Math 6170 C, Lecture on April 27, 2020

Yongchang Zhu
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(1) VIII. §5. Heights on Projective Spaces (continued).

(2) VIII. §6. Heights on Elliptic Curves.
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VIII. §5. Heights on Projective Spaces (continued).

To define height function on projective spaces over a number field, we
need to study absolute values on a number field first.

Let F be a number field.
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F=Q.

|a|oo = max(a, —a)

is an absolute value (the usual absolute value).

For each prime p, we have p-adic absolute value defined by |0[, = 0 and

Imé! =p "
PM—lp=p"",
meZ, bceZ—{0}, p /b, pjec

The above absolute values are called standard absolute values on Q.
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Let Mg denote the set of standard absolute values. By Ostrowski
Theorem, every absolute value on Q is equivalent to a unique standard
absolute value, so Mg can be viewed as the set of equivalence classes of

absolute values on Q.
Explicitly

MQ:{| |007H27 ‘ ’37 ||57 H77 Hlla"‘}
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Absolute Values on Number Fields.

For every number field K, if | | : K — R>q is an absolute value, then the
restriction of | | on Q is an absolute value on Q.

An absolute value on K is called a standard absolute value if its
restriction on QQ is a standard absolute value on Q.

Let Mk be the set of standard absolute values on K.
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There are two types absolute values on a number field K.

Archimedean absolute values: For every embedding
oc:K—C,

The map
[lo: K= Rxo, [alo = [o(a)|

is an standard absolute value.
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Non-Archimedean absolute values.
Let Rk be the ring of (algebraic) integers in K.

For every non-zero prime ideal q C Rk. The localization Ry is a PID with
a unique non-zero prime ideal. Assume it is 7 R;.

Let Ry be the group of units in Rj.
Every non-zeros element a in K can be written uniquely as

a=7"u, meZueR]

Then

ordg : K* = Z, ordg(a) =m

is discrete valuation.
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So for any r > 1,
|a|q , = r—ordq(a)

is an absolute value. Different r's give equivalent absolute values.
There is only one r so that | |, is a standard absolute value.
qNZ is a non-zero prime ideal in Z, so

qgN7Z = pZ
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We choose r such that

—ordgp _ -1

|P’q,r = p

such r is unique. For this r, | |4, is a standard absolute value.

An absolute values on K obtained from prime ideals in R as above are
called non-Archimedean absolute values.
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Completion of K with respect to an absolute value.

If ||, is an absolute value on K, but taking Cauchy sequences with respect
to ||y, we get a field K,, the completion of K with respect to | |,.

If | |, is obtained by a complex embedding K — C, then K, = C.

If | |, is obtained by a real embedding K — R, then K, = R.
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If | |, is obtained from a non-zero prime ideal ¢ C R, then

Ky = Frac lim R/q".

The p-adic absolute value on QQ gives the completion QQ,, the p-adic field.

Fields like K, are the characteristic zero local fields.
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An number field extension K C K’ gives a map

MK/ — MK

where the image of | |, € Mks in Mk is the restriction | |, on K. This
map is surjective. If w € My maps to v € Mk, we write w|v (read as w
divides v).
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Every number field K is an extension of QQ, so we have

/\/IK—>/\/IQ

every Archimedean absolute value goes to | |, the usual absolute value

on Q.
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Definition. For v € My, let w € Mg be its restriction on Q. That is v|w.
Then K, is an extension of Q.

The local degree at v, denoted n,, is given by

ny = [Kv . @W]
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Theorem. Let K be a number field, for a standard absolute value v € Mg,

Z ny = [K: Q).

weEMk,wlv
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Theorem (Extension Formula 5.2.)

Let Q C K C L be a tower of number fields, for v € My,

Z ny =n,[L: K]

weMp,w|v
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Product Formula on Q

For every r € Q*, we have |r|, =1 for almost all v € Mg and

nveMQ‘r‘v == ].
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Product Formula 5.3.

Let K be a number field, x € K*. Then |x|, =1 for almost all v € M,
and

Moemy Xy =
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Let P € PV(K) with homogeneous coordinates
P= [Xo,X]_, ce ,XN].
The height of P is defined by

Hik(P) = Nyemmax(|xolv, - - -, [xn|v)™

The infinite product on the right makes sense because almost all the terms
are 1.
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Proposition VIII 5.4.

Let P € PN(K).

(a) The height Hx(P) does not depend on the choice of the homogeneous
coordinates for P.

(b) Let L/K be a finite extension. Then

Hi(P) = Hy(P)IEK],

Yongchang Zhu Short title 21 /41



Proof. (a) Choose another homogeneous coordinate of P:
[)\Xo, .. ,)\XN], Ae K*

Then for each v € Mk,

max(|[Axo|v, -, [Axn|v) = |Av| max(|xolv, - - -, [xn]v)
So
Myemmax(|Axolv, - .., [Axn]v)™
= HVEMK|>‘|CV ) HVEMKmaX(|X0|V7 S |XN|V)nv
= Myemmax(|xolv, ..., [xn|v)™
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HL(P)

Yongchang Zhu

Mwenm, max([xo|w, - -, [xn|w)™

My em, Mypymax(|xolw, - -

My em, Mypymax(|xoly, - -

Myemmax(|xolv, - -, [xn|v

HK(P)[L:K]

Short title

=[x fw)™

- [xwlv)™
)nv[L:K]
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The height function on PV(Q) is the same as the height function we
defined earlier.

