Math 6170 C, Lecture on April 22, 2020

Yongchang Zhu

Plan

(1) Elliptic Curves over \mathbb{R}.
(2) VIII. §5. Heights on Projective Spaces (continued).

Elliptic Curves over \mathbb{R}.

Assume E is an elliptic curve over \mathbb{R}, its Weierstrass equation can be written as

$$
y^{2}=x^{3}+a x+b
$$

where $a, b \in \mathbb{R}$ and the polynomial $x^{3}+a x+b$ has 3 distinct complex zeros. At least one of them is real, because

$$
\lim _{x \rightarrow+\infty}\left(x^{3}+a x+b\right)=+\infty, \quad \lim _{x \rightarrow-\infty}\left(x^{3}+a x+b\right)=-\infty .
$$

So we have two cases.
Case 1. $x^{3}+a x+b=0$ has only one real zero r, then

$$
x^{3}+a x+b=(x-r)\left(x^{2}+c x+d\right)
$$

$x^{2}+c x+d>0$ for all $x \in \mathbb{R}$.
we have

$$
x^{3}+a x+b \begin{cases}<0 & \text { if } x<r \\ \geq 0 & \text { if } x \geq r\end{cases}
$$

The real solutions of $y^{2}=x^{3}+a x+b$ exists only for $x \geq r$.
If $x=r$, there is only one $y=0$.
If $x>r$, there are two y 's. Add the infinite point, we see the solution set is a circle. The group has to be S^{1}.

Case 2. $x^{3}+a x+b=0$ has three real zeros $r_{1}<r_{2}<r_{3}$, then

$$
x^{3}+a x+b=\left(x-r_{1}\right)\left(x-r_{2}\right)\left(x-r_{3}\right) .
$$

we have

$$
x^{3}+a x+b \begin{cases}<0 & \text { if } x<r_{1} \\ \geq 0 & \text { if } r_{1} \leq x \leq r_{2} \\ <0 & \text { if } r_{2}<x<r_{3} \\ \geq 0 & \text { if } r_{3} \leq x\end{cases}
$$

$E(\mathbb{R})$ has two components: one for $r_{1} \leq x \leq r_{2}$, the other for $r_{3} \leq x$ together with ∞. Both components are S^{1}.

Because there are 42 -torsion points $\left(r_{1}, 0\right),\left(r_{2}, 0\right),\left(r_{3}, 0\right)$ and ∞. So the group must be $S^{1} \times\{ \pm 1\}$.

VIII. §5. Heights on Projective Spaces (continued).

For every point $P \in \mathbb{P}^{N}(\mathbb{Q})$, we can find $x_{0}, x_{1}, \ldots, x_{N} \in \mathbb{Z}$

$$
P=\left[x_{0}, x_{1}, \ldots, x_{N}\right]
$$

such that

$$
\operatorname{gcd}\left(x_{0}, x_{1}, \ldots, x_{N}\right)=1
$$

We define the height of P to be

$$
H(P)=\max \left(\left|x_{0}\right|,\left|x_{1}\right|, \ldots,\left|x_{N}\right|\right) .
$$

Example. $P=\left[\frac{2}{3},-\frac{4}{5}, 1\right] \in \mathbb{P}^{2}(\mathbb{Q})$,

$$
P=[10,-12,15]
$$

$$
H(P)=15
$$

For arbitrary C, the set

$$
\left\{P \in \mathbb{P}^{N}(\mathbb{Q}) \mid H(P) \leq C\right\}
$$

is a finite set.

We want to define heights for arbitrary number field.

Let F be a field.

Definition. An absolute value on F is a function

$$
\left|\mid: F \rightarrow \mathbb{R}_{\geq 0}\right.
$$

satisfying the following conditions:
(1) $|a|=0$ iff $a=0$.
(2) $|a b|=|a||b|$.
(3) $|a+b| \leq|a|+|b|$.
(4) $\left|F^{*}\right| \neq\{1\}$.

Two absolute values $\left.\left|\left.\right|_{1}\right.$ and $|\right|_{2}$ on F is equivalent if there exists $r>0$ such that

$$
|a|_{1}^{r}=|a|_{2}
$$

for all $a \in F$.
$F=\mathbb{Q}$.

$$
|a|_{\infty}=\max (a,-a)
$$

is an absolute value (the usual absolute value).
For each prime p, we have p-adic absolute value defined by $|0|_{p}=0$ and

$$
\left|p^{m} \frac{b}{c}\right|_{p}=p^{-m}
$$

$m \in \mathbb{Z},, b, c \in \mathbb{Z}-\{0\}, p \nmid b, p \nmid c$.
The above absolute values are called standard absolute values on \mathbb{Q}.

Ostrowski Theorem.

Every absolute value on \mathbb{Q} is either equal to $\left.\left|\left.\right|_{\infty}\right.$ or equivalent to $|\right|_{p}$ for some prime p.

