Math 6170 C, Lecture on April 22, 2020

Yongchang Zhu

Yongchang Zhu	× /		
I OHECHAILE LIN	Yon	σcha	ng /hu
	1011	guna	11g Z110

(1) Elliptic Curves over \mathbb{R} .

(2) VIII. §5. Heights on Projective Spaces (continued).

æ

イロト イヨト イヨト イヨト

Assume E is an elliptic curve over \mathbb{R} , its Weierstrass equation can be written as

$$y^2 = x^3 + ax + b$$

where $a, b \in \mathbb{R}$ and the polynomial $x^3 + ax + b$ has 3 distinct complex zeros. At least one of them is real, because

$$\lim_{x\to+\infty}(x^3+ax+b)=+\infty, \quad \lim_{x\to-\infty}(x^3+ax+b)=-\infty.$$

So we have two cases.

Case 1. $x^3 + ax + b = 0$ has only one real zero r, then $x^3 + ax + b = (x - r)(x^2 + cx + d).$ $x^2 + cx + d > 0$ for all $x \in \mathbb{R}$.

we have

$$x^{3} + ax + b \begin{cases} < 0 & \text{if } x < r \\ \ge 0 & \text{if } x \ge r \end{cases}$$

< □ > < □ > < □ > □ =

The real solutions of $y^2 = x^3 + ax + b$ exists only for $x \ge r$.

If x = r, there is only one y = 0.

If x > r, there are two y's. Add the infinite point, we see the solution set is a circle. The group has to be S^1 .

× .					_	
~	on	i a c	'h n	na		hu
	UII	IE C		112	~	пu
		0				

•

・ロト・西ト・モン・ビー シック

Case 2. $x^3 + ax + b = 0$ has three real zeros $r_1 < r_2 < r_3$, then

$$x^{3} + ax + b = (x - r_{1})(x - r_{2})(x - r_{3}).$$

we have

$$x^{3} + ax + b \begin{cases} < 0 & \text{if } x < r_{1} \\ \ge 0 & \text{if } r_{1} \le x \le r_{2} \\ < 0 & \text{if } r_{2} < x < r_{3} \\ \ge 0 & \text{if } r_{3} \le x \end{cases}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $E(\mathbb{R})$ has two components: one for $r_1 \leq x \leq r_2$, the other for $r_3 \leq x$ together with ∞ . Both components are S^1 .

Because there are 4 2-torsion points $(r_1, 0), (r_2, 0), (r_3, 0)$ and ∞ . So the group must be $S^1 \times \{\pm 1\}$.

For every point $P \in \mathbb{P}^N(\mathbb{Q})$, we can find $x_0, x_1, \ldots, x_N \in \mathbb{Z}$

$$P = [x_0, x_1, \ldots, x_N]$$

such that

$$gcd(x_0, x_1, \ldots, x_N) = 1.$$

We define the **height** of P to be

$$H(P) = \max(|x_0|, |x_1|, \ldots, |x_N|).$$

Example.
$$P = [\frac{2}{3}, -\frac{4}{5}, 1] \in \mathbb{P}^2(\mathbb{Q}),$$

 $P = [10, -12, 15]$
 $H(P) = 15.$

10 / 40

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

For arbitrary C, the set

$$\{P \in \mathbb{P}^N(\mathbb{Q}) \mid H(P) \leq C\}$$

is a finite set.

2

イロト イヨト イヨト イヨト

We want to define heights for arbitrary number field.

Let F be a field.

Definition. An absolute value on F is a function

$$| \ | : F \to \mathbb{R}_{\geq 0}$$

satisfying the following conditions:

(1) |a| = 0 iff a = 0.

(2) |ab| = |a| |b|.

(3) $|a+b| \le |a|+|b|$.

(4) $|F^*| \neq \{1\}.$

3

• • = • • = •

Two absolute values $| |_1$ and $| |_2$ on F is equivalent if there exists r > 0 such that

$$a|_1^r = |a|_2$$

for all $a \in F$.

æ

∃ ► < ∃ ►

 $F = \mathbb{Q}.$

$$|a|_{\infty} = \max(a, -a)$$

is an absolute value (the usual absolute value).

For each prime p, we have p-adic absolute value defined by $|0|_p = 0$ and

$$|p^m\frac{b}{c}|_p=p^{-m},$$

 $m \in \mathbb{Z}, \, , \, b, \, c \in \mathbb{Z} - \{0\}, \, p \not| b, \, p \not| c.$

The above absolute values are called **standard absolute values** on \mathbb{Q} .

イロト イヨト イヨト --

Every absolute value on \mathbb{Q} is either equal to $| \mid_{\infty}$ or equivalent to $| \mid_{p}$ for some prime p.