Example. P =[5, -2, 1] € P2(Q),
The earlier method gives:

P = [10,—12,15]

H(P) = 15.
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The new definition:

2 4
HQ = I_IveMQmaX(‘§’v7 ‘ —_ g|v7 ‘1’\/)

For v = oo,

ax(| 3 oes | = 5 oo 1) = 1
For v = 2,

max(| ]2, — gl 1) = 1
For v =3,

max(|55,| ~ g5, [113) = 3
For v =5,

2 4
maX(\g!&\ - g|5, [1ls) =5
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For any other prime p,

So
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2 4
max(\glp,\ - g|pa ’1|p) =1

Ho(P) = 15
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Let P € PNV(Q). The absolute height of P, denoted by H(P), is defined as
follows. Choose any number field K such that P € PV(K). Then

H(P) = Hic(P)/IK2),

Proposition 5.4 implies that the right hand side is independent of the
choice of K.
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A morphism of degree d between projective spaces is a map
F:PY(Q) = P"(Q)

F(P)=1f(P),-- -, m(P)]

where fy, ..., fpm € Q[Xo, . .. ,_XN] are homogeneous polynomials of degree
d with no common zeros in Q other than Xg = X; =--- = Xy =0.

If F can be written with polynomials f; having coefficients in K, then F is
said to be define over K.
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Theorem VIII 5.6.

Let F : PN — PM be a morphism of degree d. Then there are constants
Ci and G, such that for all P € PN(Q),

C1 H(P)? < H(F(P)) < G H(P)4.
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Theorem VIII 5.9.

Let
f(T) = ade+ad,1Td*1+-~+a0 = ad(T—al)--~(T—ad) S @[T]
Then

2*dn;?:1H(a,-) < H([ag, - . .,a4]) < 2d*1r|;f:1H(aj)
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Theorem VIII 5.11.

Let C and d be constants. Then the set

{PePY(Q)| H(P) < C, [Q(P).Q] < d}

is finite.
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VIIIl. §6. Heights on Elliptic Curves.

Let E/K be an elliptic curve over K (K is a number field). For every
fe K(E), f ¢ K, f defines a surjective morphism

f:E—P!

[f(P),1]  for P not a pole of f
[1,0] for P a pole of f
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The absolute logarithmic height on projective space is the function
h:PV(Q) = R
given by
h(P) = log H(P).

Definition. Let f € K(E) be a non-constant function. The height on E
relative to f is the function

he: E(K) = R
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Proposition VIII 6.1.

Let E/K be an elliptic curve and f € K(E) is a non-constant function.

The for every C,
{P e E(K)|he(P) < C}

is a finite set.
Proof.

The set
Sc = {Q e PY(K) | h(P) < C}

is a finite set.
The set in question is f~1(S¢), since f is a finite-to-one map, so f~1(S¢)
is a finite set.
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Theorem VIII 6.2.

Let E/K be an elliptic curve K and f € K(E) be an non-constant even
function (i.e., f o[—1] = f). Then for all P, Q € E(K),

he(P+ Q) + he(P — Q) = 2hs(P) + 2h¢(Q) + O(1)

K(E) = Frac K[x, y]/ (y2 — (34 Ax + B))

We will prove the case f = x first.
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We need to following results in the proof:
Let y?2 = x3 + Ax + B be the equation of E.

(1) If P = (x1,y1) € E, then =P = (x1, —y1).

(2) If P=(x1,y),Q = (x2,)2) € E, then

x(P+ Q)= <y2 }/1> — X1 — Xo

X2 — X1

See Group Law algorithm in Il §2, page 58

Yongchang Zhu Short title

36 /41



2
x3=x(P+ Q)= (yz_}/l> —Xx1— Xo

X2 — X1

2
w=x(P-@) = (50) cxmn

X2 — X1

2(X1 + X2)(A + X1X2) + 4B
(x1 + x2)2 — dx1x2

X3+ Xq4 =

(X1X2 — A)2 — 4B(X1 + X2)

x3xa = (x1 + x2)? — dx1x0

Yongchang Zhu Short title 37 /41



Proof of Theorem 6.2. for f = x.

ExE & ExE

{ {
P! x P! P! x P!

1 {

P & P2

where G : (P,Q)— (P+ Q,P — Q)
(to be continued)
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Proof of Theorem 6.2 (continued). Two vertical arrow E x E — P! x P! is

(P, Q) = (x(P), x(Q)).

Two vertical arrow P! x P1 — P2 js
([aa, B1]; [o2, Ba]) = [B1B2, 1o + 21, a1 c2).
g: P25 P?%is

[t,u,v] — [u? — 4tv,2u(At + v), (v — At)? — 4Btu]
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The above diagram is commutative,
that is, g(c(P, Q)) = o(P + Q,P — Q).

Idea:

hx(a(P, Q)) ~ hx(P) + h(Q)

he(o(P+ Q,P — Q)) ~ he(P + Q) + h(P — Q)

Because g(0(P, Q)) = o(P+ Q, P — Q), because degg = 2,
so by Theorem 5.6,

he(o(P + Q,P — Q)) ~ 2h(o(P, Q))

Therefore

he(P + Q) + he(P — Q) ~ 2(h«(P) + h«(Q))
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End
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