Math 6170 C, Lecture on Feb 19, 2020

Yongchang Zhu

Textbook: Silverman "The Arithmetic of Elliptic Curves", GTM 106.
Reference books: (1) A. Knapp "Elliptic Curves"
(2) Hartshorne "Algebraic Geometry" Chapter I.

Notations in Chapter 1.

K : A perfect field (i.e., every algebraic extensions of K is separable),
Examples: Characteristic 0 fields and finite fields are perfect
\bar{K} : algebraic closure of K
$G_{\bar{K} / K}$: the Galois group of \bar{K} / K.

Chapter 1. §1. Affine Varieties

Definition. Affine n-space is

$$
\mathbb{A}^{n}(\bar{K})=\left\{\left(x_{1}, \ldots, x_{n}\right): x_{i} \in \bar{K}\right\}
$$

For an ideal $I \subset \bar{K}\left[X_{1}, \ldots, X_{n}\right]=\bar{K}[X]$, the zero set of I is

$$
V_{I}=\left\{x=\left(x_{1}, \ldots, x_{n}\right) \mid f(x)=0 \quad \text { for all } f \in I\right\}
$$

A set of the form V_{l}, where I is an ideal, is called an algebraic set.

Since $\bar{K}\left[X_{1}, \ldots, X_{n}\right]$ is Noetherian, every ideal is finitely generated. Suppose

$$
I=\bar{K}[X] g_{1}+\cdots+\bar{K}[X] g_{m}
$$

then $x \in V_{l}$ iff

$$
g_{1}(x)=\cdots=g_{m}(x)=0
$$

So V_{l} is the solution set of the system

$$
g_{1}(x)=\cdots=g_{m}(x)=0
$$

Examples.

If $I=\bar{K}[X]$, then V_{I} is the empty set.
If $I=\{0\}$, then $V_{I}=\mathbb{A}^{n}(\bar{K})$.
Every linear subspace of \bar{K}^{n} is an algebraic set.

The algebraic subsets in $\mathbb{A}^{1}(\bar{K})$ are precisely finite subsets and $\mathbb{A}^{1}(\bar{K})$ itself.

The intersection of any family of algebraic sets is an algebraic set. This follows from the identity

$$
\cap_{k} V_{l_{k}}=V_{\sum_{k} I_{k}}
$$

The union of finitely many algebraic sets is an algebraic set. This follows from the identity

$$
V_{I} \cup V_{J}=V_{I J}
$$

So we can define the Zariski topology in $\mathbb{A}^{n}(\bar{K})$ such that the algebraic sets V_{I} are the closed sets (their complements are the open sets).

For an algebraic set $V \subset \mathbb{A}^{n}(\bar{K})$, its ideal $I(V)$ is given by

$$
I(V) \stackrel{\text { def }}{=}\{f \in \bar{K}[X] \mid f(x)=0 \text { for all } x \in V\} .
$$

It can be proved that $I(V)$ is the largest ideal J such that $V_{J}=V$. In fact, $I\left(V_{J}\right)=\sqrt{J}$ by Hilbert's nullstellensatz.

An algebraic set V is called an (affine) variety if $I(V)$ is a prime ideal.
$\mathbb{A}^{n}(\bar{K})$ is an variety, because $\{0\}$ is a prime ideal. The empty set is not a variety, because $\bar{K}[X]$ itself is not a prime ideal of $\bar{K}[X]$.

The coordinate ring of an affine variety V is defined to be

$$
\bar{K}[V] \stackrel{\text { def }}{=} \bar{K}[X] / I(V),
$$

which is always an integral domain.
An element $f+I(V) \in \bar{K}[V]=\bar{K}[X] / I(V)$ defines a function

$$
V \rightarrow \bar{K}, \quad x \mapsto f(x)
$$

The field of fractions of $\bar{K}[V]$ is called the function field of V, and is denoted by $\bar{K}(V)$.

$$
\bar{K}(V)=\operatorname{Frac} \bar{K}[V] .
$$

Example. The function field of $\mathbb{A}^{1}(\bar{K})$ is the field of fractions of one variable polynomial ring $\bar{K}[X]$.