æ

• • = • • = •

Let C be a smooth projective over \bar{K} . For $P \in \bar{K}(C)$,

$$\operatorname{ord}_{P}: \ \overline{K}(C)^{*} \to \mathbb{Z}$$

satisfies the properties that

 $\operatorname{ord}_{P}(fg) = \operatorname{ord}_{P}(f) + \operatorname{ord}_{P}(g), \quad \operatorname{ord}_{P}(f+g) \ge \min(\operatorname{ord}_{P}(f), \operatorname{ord}_{P}(g))$

These properties implies that, for a fixed q > 1,

$$||_P: \overline{K}(C)^* \to \mathbb{R}_{\geq 0}, \ |f|_P = q^{-\operatorname{ord}_P(f)}$$

is an absolute values. This absolute satisfied that $|\bar{K}^*| = 1$.

Different choices of q give equivalent absolute values.

The map $P \mapsto ||_P$ is an one-to-one correspondence from $C(\bar{K})$ to the set of equivalence classes of absolute values on $\bar{K}(C)$ with $|\bar{K}^*| = 1$.

Let $M_{\mathbb{Q}}$ denote the set of standard absolute values, by Ostrowski Theorem, $M_{\mathbb{Q}}$ is the set of equivalence classes of absolute values on \mathbb{Q} .

The set $M_{\mathbb{Q}}$ is an analog for \mathbb{Q} of $C(\bar{K})$ for function field $\bar{K}(C)$.

For every number field K, if $| | : K \to \mathbb{R}_{\geq 0}$ is an absolute value, then the restriction of | | on \mathbb{Q} is an absolute value on \mathbb{Q} .

An absolute value on K is called a **standard absolute value** if its restriction on \mathbb{Q} is a standard absolute value on \mathbb{Q} .

Let M_K be the set of standard absolute values on K.

Let M_K denote the set of standard absolute values on K.

Every other absolute value on K is equivalent to a unique standard absolute value, so the set M_K can be identified with the set of equivalence classes of absolute values on K.

There are two types absolute values on a number field K.

Archimedean absolute values: For every an embedding

 $\sigma: K \to \mathbb{C},$

The map

$$| \mid_{\sigma} : \mathcal{K} o \mathbb{R}_{\geq 0}, \quad |\mathbf{a}|_{\sigma} = |\sigma(\mathbf{a})|$$

is an absolute value.

 σ has a complex conjugate embedding

$$\bar{\sigma}: K \to \mathbb{C}, \ \bar{\sigma}(a) = \overline{\sigma(a)}.$$

It is clear that $| |_{\sigma} = | |_{\bar{\sigma}}$.

Note that $\sigma = \overline{\sigma}$ iff $\operatorname{Im}(\sigma) \subset \mathbb{R}$. In this case, we call σ a real embedding.

 $\sigma \neq \bar{\sigma}$ iff $\operatorname{Im}(\sigma) \not\subset \mathbb{R}$. In this case, we call σ an complex embedding. Complex embedding appear in pairs: $\sigma, \bar{\sigma}$.

An absolute values on K obtained by an embeddings $K \to \mathbb{C}$ are called an **Archimedean absolute value**.

Theorem. Suppose K has 2m complex embeddings and r real embeddings, then

$$[K:\mathbb{Q}]=2m+r.$$

and

K has m + r Archimedean absolute values. They are all standard.

Non-Archimedean absolute values.

Let R_K be the ring of (algebraic) integers in K.

Example. $K = \mathbb{Q}(i)$, then $R = R_K = \mathbb{Z}[i]$.

э

A B > A B >

For every non-zero prime ideal $q \subset R_K$. The localization R_q is a PID with a unique non-zero prime ideal. Assume it is $(\pi)R_q$.

Let R_q^* be the group of units in R_q . Every non-zeros element *a* in *K* can be written uniquely as

$$a = \pi^m u, \quad m \in \mathbb{Z}, u \in R^*_q$$

Then

$$\operatorname{ord}_{\mathfrak{q}}: K^* \to \mathbb{Z}, \quad \operatorname{ord}_{\mathfrak{q}}(a) = m$$

is discrete valuation.

So for any r > 1,

$$|a|_{\mathfrak{q},r} = r^{-\mathrm{ord}_{\mathfrak{q}}(a)}$$

is an absolute value. Different r's give equivalent absolute values.

There is only one r so that $||_{q,r}$ is a standard absolute value.

 $\mathfrak{q}\cap\mathbb{Z}$ is a non-zero prime ideal in $\mathbb{Z},$ so

$$\mathfrak{q} \cap \mathbb{Z} = p\mathbb{Z}$$

We choose r such that

$$|p|_{\mathfrak{q},r}=r^{-\mathrm{ord}_{\mathfrak{q}}p}=p^{-1}$$

such r is unique. For this r, $||_{q,r}$ is a standard absolute value.

