Math 6170 C, Lecture on Feb 24, 2020

Yongchang Zhu

Today's Plan:
(1) Review and Examples of Chapter one.
(2). Section 1 of Chapter two.

The complex number field \mathbb{C} below can be replaced by any algebraically closed field.

Example 1.

Principal ideal $I=\left(X^{2}+Y^{2}-1\right) \subset \mathbb{C}[X, Y]$ is a prime ideal, because $X^{2}+Y^{2}-1$ is an irreducible polynomial in $\mathbb{C}[X, Y]$,

Proof. Because $X^{2}+Y^{2}-1$ is irreducible one variable polynomial over field $\mathbb{C}(Y)$.

$$
V \stackrel{\text { def }}{=}\left\{(x, y) \in \mathbb{C}^{2} \mid x^{2}+y^{2}-1=0\right\}
$$

is an affine variety (in $\mathbb{A}^{2}(\mathbb{C})$).

The coordinate ring of V is $\mathbb{C}[V]=\mathbb{C}[X, Y] /\left(X^{2}+Y^{2}-1\right)$
The field of rational functions on V is

$$
\mathbb{C}(V)=\operatorname{Frac} \mathbb{C}[V]
$$

It is the algebraic extension of $\mathbb{C}(X)$ by the $Y^{2}+\left(X^{2}-1\right)=0$. So the transcendental degree of $\mathbb{C}(V)$ is the same as that of $\mathbb{C}(Y)$, which is 1 . So $\operatorname{dim} V=1$.

This proves $\operatorname{dim} V=1$. It is an affine curve.
Does V have any singular points?

Recall that if an affine variety V variety in $\mathbb{A}^{n}(\mathbb{C})$ has the prime ideal $I(V)$ generated by $f_{1}, \ldots, f_{m} \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$. A point $x=\left(x_{1}, \ldots, x_{n}\right) \in V$ is called a regular point (smooth point) if the rank of the $n \times m$ matrix

$$
\partial_{i} f_{j}\left(x_{1}, \ldots, x_{n}\right)
$$

is $n-\operatorname{dim} V$.
x is called a singular point if it is NOT regular. The set of singular points of V is a proper closed subset of V.

For V given by

$$
V=\left\{(x, y) \in \mathbb{C}^{2} \mid x^{2}+y^{2}-1=0\right\}
$$

Its ideal is generated by $X^{2}+Y^{2}-1$.
A point (x, y) is a singular point on V iff

$$
x^{2}+y^{2}-1=0 \text { and }(2 x, 2 y) \text { has rank } 0
$$

equivalently

$$
x^{2}+y^{2}-1=0,2 x=0,2 y=0
$$

So V has no singular point. V is a smooth affine curve.

We embed $\mathbb{A}^{2}(\mathbb{C})$ into

$$
\mathbb{P}^{2}(\mathbb{C})=\{[x, y, z] \mid x, y, z \in \mathbb{C} \text { not all } 0\}
$$

by

$$
(x, y) \mapsto[x, y, 1]
$$

Recall that $[x, y, z]=\left[x^{\prime}, y^{\prime}, z^{\prime}\right]$ iff there is $\lambda \neq 0$ such that $x=\lambda x^{\prime}, y=\lambda y^{\prime}, z=\lambda z^{\prime}$.

The projective closure of V is given as the zero set of homogenization of $X^{2}+Y^{2}-1$:

$$
X^{2}+Y^{2}-Z^{2}=0
$$

$$
\bar{V}=\left\{[x, y, z] \in \mathbb{P}^{2}(\mathbb{C}) \mid x^{2}+y^{2}-z^{2}=0\right\}
$$

The points $[x, y, z]$ in \bar{V} with $z \neq 0$ is identified with the points in V.

$$
\bar{V}-V=\left\{[x, y, z] \mid x^{2}+y^{2}-z^{2}=0, z=0\right\}=\{[1, i, 0],[1,-i, 0]\} .
$$

Example 2.

$X^{2}-Y^{3}$ is an irreducible polynomial in $\mathbb{C}[X, Y]$.

The zero set

$$
V=\left\{(x, y) \mid x^{2}-y^{3}=0\right\}
$$

is an affine variety in $\mathbb{A}^{2}(\mathbb{C})$.
The coordinate ring of V is

$$
\mathbb{C}[V]=\mathbb{C}[X, Y] /\left(X^{2}-Y^{3}\right)
$$

The field $\mathbb{C}(V)$ of rational functions of V is the algebraic extension of $\mathbb{C}(Y)$ by $X^{2}-Y^{3}=0$, it has transcendental degree 1 over \mathbb{C}, so

$$
\operatorname{dim} V=1
$$

The singular points of V are the solution set of

$$
x^{2}-y^{3}=0,2 x=0,-3 y^{2}=0
$$

The only solution is $(0,0)$. So all the points in V except $(0,0)$ are regular points.