Let V be a variety, the dimension of V, denoted by $\operatorname{dim}(V)$, is the transcendence degree of $\bar{K}(V)$ (over \bar{K}).

$$
\operatorname{dim}\left(\mathbb{A}^{n}(\bar{K})\right)=n
$$

If V is a hyper-surface in $\mathbb{A}^{n}(\bar{K})$, i.e., $I(V)$ is a principal ideal, then $\operatorname{dim}(V)=n-1$.

If W is a k-dimensional linear subspace of $\mathbb{A}^{n}(\bar{K})$, then $\operatorname{dim}(W)$, as a variety, is k.

Definition. Let $V \subset \mathbb{A}^{n}(\bar{K})$ be a variety, and f_{1}, \ldots, f_{m} be a set of generators of $I(V)$. A point $x=\left(x_{1}, \ldots, x_{n}\right) \in V$ is called a non-singular point (or smooth point) of V if the $m \times n$

$$
\partial_{i} g_{j}\left(x_{1}, \ldots, x_{n}\right)
$$

has rank $n-\operatorname{dim}(V)$. If V is non-singular at every point, then we say that V is a non-singular variety (smooth variety).

Example.

Let $f(x)$ be an one variable polynomial without repeated roots, then the principal ideal I generated by $y^{2}-f(x)$ in $\bar{K}[x, y]$ is a prime ideal. V_{l} is one dimensional and it is a smooth variety.

For a point $P \in V$, let

$$
M_{P}=\{f \in \bar{K}[V] \mid f(P)=0\} .
$$

M_{P} is a maximal ideal of $\bar{K}[V]$ (as the quotient ring $\bar{K}[V] / M_{P}$ is isomorphic to \bar{K}).

Proposition 1.7. P is a non-singular point of V iff

$$
\operatorname{dim}_{\bar{K}} M_{P} / M_{P}^{2}=\operatorname{dim} V
$$

For a point $P \in V$, the local ring of V at P, denoted by $\bar{K}[V]_{P}$ is the localization of $\bar{K}[V]$ at M_{P}. That is

$$
\bar{K}[V]_{P}=\left\{\left.\frac{f}{g} \right\rvert\, f, g \in \bar{K}[V], g(P) \neq 0\right\}
$$

By definition, $\bar{K}[V]_{P}$ is a subring of $\bar{K}(V)$.

For every subfield $K \subset L \subset \bar{K}$, the set of L-rational points in \mathbb{A}^{n} is the set

$$
\mathbb{A}^{n}(L)=\left\{\left(x_{1}, \ldots, x_{n}\right): x_{i} \in L\right\} .
$$

The Galois group $G_{\bar{K} / K}$ acts on $\mathbb{A}^{n}(\bar{K})$; for $\sigma \in G_{\bar{K} / K}$, $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{A}^{n}(\bar{K})$,

$$
x^{\sigma}=\left(x_{1}, \ldots, x_{n}\right)^{\sigma}=\left(x_{1}^{\sigma}, \ldots, x_{n}^{\sigma}\right)
$$

It is clear that $x^{\sigma}=x$ for all $\sigma \in G_{\bar{K} / K}$ iff $x \in \mathbb{A}^{n}(K)$.
K is separable implies that $\bar{K}^{G_{\bar{K} / K}}=K$.

An algebraic set $V \subset \mathbb{A}^{n}(\bar{K})$ is defined over K if $I(V)$ can be generated by polynomials in $K[X]$.

In this case, $G_{\bar{K} / K}$ acts on V, and the fixed point set

$$
V^{G_{\bar{K} / K}}=V \cap \mathbb{A}^{n}(K) .
$$

We denote

$$
V(K)=V \cap \mathbb{A}^{n}(K)
$$

$V(K)$ is called the set of K-rational points of V.