Let C be a smooth projective over \bar{K}. For $P \in \bar{K}(C)$,

$$
\operatorname{ord}_{P}: \bar{K}(C)^{*} \rightarrow \mathbb{Z}
$$

satisfies the properties that

$$
\operatorname{ord}_{P}(f g)=\operatorname{ord}_{P}(f)+\operatorname{ord}_{P}(g), \quad \operatorname{ord}_{P}(f+g) \geq \min \left(\operatorname{ord}_{P}(f), \operatorname{ord}_{P}(g)\right)
$$

These properties implies that, for a fixed $q>1$,

$$
\left\|\|_{P}: \bar{K}(C)^{*} \rightarrow \mathbb{R}_{\geq 0}, \quad|f|_{P}=q^{-\operatorname{ord} p(f)}\right.
$$

is an absolute values. This absolute satisfied that $\left|\bar{K}^{*}\right|=1$.
Different choices of q give equivalent absolute values.
The map $P \mapsto \|_{P}$ is an one-to-one correspondence from $C(\bar{K})$ to the set of equivalence classes of absolute values on $\bar{K}(C)$ with $\left|\bar{K}^{*}\right|=1$.

Let $M_{\mathbb{Q}}$ denote the set of standard absolute values, by Ostrowski Theorem, $M_{\mathbb{Q}}$ is the set of equivalence classes of absolute values on \mathbb{Q}.

The set $M_{\mathbb{Q}}$ is an analog for \mathbb{Q} of $C(\bar{K})$ for function field $\bar{K}(C)$.

Absolute Values on Number Fields.

For every number field K, if $\|: K \rightarrow \mathbb{R}_{\geq 0}$ is an absolute value, then the restriction of $|\mid$ on \mathbb{Q} is an absolute value on \mathbb{Q}.

An absolute value on K is called a standard absolute value if its restriction on \mathbb{Q} is a standard absolute value on \mathbb{Q}.

Let M_{K} be the set of standard absolute values on K.

Let M_{K} denote the set of standard absolute values on K.

Every other absolute value on K is equivalent to a unique standard absolute value, so the set M_{K} can be identified with the set of equivalence classes of absolute values on K.

There are two types absolute values on a number field K.
Archimedean absolute values: For every an embedding

$$
\sigma: K \rightarrow \mathbb{C}
$$

The map

$$
\left.\left|\left.\right|_{\sigma}: K \rightarrow \mathbb{R}_{\geq 0}, \quad\right| a\right|_{\sigma}=|\sigma(a)|
$$

is an absolute value.
σ has a complex conjugate embedding

$$
\bar{\sigma}: K \rightarrow \mathbb{C}, \quad \bar{\sigma}(a)=\overline{\sigma(a)}
$$

It is clear that $\left|\left.\right|_{\sigma}=| |_{\bar{\sigma}}\right.$.
Note that $\sigma=\bar{\sigma}$ iff $\operatorname{Im}(\sigma) \subset \mathbb{R}$. In this case, we call σ a real embedding.
$\sigma \neq \bar{\sigma}$ iff $\operatorname{Im}(\sigma) \not \subset \mathbb{R}$. In this case, we call σ an complex embedding. Complex embedding appear in pairs: $\sigma, \bar{\sigma}$.

An absolute values on K obtained by an embeddings $K \rightarrow \mathbb{C}$ are called an Archimedean absolute value.

Theorem. Suppose K has $2 m$ complex embeddings and r real embeddings, then

$$
[K: \mathbb{Q}]=2 m+r .
$$

and
K has $m+r$ Archimedean absolute values. They are all standard.

Non-Archimedean absolute values.

Let R_{K} be the ring of (algebraic) integers in K.
Example. $K=\mathbb{Q}(i)$, then $R=R_{K}=\mathbb{Z}[i]$.

For every non-zero prime ideal $\mathfrak{q} \subset R_{K}$. The localization $R_{\mathfrak{q}}$ is a PID with a unique non-zero prime ideal. Assume it is $(\pi) R_{\mathrm{q}}$.

Let $R_{\mathfrak{q}}^{*}$ be the group of units in $R_{\mathfrak{q}}$.
Every non-zeros element a in K can be written uniquely as

$$
a=\pi^{m} u, \quad m \in \mathbb{Z}, u \in R_{\mathfrak{q}}^{*}
$$

Then

$$
\operatorname{ord}_{\mathfrak{q}}: K^{*} \rightarrow \mathbb{Z}, \quad \operatorname{ord}_{\mathfrak{q}}(a)=m
$$

is discrete valuation.

So for any $r>1$,

$$
|a|_{\mathfrak{q}, r}=r^{-\operatorname{ord}_{\mathfrak{q}}(a)}
$$

is an absolute value. Different r 's give equivalent absolute values.

There is only one r so that $\left|\left.\right|_{q, r}\right.$ is a standard absolute value.
$\mathfrak{q} \cap \mathbb{Z}$ is a non-zero prime ideal in \mathbb{Z}, so

$$
\mathfrak{q} \cap \mathbb{Z}=p \mathbb{Z}
$$

We choose r such that

$$
|p|_{\mathfrak{q}, r}=r^{-\operatorname{ord}_{\mathfrak{q}} p}=p^{-1}
$$

such r is unique. For this $r,| |_{\mathfrak{q}, r}$ is a standard absolute value.
An absolute values on K obtained from prime ideals in R as above are called non-Archimedean absolute values.