The projective closure of V is the solution set (in $\mathbb{P}^{2}(\mathbb{C})$) of the homogeneous equation

$$
\bar{V}=\left\{[x, y, z] \in \mathbb{P}^{2}(\mathbb{C}) \mid x^{2} z-y^{3}=0\right\}
$$

Notice that $X^{2} Z-Y^{3}$ is the homogenization of $X^{2}-Y^{3}$.

$$
\bar{V}-V=\left\{[x, y, z] \mid x^{2} z-y^{3}=0, z=0\right\}=\{[1,0,0]\} .
$$

Is this new point $[1,0,0]$ a regular point in \bar{V} ?
We do the dehomogenization of $X^{2} Z-Y^{3}$ with respect X, i.e., we set $X=1$, we get $Z-Y^{3}$. [1, 0, 0] corresponds to $(0,0)$ in the affine curve

$$
V^{\prime}=\left\{(y, z) \mid z-y^{3}=0\right\}
$$

One checks that $(0,0)$ is regular in V^{\prime}.
The projective curve \bar{V} has only one singular point.

For an affine variety V with coordinate ring

$$
\mathbb{C}[V]=\mathbb{C}\left[X_{1}, \ldots, X_{n}\right] / I(V)
$$

Every $f\left(X_{1}, \ldots, X_{n}\right)+I(V)$ defines a function

$$
V \rightarrow \mathbb{C},\left(x_{1}, \ldots, x_{n}\right) \mapsto f\left(x_{1}, \ldots, x_{n}\right)
$$

What is about a rational function $\frac{f+1}{g+l} \in \mathbb{C}(V)$? this element is often written as $\frac{f}{g}\left(f, g \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]\right)$, it defines a function on

$$
V-\{x \in V \mid g(x)=0\}, \quad x \mapsto \frac{f(x)}{g(x)}
$$

The largest possible domain of f / g may be larger than $V-\{x \in V \mid g(x)=0\}$. Since f / g may have a different expression \tilde{f} / \tilde{g}. Then it defines on $V-\{x \in V \mid \tilde{g}(x)=0\}$.

The union of all such domains is the largest domain of the rational function f / g.

For a projective variety $V \subset \mathbb{P}^{n}(\mathbb{C})$ with the ideal $I(V) \subset \mathbb{C}\left[X_{0}, X_{1}, \ldots, X_{n}\right]$. The graded ring

$$
\mathbb{C}\left[X_{0}, X_{1}, \ldots, X_{n}\right] / I(V)
$$

are NOT functions on V. Because the points in $\mathbb{P}^{n}(\mathbb{C})$ is an equivalence class.

$$
\left[x_{0}, x_{1}, \ldots, x_{n}\right]=\left[\lambda x_{0}, \lambda x_{1}, \ldots, \lambda x_{n}\right] .
$$

For any polynomial $f\left(X_{0}, X_{1}, \ldots, X_{n}\right)$, usually

$$
f\left(x_{0}, x_{1}, \ldots, x_{n}\right) \neq f\left(\lambda x_{0}, \lambda x_{1}, \ldots, \lambda x_{n}\right) .
$$

The graded ring

$$
\mathbb{C}\left[X_{0}, X_{1}, \ldots, X_{n}\right] / I(V)=\oplus_{k=0}^{\infty} R_{k}
$$

is interpreted as the sum of sections of line bundles on V :

$$
R_{k}=\Gamma\left(\mathcal{L}^{k}\right)
$$

We consider the degree 0 elements in

$$
\operatorname{Frac} \mathbb{C}\left[X_{0}, X_{1}, \ldots, X_{n}\right] / I(V)
$$

that is, the elements that can be written as

$$
\frac{f+I(V)}{g+I(V)}, \quad f \text { and } g \text { are homogeneous, } \operatorname{deg} f=\operatorname{deg} g
$$

The quotient is often written as $\frac{f}{g}$.
The collection of all such elements is a subfield, we denote it by

$$
\mathbb{C}(V)
$$

The set of all the homogenous elements of degree 0 is a subfield of Frac $\mathbb{C}[X] / I(V)$.

It is called the function field of projective variety V and is denoted by $\mathbb{C}(V)$.