If algebraic set $V \subset \mathbb{A}^{n}(\bar{K})$ is defined over K, we define the affine coordinate ring of V over K by

$$
K[V]=K[X] /(I(V) \cap K[X])
$$

Chapter 1. §2. Projective Varieties

Definition. Projective n-space is

$$
\mathbb{P}^{n}(\bar{K})=\left\{\left(x_{0}, x_{1}, \ldots, x_{n}\right): x_{i} \in \bar{K}, \text { not all } x_{i} 0\right\} / \bar{K}^{*}
$$

That is, $\mathbb{P}^{n}(\bar{K})$ is the orbit space of the multiplicative group \bar{K}^{*} on $\bar{K}^{n+1}-\{0\}$, where the action is given by

$$
a \cdot\left(x_{0}, x_{1}, \ldots, x_{n}\right)=\left(a x_{0}, a x_{1}, \ldots, a x_{n}\right) .
$$

We will denote by $\left[x_{0}, x_{1}, \ldots, x_{n}\right]$ the point in $\mathbb{P}^{n}(\bar{K})$ represented by $\left(x_{0}, x_{1}, \ldots, x_{n}\right)$. $\left[x_{0}, x_{1}, \ldots, x_{n}\right]$ is called a homogeneous coordinate of the point.

It is easy to see that $\mathbb{P}^{n}(\bar{K})$ is the set of all one dimensional \bar{K}-linear subspaces in \bar{K}^{n+1}.

The polynomial ring $\bar{K}[X]=\bar{K}\left[X_{0}, X_{1}, \ldots, X_{n}\right]$ has a gradation

$$
\bar{K}[X]=\oplus_{m=0}^{\infty} \bar{K}[X]_{m}
$$

where $\bar{K}[X]_{0}=\bar{K}$, and for $m \geq 1, \bar{K}[X]_{m}$ is the \bar{K}-linear span of monomials $X_{0}^{k_{0}} X_{1}^{k_{1}} \cdots X_{n}^{k_{n}}$ with $k_{0}+k_{1}+\cdots+k_{n}=m$.

$$
\bar{K}[X]_{k} \bar{K}[X]_{m}=\bar{K}[X]_{m+k} .
$$

$f \in \bar{K}[X]$ is called a homogeneous polynomial if $f \in K[X]_{m}$ for some m, such a f satisfies the property that

$$
f(\lambda x)=\lambda^{m} f(x)
$$

for every $\lambda \in \bar{K}^{*}$.

An ideal $I \subset \bar{K}[X]$ is called a homogenous ideal if I is generated by homogeneous polynomials of positive degree.

If I is a homogenous ideal, the set

$$
\left\{\left(x_{0}, \ldots, x_{n}\right) \in \bar{K}^{n+1}-\{0\} \mid f(x)=0 \text { for all } f \in I\right\}
$$

is stable under the K^{*}-action, the orbit space is denoted by V_{l}.

The set of the form V_{l} is called a (projective) algebraic set of $\mathbb{P}^{n}(\bar{K})$.
Since

$$
\cap_{k} V_{I_{k}}=V_{\sum_{k} I_{k}}, \quad V_{I} \cup V_{J}=V_{I J}
$$

we can define the Zariski topology on $\mathbb{P}^{n}(\bar{K})$ such that V_{l} 's are the closed subsets.

For a projective algebraic set V in $\mathbb{P}^{n}(\bar{K})$, we let $I(V)$ be the ideal generated by the homogeneous polynomials

$$
\{f \in \bar{K}[X] \mid f \text { homogeneous and } f(x)=0 \text { for all } x \in V\} .
$$

$I(V)$ is called the ideal of V.
A non-empty projective algebraic set V is called a projective variety if $I(V)$ is a prime ideal.

