domain, every non-zero ideal / can be factorized as a
product of prime ideals in a unique way:

_ mi m
[ =p™ - ppn
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Let K C E be a finite algebraic extension, Rg be the ring of algebraic
integers in E, a prime ideal p C Rk is unramified in E if in the
factorization then the ideal pRg of Re can be factorized

pRE = qu qZ’"

di,- - -,qn are distinct prime ideals of Rg, all m; = 1.

Yongchang Zhu Short title

21 /40



Let K C L be an infinite algebraic extension, a prime ideal p C Rk is
unramified in L if it is unramified in E for every finite sub-extension
KCECL
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If C and D are smooth projective curves over some field K with K = K.
Let ¢ : C — D be a non-constant map, we have corresponding field
extension

¢* : K(D) — K(C).

Recall a point P € C(K) is call unramified if ¢*(t) is a uniformizer at P
when t is a uniformizer at ¢(P).

In this case, two notions of "being unrmified” agree.
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Proposition. Let K be a number field, m be a positive integer. Suppose
K C Lis an abelian extension such that ¢ =1 for all 0 € Gk and
almost all primes ideals in Rk are unramified in L, then L is a finite

extension.
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Proof of Weak Mordell-Weil Theorem.
We have perfect pairing,

k: E(K)/mE(K) x Gk — E[m]

Since L is a finite extension of K, G/ is a finite group, so E(K)/mE(K)
is a finite group.
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VIIIl. §2. The Kummer Pairing via Cohomology.

If a group G acts on an abelian group A as automorphism (A is called a
G-module), the fixed point

AC ={acAlo-a=aforallo € G}

is a subgroup of A.
However A — A® doesn't preserve exact sequences:
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If0 -+ A— B — C — 0is an exact sequence of G-modules.
Then 0 = A® — B¢ — CC is exact, but
0 — A® — B¢ — C® — 0 is not exact in general.

The theory of group cohomology allows to define groups

H(G,M),i=0,1,2,...
for a G-module M with H%(G, M) = M€,
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A short exact sequence

0—-A—B—->C—=0

induces a long exact sequence

0 A® - B¢ - CC —
— HY(G,A) = HY(G,B) — H(G,C) = H*(G,A) — ...
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For an elliptic curve E over K, we have exact sequence of Gy ,-modules:

0 — E[m] — E(K) L E(K)—0

It induces a long exact sequence

0 - E(K)[m] — E(K) ™ E(K) =
— HY(Gg i, E[m]) — ...

It induces
0 — E(K)/mE(K) = H'(Gg k. E[m])
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In the case that E[m] C E(K), E[m] is a trivial Gg ,-module,

H'(Gi k- Elm]) = Hom(Gg i, E[m]).

This is the same as the map given by the Kummer pairing.
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VIIIl. §3. The Descent Procedure.

Proposition VIII 3.1 (Descent theorem) Let A be an abelian group.
Suppose there is a "height” function

h:A—=R

with the following properties:

(1) Let Q € A. There is a constant C;, depending on @, so that for all
PeA,

h(P+ Q) <2h(P)+ G
(2) There is an integer m > 2 and a constant C,, so that for all P € A,

h(mP) > m*h(P) — G,

(To be continued)
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(3) For every constant G,
{P € A|h(P) < G}
is a finite set.

Suppose further that |A/mA| < co. Then A is finitely generated.
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VIIIl. §5. Heights on Projective Spaces.

For every point P € PN(Q), we can find xg, x1,...,xy € Z
P = [Xo,Xl,...,XN]
such that
ng(Xo, X1y--- ,XN) =1.

We define the height of P to be

H(P) = max(|xo|, |x1], - - -, |xn])-
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Example. P = [2,—2,1] € P*(Q),

P = [10,-12,15]

H(P) = 15.
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For arbitrary C, the set

{PePV(Q)|H(P) < C}

is a finite set.
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We want to define heights for arbitrary number field.

Let F be a field.

Definition. An absolute value on F is a function

|- F = Rxo
satisfying the following conditions:
(1) |a] =0 iff a=0.
(2) |ab| = [a[ |b|.
(3) la+ bl < [a[ +[b].
(4) [F| #{1}.
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Two absolute values | |1 and | |2 on F are equivalent if there exists r > 0
such that
lal1 = [a]2

for all a € F.
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F=Q.

|aloo = max(a, —a)
is an absolute value (the usual absolute value).
For each prime p, every a € Q — {0} can be written as
b
a=p"-—
c
where m € Z, b, ¢ € Z,ged(b, p) = ged(c, p) = 1.
lalp =p™", [0[p=0
[1p: Q= R0

is an absolute value (call the p-adic absolute value).

The above absolute values are called standard eigenvalues on Q.
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Ostrowski Theorem.

Every absolute value on Q is either equal to | | or equivalent to | |, for
some prime p.
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