For

$$
\frac{f}{g} \in \mathbb{C}(V), \quad f, g \in \mathbb{C}[X], \quad \operatorname{deg} f=\operatorname{deg} g=d
$$

if $\left[x_{0}, x_{1}, \ldots, x_{n}\right] \in V$ with $g\left(x_{0}, x_{1}, \ldots, x_{n}\right) \neq 0$. Then

$$
\frac{f\left(x_{0}, \ldots, x_{n}\right)}{g\left(x_{0}, \ldots, x_{n}\right)}
$$

is independent of the homogeneous coordinates, because

$$
f\left(\lambda x_{0}, \ldots, \lambda x_{n}\right)=\lambda^{d} f\left(x_{0}, \ldots, x_{n}\right), \quad g\left(\lambda x_{0}, \ldots, \lambda x_{n}\right)=\lambda^{d} g\left(x_{0}, \ldots, x_{n}\right) .
$$

So $\frac{f}{g} \in \mathbb{C}(V)$ defines a function on

$$
V-\{[x] \in V \mid g(x)=0\}
$$

which is an open set in V.
The largest domain of $\frac{f}{g}$ is the union of all

$$
V-\{[x] \in V \mid \tilde{g}(x) \neq 0\}
$$

where $\frac{f}{g}=\frac{\tilde{f}}{\tilde{g}}$.

If $V \subset \mathbb{A}^{n}(\mathbb{C})$ is an affine variety, $\bar{V} \subset \mathbb{P}^{n}(\mathbb{C})$ is the projective closure. Then $\mathbb{C}(V)=\mathbb{C}(\bar{V})$ are isomorphic.

Prove for Examples 1, $V=\left\{(x, y) \mid x^{2}+y^{2}-1=0\right\}$ first, then you try to prove the general case.

Morphism between Affine Varieties.

If $V \subset \mathbb{A}^{n}(\bar{K})$ and $W \subset \mathbb{A}^{m}(\bar{K})$ are affine varieties. A map $\phi: V \rightarrow W$ is called a morphism of affine varieties if there is a polynomial map

$$
\Phi: \mathbb{A}^{n}(\bar{K}) \rightarrow \mathbb{A}^{m}(\bar{K})
$$

such that

$$
\Phi(V) \subset W
$$

and

$$
\left.\Phi\right|_{V}=\phi: V \rightarrow W
$$

A polynomial map $\Phi: \mathbb{A}^{n}(\bar{K}) \rightarrow \mathbb{A}^{m}(\bar{K})$ is a map given by

$$
\begin{aligned}
& y_{1}=p_{1}\left(x_{1}, \ldots, x_{n}\right) \\
& y_{2}=p_{2}\left(x_{1}, \ldots, x_{n}\right) \\
& \ldots \\
& y_{m}=p_{m}\left(x_{1}, \ldots, x_{n}\right) .
\end{aligned}
$$

where $p_{1}, \ldots, p_{m} \in \bar{K}\left[X_{1}, \ldots, X_{n}\right]$.
Such a Φ induces a ring homomorphism

$$
\begin{gathered}
\Phi^{*}: \bar{K}[Y]=\bar{K}\left[Y_{1}, \ldots, Y_{m}\right] \mapsto \bar{K}\left[X_{1}, \ldots, X_{n}\right]=\bar{K}[X] . \\
\Phi^{*}\left(Y_{i}\right)=p_{i}\left(X_{1}, \ldots, X_{n}\right) .
\end{gathered}
$$

The condition $\Phi(V) \subset W$ implies that

$$
\Phi^{*}(I(W)) \subset I(V)
$$

(Prove it! it is just a bit abstract, but not hard)
So we have a \bar{K}-algebra homomorphism

$$
\phi^{*}: \bar{K}[Y] / I(W) \rightarrow \bar{K}[X] / I(V)
$$

that is,

$$
\phi^{*}: \bar{K}[W] \rightarrow \bar{K}[V] .
$$

Conversely if we have \bar{K}-algebra homomorphism

$$
\psi: \bar{K}[W] \rightarrow \bar{K}[V]
$$

then we have a morphism

$$
\phi: V \rightarrow W
$$

such that $\phi^{*}=\psi$.

Proposition.

The set of morphisms $V \rightarrow W$ are in one-to-one correspondence with the set of \bar{K}-algebra homomorphisms $\bar{K}[W] \rightarrow \bar{K}[V]$.
V and W are isomorphic iff $\bar{K}[W]$ and $\bar{K}[V]$ are isomorphic as \bar{K}-algebras.
The category of affine varieties over \bar{K} is anti-equivalent to the category of finitely generated commutative \bar{K}-algebras that are integral domains.

Morphism between Projective Varieties.

We first discuss the morphism between $\mathbb{P}^{n}(\bar{K})$ and $\mathbb{P}^{m}(\bar{K})$.
Given $m+1$ homogeneous polynomials $f_{0}\left(X_{0}, \ldots, X_{n}\right), \ldots, f_{m}\left(X_{0}, \ldots, X_{n}\right)$. Assume all f_{i} have the same degree d. Then it defines a map from $\phi: \mathbb{P}^{n}(\bar{K}) \rightarrow \mathbb{P}^{m}(\bar{K})$

$$
\phi\left(\left[x_{0}, x_{1}, \ldots, x_{n}\right]\right)=\left[f_{0}(x), f_{1}(x), \ldots, f_{m}(x)\right]
$$

Because the condition f_{i} 's are homogeneous with the equal degree, so ϕ is well-defined.