$M_{K}=\quad$ Archemedean absolute values \sqcup

\{Standard absolute values from non - zero prime ideals in R \}

Completion of K with respect to an absolute value.

If $\|_{v}$ is an absolute value on K, but taking Cauchy sequences with respect to $\|_{v}$, we get a field K_{v}, the completion of K with respect to $\|_{v}$.

If $\left\|\|_{v}\right.$ is obtained by a complex embedding $K \rightarrow \mathbb{C}$, then $K_{v}=\mathbb{C}$.
If $\|_{v}$ is obtained by a real embedding $K \rightarrow \mathbb{R}$, then $K_{v}=\mathbb{R}$.

If $\mid \|_{v}$ is obtained from a non-zero prime ideal $\mathfrak{q} \subset R$, then

$$
K_{v}=\operatorname{Frac} \underset{\leftrightarrows}{\lim } R / \mathfrak{q}^{n} .
$$

The p-adic absolute value on \mathbb{Q} gives the completion \mathbb{Q}_{p}, the p-adic field.
Fields like K_{v} are the characteristic zero local fields.

An number field extension $K \subset K^{\prime}$ gives a map

$$
M_{K^{\prime}} \rightarrow M_{K}
$$

where the image of $\|\left.\right|_{w} \in M_{K^{\prime}}$ in M_{K} is the restriction $\left\|\|_{w}\right.$ on K. This map is surjective. If $w \in M_{K^{\prime}}$ maps to $v \in M_{K}$, we write $w \mid v$ (read as w divides v).

Function field analog: let C and C^{\prime} be smooth projective curves over \bar{K}, An embedding $\bar{K}\left(C^{\prime}\right) \rightarrow \bar{K}(C)$ induces a surjective morphism

$$
C \rightarrow C^{\prime}
$$

Every number field K is an extension of \mathbb{Q}, so we have

$$
M_{K} \rightarrow M_{\mathbb{Q}}
$$

every Archimedean absolute value goes to $\left|\left.\right|_{\infty}\right.$, the usual absolute value on \mathbb{Q}.

Definition. For $v \in M_{K}$, we use the same symbol v to denote its restriction on \mathbb{Q}, the local degree at v, denoted n_{v}, is given by

$$
n_{v}=\left[K_{v}: \mathbb{Q}_{v}\right]
$$

Example. $K=\mathbb{Q}(i)$, it has a unique Archimedean absolute value ∞, $\mathbb{Q}(i)_{\infty}=\mathbb{C}$,

$$
n_{\infty}=[\mathbb{C}: \mathbb{R}]=2
$$

Theorem. Let K be a number field, for a standard absolute value $v \in M_{\mathbb{Q}}$,

$$
\sum_{w \in M_{K}, w \mid v} n_{w}=[K: \mathbb{Q}]
$$

Theorem (Extension Formula 5.2.)

Let $\mathbb{Q} \subset K \subset L$ be a tower of number fields, for $v \in M_{K}$,

$$
\sum_{w \in M_{L}, w \mid v} n_{w}=n_{v}[L: K]
$$

Product Formula on \mathbb{Q}

For every $r \in \mathbb{Q}^{*}$, we have $|r|_{v}=1$ for almost all $v \in M_{\mathbb{Q}}$ and

$$
\Pi_{v \in M_{\mathbb{Q}}}|r|_{v}=1
$$

Example. $r=-\frac{7}{20}$, then

$$
|r|_{\infty}=\frac{7}{20}, \quad|r|_{2}=2^{4}, \quad|r|_{5}=5, \quad|r|_{7}=7^{-1}
$$

and

$$
|r|_{p}=1 \text { for } p \neq 2,5,7
$$

Proof of Theorem. let

$$
r= \pm p_{1}^{k_{1}} p_{2}^{k_{2}} \ldots p_{n}^{k_{n}}
$$

where p_{1}, \ldots, p_{n} are distinct primes, $k_{i} \in \mathbb{Z}$. Then

$$
\begin{gathered}
|r|_{\infty}=p_{1}^{k_{1}} p_{2}^{k_{2}} \ldots p_{n}^{k_{n}} \\
|r|_{p_{1}}=p_{1}^{-k_{1}},|r|_{p_{2}}=p_{2}^{-k_{2}}, \ldots,|r|_{p_{n}}=p_{n}^{-k_{n}}
\end{gathered}
$$

and
$|r|_{p}=1$ for all other primes.

Product Formula 5.3.

Let K be a number field, $x \in K^{*}$. Then $|x|_{v}=1$ for almost all $v \in M_{K}$, and

$$
\Pi_{v \in M_{K}}|x|_{v}^{n_{v}}=1 .
$$

Function field analog: $f \in \bar{K}(C)^{*}$,

$$
\sum_{P \in C} \operatorname{ord}_{P}(f)=0
$$

See Proposition II 3.1.

End