Now $\bar{K}[X] / I(V)$ is an integral domain. Because $I(V)$ is a homogeneous ideal, so $I(V)=\oplus_{m=0}^{\infty} I(V)_{m}$, where $I(V)_{m}$ is the space of homogeneous elements of degree m in $I(V)$. Then $\bar{K}[X] / I(V)$ is graded, i.e.,

$$
\bar{K}[X] / I(V)=\oplus_{m=0}^{\infty}(\bar{K}[X] / I(V))_{m}
$$

where $(\bar{K}[X] / I(V))_{m}$ is $\bar{K}[X]_{m}+I$.

We consider its field of fractions Frac $\bar{K}[X] / I(V)$, an element is called a homogenous element of degree 0 if it can be written as

$$
\frac{f}{g}
$$

if $f, g \in \bar{K}[X] / I(V)$ are homogeneous with the same degree.

The set of all the homogenous elements of degree 0 is a subfield of Frac $\bar{K}[X] / I(V)$.

It is called the function field of projective variety V and is denoted by $\bar{K}(V)$.

We define

$$
\mathbb{P}^{n}(K)=\left\{\left[x_{0}, x_{1}, \ldots, x_{n}\right] \mid x_{i} \in K, i=0,1, \ldots, n\right\}
$$

called the set of K-rational points of \mathbb{P}^{n}.
The Galois group $G_{\bar{K} / K}$ acts on $\mathbb{P}^{n}(\bar{K})$ by

$$
\begin{gathered}
{\left[x_{0}, \ldots, x_{n}\right]^{\sigma}=\left[x_{0}^{\sigma}, \ldots, x_{n}^{\sigma}\right] .} \\
\mathbb{P}^{n}(K)=\mathbb{P}^{n}(\bar{K})^{G_{\bar{K} / K}}
\end{gathered}
$$

An projective variety V is defined over K if $I(V)$ can be generated by the homogeneous elements in $K[X]$. In this case $G_{\bar{K} / K}$ acts on V, its fixed point set is

$$
V \cap \mathbb{P}^{n}(K) \stackrel{\text { def }}{=} V(K)
$$

Relations between Affine Varieties and Projective varieties

For each $0 \leq i \leq n$, there is an inclusion

$$
\begin{aligned}
& \phi_{i}: \mathbb{A}^{n}(\bar{K}) \rightarrow \mathbb{P}^{n}(\bar{K}) \\
&\left(y_{1}, \ldots, y_{n}\right) \mapsto\left[y_{1}, \ldots, y_{i-1}, 1, y_{i}, \ldots, y_{n}\right] .
\end{aligned}
$$

what is the image of ϕ_{i} ? If we denote H_{i} be the hyperplane in $\mathbb{P}^{n}(\bar{K})$, given by the equation $X_{i}=0$, then

$$
\operatorname{Image}\left(\phi_{i}\right)=U_{i}=\mathbb{P}^{n}(\bar{K})-H_{i}
$$

It is Zariski open.

$$
U_{i}=\left\{\left[x_{0}, \ldots, x_{n}\right] \in \mathbb{P}^{n}(\bar{K}) \mid x_{i} \neq 0\right\}
$$

The inverse map $\phi_{i}^{-1}: U_{i} \rightarrow \mathbb{A}^{n}(\bar{K})$ is

$$
\left[x_{0}, \ldots, x_{n}\right] \mapsto\left(\frac{x_{0}}{x_{i}}, \ldots, \frac{x_{i-1}}{x_{i}}, \frac{x_{i+1}}{x_{i}}, \ldots, \frac{x_{n}}{x_{i}}\right) .
$$

Let V be a projective algebraic set in $\mathbb{P}^{n}(\bar{K})$ with homogeneous ideal $I(V)$.
Then $\phi_{i}^{-1}\left(U_{i} \cap V\right)$ is an affine algebraic set with ideal $I\left(U_{i} \cap V\right)$ given by

$$
\begin{aligned}
I\left(U_{i} \cap V\right) & =\left\{f\left(X_{1}, \ldots, X_{i-1}, 1, X_{i}, \ldots, X_{n}\right) \mid f \in I(V)\right\} \\
& \subset \bar{K}\left[X_{1}, \ldots, X_{n}\right]
\end{aligned}
$$

$f\left(X_{1}, \ldots, X_{i-1}, 1, X_{i}, \ldots, X_{n}\right)$ is called the dehomogenization of f with respect to X_{i}.