An absolute values on K obtained from prime ideals in R as above are called **non-Archimedean** absolute values.

$M_{\mathcal{K}} =$ Archemedean absolute values \sqcup {Standard absolute values from non – zero prime ideals in R}

æ

イロト イ理ト イヨト イヨト

- If $||_{v}$ is an absolute value on K, but taking Cauchy sequences with respect to $||_{v}$, we get a field K_{v} , the completion of K with respect to $||_{v}$.
- If $||_{v}$ is obtained by a complex embedding $K \to \mathbb{C}$, then $K_{v} = \mathbb{C}$.
- If $||_{\nu}$ is obtained by a real embedding $K \to \mathbb{R}$, then $K_{\nu} = \mathbb{R}$.

・ロト ・四ト・ モン・ モン

If $| |_{v}$ is obtained from a non-zero prime ideal $q \subset R$, then

$$K_{\nu} = \operatorname{Frac} \varprojlim R/\mathfrak{q}^n.$$

The *p*-adic absolute value on \mathbb{Q} gives the completion \mathbb{Q}_p , the *p*-adic field.

Fields like K_v are the characteristic zero local fields.

4 3 4 3 4 3 4

An number field extension $K \subset K'$ gives a map

$$M_{K'} o M_K$$

where the image of $||_w \in M_{K'}$ in M_K is the restriction $||_w$ on K. This map is surjective. If $w \in M_{K'}$ maps to $v \in M_K$, we write w|v (read as w divides v).

Function field analog: let C and C' be smooth projective curves over \bar{K} , An embedding $\bar{K}(C') \rightarrow \bar{K}(C)$ induces a surjective morphism

$$C \to C'$$

▶ ∢ ∃ ▶

Every number field K is an extension of \mathbb{Q} , so we have

$$M_K o M_\mathbb{Q}$$

every Archimedean absolute value goes to $| \ |_{\infty},$ the usual absolute value on $\mathbb{Q}.$

э

• = • • = •

Definition. For $v \in M_K$, we use the same symbol v to denote its restriction on \mathbb{Q} , the **local degree** at v, denoted n_v , is given by

$$n_{v} = [K_{v} : \mathbb{Q}_{v}]$$

Example. $\mathcal{K} = \mathbb{Q}(i)$, it has a unique Archimedean absolute value ∞ , $\mathbb{Q}(i)_{\infty} = \mathbb{C}$,

$$n_{\infty} = [\mathbb{C} : \mathbb{R}] = 2$$

• • = • • = •

Theorem. Let *K* be a number field, for a standard absolute value $v \in M_{\mathbb{Q}}$,

$$\sum_{w\in M_K, w|v} n_w = [K:\mathbb{Q}].$$

æ

イロト イヨト イヨト イヨト

Let $\mathbb{Q} \subset K \subset L$ be a tower of number fields, for $v \in M_K$,

$$\sum_{w\in M_L,w|v}n_w=n_v\left[L:K\right]$$

イロト 不得下 イヨト イヨト

For every $r\in \mathbb{Q}^*$, we have $|r|_v=1$ for almost all $v\in M_\mathbb{Q}$ and

$$\prod_{v\in M_{\mathbb{Q}}}|r|_{v}=1.$$

Example.
$$r=-\frac{7}{20},$$
 then
$$|r|_{\infty}=\frac{7}{20},\ |r|_2=2^4,\ |r|_5=5,\ |r|_7=7^{-1}$$
 and

$$|r|_{p} = 1 \text{ for } p \neq 2, 5, 7.$$

æ

イロト イヨト イヨト イヨト

Proof of Theorem. let

$$r=\pm p_1^{k_1}p_2^{k_2}\dots p_n^{k_n}$$

where p_1, \ldots, p_n are distinct primes, $k_i \in \mathbb{Z}$. Then

$$|r|_{\infty}=p_1^{k_1}p_2^{k_2}\dots p_n^{k_n}$$

$$|r|_{p_1} = p_1^{-k_1}, \ |r|_{p_2} = p_2^{-k_2}, \dots, |r|_{p_n} = p_n^{-k_n}$$

 and

 $|r|_p = 1$ for all other primes.

æ

イロト イヨト イヨト イヨト

Let K be a number field, $x \in K^*.$ Then $|x|_v = 1$ for almost all $v \in M_K$, and

$$\prod_{v\in M_K}|x|_v^{n_v}=1.$$

Function field analog: $f \in \bar{K}(C)^*$,

$$\sum_{P\in C} \operatorname{ord}_P(f) = 0$$

See Proposition II 3.1.

End

æ

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ -