# Math 6170 C, Lecture on April 27, 2020 

Yongchang Zhu

## Plan

(1) VIII. §5. Heights on Projective Spaces (continued).
(2) VIII. §6. Heights on Elliptic Curves.

## VIII. §5. Heights on Projective Spaces (continued).

To define height function on projective spaces over a number field, we need to study absolute values on a number field first.

Let $F$ be a number field.
$F=\mathbb{Q}$.

$$
|a|_{\infty}=\max (a,-a)
$$

is an absolute value (the usual absolute value).
For each prime $p$, we have $p$-adic absolute value defined by $|0|_{p}=0$ and

$$
\left|p^{m} \frac{b}{c}\right|_{p}=p^{-m}
$$

$m \in \mathbb{Z},, b, c \in \mathbb{Z}-\{0\}, p \nmid b, p \nmid c$.
The above absolute values are called standard absolute values on $\mathbb{Q}$.

Let $M_{\mathbb{Q}}$ denote the set of standard absolute values. By Ostrowski Theorem, every absolute value on $\mathbb{Q}$ is equivalent to a unique standard absolute value, so $M_{\mathbb{Q}}$ can be viewed as the set of equivalence classes of absolute values on $\mathbb{Q}$.

## Explicitly

$$
M_{\mathbb{Q}}=\left\{\left|\left.\right|_{\infty},\left|\left.\right|_{2},\left|\left.\right|_{3},\left|\left.\right|_{5},\left|\left.\right|_{7},| |_{11}, \ldots\right\}\right.\right.\right.\right.\right.
$$

## Absolute Values on Number Fields.

For every number field $K$, if $\|: K \rightarrow \mathbb{R}_{\geq 0}$ is an absolute value, then the restriction of $|\mid$ on $\mathbb{Q}$ is an absolute value on $\mathbb{Q}$.

An absolute value on $K$ is called a standard absolute value if its restriction on $\mathbb{Q}$ is a standard absolute value on $\mathbb{Q}$.

Let $M_{K}$ be the set of standard absolute values on $K$.

There are two types absolute values on a number field $K$.
Archimedean absolute values: For every embedding

$$
\sigma: K \rightarrow \mathbb{C}
$$

The map

$$
\left.\left|\left.\right|_{\sigma}: K \rightarrow \mathbb{R}_{\geq 0}, \quad\right| a\right|_{\sigma}=|\sigma(a)|
$$

is an standard absolute value.

## Non-Archimedean absolute values.

Let $R_{K}$ be the ring of (algebraic) integers in $K$.

For every non-zero prime ideal $\mathfrak{q} \subset R_{K}$. The localization $R_{\mathfrak{q}}$ is a PID with a unique non-zero prime ideal. Assume it is $\pi R_{q}$.

Let $R_{\mathfrak{q}}^{*}$ be the group of units in $R_{q}$.
Every non-zeros element $a$ in $K$ can be written uniquely as

$$
a=\pi^{m} u, \quad m \in \mathbb{Z}, u \in R_{\mathfrak{q}}^{*}
$$

Then

$$
\operatorname{ord}_{\mathfrak{q}}: K^{*} \rightarrow \mathbb{Z}, \quad \operatorname{ord}_{\mathfrak{q}}(a)=m
$$

is discrete valuation.

So for any $r>1$,

$$
|a|_{\mathfrak{q}, r}=r^{-\operatorname{ord}_{\mathfrak{q}}(a)}
$$

is an absolute value. Different $r$ 's give equivalent absolute values.

There is only one $r$ so that $\left|\left.\right|_{q, r}\right.$ is a standard absolute value.
$\mathfrak{q} \cap \mathbb{Z}$ is a non-zero prime ideal in $\mathbb{Z}$, so

$$
\mathfrak{q} \cap \mathbb{Z}=p \mathbb{Z}
$$

We choose $r$ such that

$$
|p|_{\mathfrak{q}, r}=r^{-\operatorname{ord}_{\mathfrak{q}} p}=p^{-1}
$$

such $r$ is unique. For this $r,| |_{\mathfrak{q}, r}$ is a standard absolute value.
An absolute values on $K$ obtained from prime ideals in $R$ as above are called non-Archimedean absolute values.

## Completion of $K$ with respect to an absolute value.

If $\|_{v}$ is an absolute value on $K$, but taking Cauchy sequences with respect to $\|_{v}$, we get a field $K_{v}$, the completion of $K$ with respect to $\|_{v}$.

If $\left\|\|_{v}\right.$ is obtained by a complex embedding $K \rightarrow \mathbb{C}$, then $K_{v}=\mathbb{C}$.
If $\|_{v}$ is obtained by a real embedding $K \rightarrow \mathbb{R}$, then $K_{v}=\mathbb{R}$.

If $\mid \|_{v}$ is obtained from a non-zero prime ideal $\mathfrak{q} \subset R$, then

$$
K_{v}=\operatorname{Frac} \underset{\leftrightarrows}{\lim } R / \mathfrak{q}^{n} .
$$

The $p$-adic absolute value on $\mathbb{Q}$ gives the completion $\mathbb{Q}_{p}$, the $p$-adic field.
Fields like $K_{v}$ are the characteristic zero local fields.

An number field extension $K \subset K^{\prime}$ gives a map

$$
M_{K^{\prime}} \rightarrow M_{K}
$$

where the image of $\|\left.\right|_{w} \in M_{K^{\prime}}$ in $M_{K}$ is the restriction $\left\|\|_{w}\right.$ on $K$. This map is surjective. If $w \in M_{K^{\prime}}$ maps to $v \in M_{K}$, we write $w \mid v$ (read as $w$ divides $v$ ).

Every number field $K$ is an extension of $\mathbb{Q}$, so we have

$$
M_{K} \rightarrow M_{\mathbb{Q}}
$$

every Archimedean absolute value goes to $\left|\left.\right|_{\infty}\right.$, the usual absolute value on $\mathbb{Q}$.

Definition. For $v \in M_{K}$, let $w \in M_{\mathbb{Q}}$ be its restriction on $\mathbb{Q}$. That is $v \mid w$. Then $K_{v}$ is an extension of $\mathbb{Q}_{w}$.

The local degree at $v$, denoted $n_{v}$, is given by

$$
n_{v}=\left[K_{v}: \mathbb{Q}_{w}\right]
$$

Theorem. Let $K$ be a number field, for a standard absolute value $v \in M_{\mathbb{Q}}$,

$$
\sum_{w \in M_{K}, w \mid v} n_{w}=[K: \mathbb{Q}]
$$

## Theorem (Extension Formula 5.2.)

Let $\mathbb{Q} \subset K \subset L$ be a tower of number fields, for $v \in M_{K}$,

$$
\sum_{w \in M_{L}, w \mid v} n_{w}=n_{v}[L: K]
$$

## Product Formula on $\mathbb{Q}$

For every $r \in \mathbb{Q}^{*}$, we have $|r|_{v}=1$ for almost all $v \in M_{\mathbb{Q}}$ and

$$
\Pi_{v \in M_{\mathbb{Q}}}|r|_{v}=1
$$

## Product Formula 5.3.

Let $K$ be a number field, $x \in K^{*}$. Then $|x|_{v}=1$ for almost all $v \in M_{K}$, and

$$
\Pi_{v \in M_{K}}|x|_{v}^{n_{v}}=1 .
$$

## Definition.

Let $P \in \mathbb{P}^{N}(K)$ with homogeneous coordinates

$$
P=\left[x_{0}, x_{1}, \ldots, x_{N}\right] .
$$

The height of $P$ is defined by

$$
H_{K}(P)=\Pi_{v \in M_{K}} \max \left(\left|x_{0}\right|_{v}, \ldots,\left|x_{N}\right|_{v}\right)^{n_{v}}
$$

The infinite product on the right makes sense because almost all the terms are 1.