Conversely, for $f(X) \in \bar{K}\left[X_{1}, \ldots, X_{n}\right]$, we let

$$
f^{*}\left(X_{0}, X_{1}, \ldots, X_{n}\right)=X_{i}^{d} f\left(\frac{X_{0}}{X_{i}}, \frac{X_{1}}{X_{i}}, \ldots, \frac{X_{i-1}}{X_{i}}, \frac{X_{i+1}}{X_{i}}, \ldots, \frac{X_{n}}{X_{i}}\right)
$$

where $d=\operatorname{deg} f$. Then f^{*} is a homogeneous polynomial of degree d.
We say that f^{*} is the homogenization of f with respect to X_{i}.

Definition.

Let V be an affine algebraic set in $\mathbb{A}^{n}(\bar{K})$ with ideal $I(V)$, and consider V as a subset via the map

$$
V \subset \mathbb{A}^{n}(\bar{K}) \xrightarrow{\phi_{i}} \mathbb{P}^{n}(\bar{K})
$$

The projective closure of V, denoted by \bar{V}, is the projective algebraic set whose homogeneous ideal $I(\bar{V})$ is generated by

$$
\left\{f^{*}(X): f \in I(V)\right\}
$$

It can be proved that $\phi_{i}(V) \subset \bar{V}$.
And it can proved that \bar{V} is the topological closure of $\phi_{i}(V)$ in the Zariski topology.

Proposition 2.6. (a) Let V be an affine variety. Then \bar{V} is a projective variety. and $V=\bar{V} \cap U_{i}$.
(b) Let V be a projective veriety. Then $V \cap U_{i}$ is an affine variety, and either $V \cap U_{i}=\emptyset$ or $V=\bar{V} \cap U_{i}$.
(c) If V is affine (respectively proejctive) variety define over K, then \bar{V} (respectively $V \cap U_{i}$) is also defined over K

For projective variety V, the dimension of $V, \operatorname{dim} V$, is defined to be $\operatorname{dim} V \cap U_{i}$ for any i with $V \cap U_{i}$ non-empty.

Theorem. $\operatorname{dim} V$ is equal to the transcendental degree of the field of rational functions $\bar{K}(V)$.

Chapter 1. §3. Maps between Varieties

Here we follow Hartshorne Chapter I.

An affine or projective variety has the Zariski topology that is the induced topology from the Zariski topology on $\mathbb{A}^{n}(\bar{K})$ or $\mathbb{P}^{n}(\bar{K})$.

Let V be an affine variety, $U \subset V$ be a non-empty open subset. A function $\phi: U \rightarrow \bar{K}$ is called a regular function on U if ϕ is locally equal to

$$
\frac{f}{g}
$$

for $f, g \in \bar{K}[V], g \neq 0$.
The set of regular functions on U is denoted by $\mathcal{O}(U) . U \mapsto \mathcal{O}(U)$ is a sheaf of rings on V.

Let V be a projective variety, $U \subset V$ be a non-empty open subset. A function $\phi: U \rightarrow \bar{K}$ is called a regular function on U if it is locally equal to $\frac{f}{g} \in \bar{K}(V)$.

The set of regular function functions on $U, \mathcal{O}(U)$, is a ring and $U \mapsto \mathcal{O}(U)$ is a sheaf of ring on V.

Let V_{1}, V_{2} be varieties (there are four cases: V_{i} can be either affine or projective). A map $\varphi: V_{1} \rightarrow V_{2}$ is called a morphism if (1) φ is continuous.
(2) The pullback of local regular functions on V_{2} under φ is a local regular function on V_{1}. That is, for every $f \in \mathcal{O}(U)$, where $U \subset V_{2}$ is open, then $f \circ \varphi: \varphi^{-1}(U) \rightarrow \bar{K}$ is a regular function.

The end