## Proposition VIII 5.4.

Let $P \in \mathbb{P}^{N}(K)$.
(a) The height $H_{K}(P)$ does not depend on the choice of the homogeneous coordinates for $P$.
(b) Let $L / K$ be a finite extension. Then

$$
H_{L}(P)=H_{K}(P)^{[L: K]} .
$$

Proof. (a) Choose another homogeneous coordinate of $P$ :

$$
\left[\lambda x_{0}, \ldots, \lambda x_{N}\right], \quad \lambda \in K^{*}
$$

Then for each $v \in M_{K}$,

$$
\max \left(\left|\lambda x_{0}\right|_{v}, \ldots,\left|\lambda x_{N}\right|_{v}\right)=\left|\lambda_{v}\right| \max \left(\left|x_{0}\right|_{v}, \ldots,\left|x_{N}\right|_{v}\right)
$$

So

$$
\begin{aligned}
& \Pi_{v \in M_{K}} \max \left(\left|\lambda x_{0}\right|_{v}, \ldots,\left|\lambda x_{N}\right|_{v}\right)^{n_{v}} \\
& =\Pi_{v \in M_{K}}|\lambda|_{v}^{n_{v}} \cdot \Pi_{v \in M_{K}} \max \left(\left|x_{0}\right|_{v}, \ldots,\left|x_{N}\right|_{v}\right)^{n_{v}} \\
& =\Pi_{v \in M_{K}} \max \left(\left|x_{0}\right|_{v}, \ldots,\left|x_{N}\right|_{v}\right)^{n_{v}}
\end{aligned}
$$

(b).

$$
\begin{aligned}
H_{L}(P) & =\Pi_{w \in M_{L}} \max \left(\left|x_{0}\right|_{w}, \ldots,\left|x_{N}\right|_{w}\right)^{n_{w}} \\
& =\Pi_{v \in M_{K} \Pi_{w \mid v} \max \left(\left|x_{0}\right|_{w}, \ldots,\left|x_{N}\right|_{w}\right)^{n_{w}}} \\
& =\Pi_{v \in M_{K}} \Pi_{w \mid v} \max \left(\left|x_{0}\right|_{v}, \ldots,\left|x_{N}\right| v\right)^{n_{w}} \\
& =\Pi_{v \in M_{K}} \max \left(\left|x_{0}\right|_{v}, \ldots,\left|x_{N}\right|_{v}\right)^{n_{v}[L: K]} \\
& =H_{K}(P)^{[L: K]}
\end{aligned}
$$

The height function on $\mathbb{P}^{N}(\mathbb{Q})$ is the same as the height function we defined earlier.

Example. $P=\left[\frac{2}{3},-\frac{4}{5}, 1\right] \in \mathbb{P}^{2}(\mathbb{Q})$,
The earlier method gives:

$$
\begin{gathered}
P=[10,-12,15] \\
H(P)=15 .
\end{gathered}
$$

The new definition:

$$
H_{\mathbb{Q}}=\Pi_{v \in M_{\mathbb{Q}}} \max \left(\left|\frac{2}{3}\right|_{v},\left|-\frac{4}{5}\right|_{v},|1|_{v}\right)
$$

For $v=\infty$,

$$
\max \left(\left|\frac{2}{3}\right|_{\infty},\left|-\frac{4}{5}\right|_{\infty},|1|_{\infty}\right)=1
$$

For $v=2$,

$$
\max \left(\left|\frac{2}{3}\right|_{2},\left|-\frac{4}{5}\right|_{2},|1|_{2}\right)=1
$$

For $v=3$,

$$
\max \left(\left|\frac{2}{3}\right|_{3},\left|-\frac{4}{5}\right|_{3},|1|_{3}\right)=3
$$

For $v=5$,

$$
\max \left(\left|\frac{2}{3}\right|_{5},\left|-\frac{4}{5}\right|_{5},|1|_{5}\right)=5
$$

For any other prime $p$,

$$
\max \left(\left|\frac{2}{3}\right|_{p},\left|-\frac{4}{5}\right|_{p},|1|_{p}\right)=1
$$

So

$$
H_{\mathbb{Q}}(P)=15
$$

## Definition.

Let $P \in \mathbb{P}^{N}(\overline{\mathbb{Q}})$. The absolute height of $P$, denoted by $H(P)$, is defined as follows. Choose any number field $K$ such that $P \in \mathbb{P}^{N}(K)$. Then

$$
H(P)=H_{K}(P)^{1 /[K: \mathbb{Q}]}
$$

Proposition 5.4 implies that the right hand side is independent of the choice of $K$.

## Definition.

A morphism of degree $d$ between projective spaces is a map

$$
\begin{gathered}
F: \mathbb{P}^{N}(\overline{\mathbb{Q}}) \rightarrow \mathbb{P}^{M}(\overline{\mathbb{Q}}) \\
F(P)=\left[f_{0}(P), \ldots, f_{M}(P)\right]
\end{gathered}
$$

where $f_{0}, \ldots, f_{M} \in \mathbb{Q}\left[X_{0}, \ldots, X_{N}\right]$ are homogeneous polynomials of degree $d$ with no common zeros in $\overline{\mathbb{Q}}$ other than $X_{0}=X_{1}=\cdots=X_{N}=0$.

If $F$ can be written with polynomials $f_{i}$ having coefficients in $K$, then $F$ is said to be define over $K$.

## Theorem VIII 5.6.

Let $F: \mathbb{P}^{N} \rightarrow \mathbb{P}^{M}$ be a morphism of degree $d$. Then there are constants $C_{1}$ and $C_{2}$, such that for all $P \in \mathbb{P}^{N}(\overline{\mathbb{Q}})$,

$$
C_{1} H(P)^{d} \leq H(F(P)) \leq C_{2} H(P)^{d} .
$$

## Theorem VIII 5.9.

Let

$$
f(T)=a_{d} T^{d}+a_{d-1} T^{d-1}+\cdots+a_{0}=a_{d}\left(T-\alpha_{1}\right) \cdots\left(T-\alpha_{d}\right) \in \overline{\mathbb{Q}}[T]
$$

Then

$$
2^{-d} \Pi_{j=1}^{d} H\left(\alpha_{j}\right) \leq H\left(\left[a_{0}, \ldots, a_{d}\right]\right) \leq 2^{d-1} \Pi_{j=1}^{d} H\left(\alpha_{j}\right)
$$

## Theorem VIII 5.11.

Let $C$ and $d$ be constants. Then the set

$$
\left\{P \in \mathbb{P}^{N}(\overline{\mathbb{Q}}) \mid H(P) \leq C,[\mathbb{Q}(P), \mathbb{Q}] \leq d\right\}
$$

is finite.

## VIII. §6. Heights on Elliptic Curves.

Let $E / K$ be an elliptic curve over $K$ ( $K$ is a number field). For every $f \in \bar{K}(E), f \notin \bar{K}, f$ defines a surjective morphism

$$
f: E \rightarrow \mathbb{P}^{1}
$$

$$
P \mapsto \begin{cases}{[f(P), 1]} & \text { for } P \text { not a pole of } f \\ {[1,0]} & \text { for } P \text { a pole of } f\end{cases}
$$

## Definition.

The absolute logarithmic height on projective space is the function

$$
h: \mathbb{P}^{N}(\bar{Q}) \rightarrow \mathbb{R}
$$

given by

$$
h(P)=\log H(P)
$$

Definition. Let $f \in \bar{K}(E)$ be a non-constant function. The height on $E$ relative to $f$ is the function

$$
\begin{gathered}
h_{f}: E(\bar{K}) \rightarrow \mathbb{R} \\
h_{f}(P)=h(f(P)) .
\end{gathered}
$$

## Proposition VIII 6.1.

Let $E / K$ be an elliptic curve and $f \in K(E)$ is a non-constant function. The for every $C$,

$$
\left\{P \in E(K) \mid h_{f}(P) \leq C\right\}
$$

is a finite set.

Proof.
The set

$$
S_{C}=\left\{Q \in \mathbb{P}^{1}(K) \mid h(P) \leq C\right\}
$$

is a finite set.
The set in question is $f^{-1}\left(S_{C}\right)$, since $f$ is a finite-to-one map, so $f^{-1}\left(S_{C}\right)$ is a finite set.

## Theorem VIII 6.2.

Let $E / K$ be an elliptic curve $K$ and $f \in K(E)$ be an non-constant even function (i.e., $f \circ[-1]=f$ ). Then for all $P, Q \in E(\bar{K})$,

$$
\begin{gathered}
h_{f}(P+Q)+h_{f}(P-Q)=2 h_{f}(P)+2 h_{f}(Q)+O(1) \\
K(E)=\operatorname{Frac} K[x, y] /\left(y^{2}-\left(x^{3}+A x+B\right)\right)
\end{gathered}
$$

We will prove the case $f=x$ first.

We need to following results in the proof:
Let $y^{2}=x^{3}+A x+B$ be the equation of $E$.
(1) If $P=\left(x_{1}, y_{1}\right) \in E$, then $-P=\left(x_{1},-y_{1}\right)$.
(2) If $P=\left(x_{1}, y_{1}\right), Q=\left(x_{2}, y_{2}\right) \in E$, then

$$
x(P+Q)=\left(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right)^{2}-x_{1}-x_{2}
$$

See Group Law algorithm in III §2, page 58

$$
\begin{gathered}
x_{3}=x(P+Q)=\left(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right)^{2}-x_{1}-x_{2} \\
x_{4}=x(P-Q)=\left(\frac{-y_{2}-y_{1}}{x_{2}-x_{1}}\right)^{2}-x_{1}-x_{2} \\
x_{3}+x_{4}=\frac{2\left(x_{1}+x_{2}\right)\left(A+x_{1} x_{2}\right)+4 B}{\left(x_{1}+x_{2}\right)^{2}-4 x_{1} x_{2}} \\
x_{3} x_{4}=\frac{\left(x_{1} x_{2}-A\right)^{2}-4 B\left(x_{1}+x_{2}\right)}{\left(x_{1}+x_{2}\right)^{2}-4 x_{1} x_{2}}
\end{gathered}
$$

Proof of Theorem 6.2. for $f=x$.

where $G:(P, Q) \mapsto(P+Q, P-Q)$
(to be continued)

Proof of Theorem 6.2 (continued). Two vertical arrow $E \times E \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{1}$ is

$$
(P, Q) \mapsto(x(P), x(Q))
$$

Two vertical arrow $\mathbb{P}^{1} \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{2}$ is

$$
\left(\left[\alpha_{1}, \beta_{1}\right],\left[\alpha_{2}, \beta_{2}\right]\right) \mapsto\left[\beta_{1} \beta_{2}, \alpha_{1} \beta_{2}+\alpha_{2} \beta_{1}, \alpha_{1} \alpha_{2}\right] .
$$

$g: \mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$ is

$$
[t, u, v] \mapsto\left[u^{2}-4 t v, 2 u(A t+v),(v-A t)^{2}-4 B t u\right]
$$

The above diagram is commutative, that is, $g(\sigma(P, Q))=\sigma(P+Q, P-Q)$.

Idea:

$$
\begin{gathered}
h_{x}(\sigma(P, Q)) \sim h_{x}(P)+h_{x}(Q) \\
h_{x}(\sigma(P+Q, P-Q)) \sim h_{x}(P+Q)+h_{x}(P-Q)
\end{gathered}
$$

Because $g(\sigma(P, Q))=\sigma(P+Q, P-Q)$, because $\operatorname{deg} g=2$, so by Theorem 5.6,

$$
h_{x}(\sigma(P+Q, P-Q)) \sim 2 h_{x}(\sigma(P, Q))
$$

Therefore

$$
h_{x}(P+Q)+h_{x}(P-Q) \sim 2\left(h_{x}(P)+h_{x}(Q)\right)
$$

## End