The domain of ϕ is the open set

$$
D_{f} \stackrel{\text { def }}{=} \mathbb{P}^{n}(\bar{K})-\left\{\left[x_{0}, \ldots, x_{n}\right] \mid f_{0}(x)=f_{1}(x)=\cdots=f_{m}(x)=0\right\}
$$

We call such a map a rational map from $\mathbb{P}^{n}(\bar{K})$ to $\mathbb{P}^{m}(\bar{K})$.

If we have another set of $m+1$ homogeneous polynomials of equal degree

$$
g_{0}\left(X_{0}, \ldots, X_{n}\right), \ldots, g_{m}\left(X_{0}, \ldots, X_{n}\right)
$$

So we have a map from

$$
D_{g} \stackrel{\text { def }}{=} \mathbb{P}^{n}(\bar{K})-\left\{\left[x_{0}, \ldots, x_{n}\right] \mid g_{0}(x)=g_{1}(x)=\cdots=g_{m}(x)=0\right\}
$$

to $\mathbb{P}^{m}(\bar{K})$.
Suppose $f_{i} g_{j}=f_{j} g_{i}$ for all $0 \leq i, j \leq m$, the on the intersection $D_{f} \cap D_{g}$, two maps are equal.

These two maps are considered equal. The domain of a rational map is the union of all D_{f} 's.

Definition.

Let $V \subset \mathbb{P}^{n}(\bar{K}), W \subset \mathbb{P}^{m}(\bar{K})$ be projective varieties. A rational map $\phi: V_{1} \rightarrow V_{2}$ is a map of the form

$$
\phi\left(\left[x_{0}, \ldots, x_{n}\right]\right)=\left[\phi_{0}(x), \phi_{1}(x), \ldots, \phi_{m}(x)\right]
$$

where ϕ_{i} 's are homogeneous polynomials of equal degree, and for every $f \in I(W)$,

$$
f\left(\phi_{0}(X), \ldots, \phi_{m}(X)\right) \in I\left(V_{1}\right)
$$

The domain of ϕ includes

$$
D_{\phi} \stackrel{\text { def }}{=} V-\left\{[x] \mid \phi_{0}(x)=\phi_{1}(x)=\cdots=\phi_{m}(x)=0\right\} .
$$

If we have another rational map defined by another set of homogeneous polynomials $\psi_{0}, \ldots, \psi_{m}$ of equal degree and satisfies $\phi_{i} \psi_{j}=\phi_{j} \psi_{i}$ for all $0 \leq i, j \leq m$, then two maps are equal on

$$
D_{\phi} \cap D_{\psi}
$$

We consider as the same rational map. The domain of the rational map is the union of all D_{ϕ} 's.

A morphism of projective varieties V to W is a rational map $\phi: V \rightarrow W$ that has domain V.
V and W are isomorphic if there are morphisms $\phi: V \rightarrow W$ and $\psi: W \rightarrow V$ such that $\phi \circ \psi=I d_{W}$ and $\psi \circ \phi=I d_{V}$.

Exercise 1. Prove the composition of morphisms is a morphism.
Exercise 2. Prove the map $\phi:\left\{X^{2}+Y^{2}-Z^{2}=0\right\} \rightarrow \mathbb{P}^{1}$ given by

$$
[x, y, z] \mapsto\left[x y, z^{2}\right]
$$

is an isomorphism.

Chapter II. Algebraic Curves.

The word "curve" in this Chapter means a projective variety of dimension 1 over \bar{K}.

Recall that K is a separable field, \bar{K} is the algebraic closure of K.

Definition. For a projective variety V with rational function field $\bar{K}(V)$ and a point P, the local ring of P is

$$
\bar{K}[V]_{P}=\left\{\left.\frac{f}{g} \in \bar{K}(V) \right\rvert\, g(P) \neq 0\right\}
$$

If V is an affine variety, $P \in V, \bar{V}$ is a projective closure of V, then the local rings

$$
\bar{K}[V]_{P}=\bar{K}[\bar{V}]_{P}
$$

The function fields $\bar{K}(V)$ and $\bar{K}(\bar{V})$ are equal.
$\bar{K}[V]_{P}$ is a subring of $\bar{K}(V)$. It has unique maximal ideal given by the kernel of homomorphism

$$
e v: \bar{K}[V]_{P} \rightarrow \bar{K}, \quad \frac{f}{g} \mapsto \frac{f(P)}{g(P)} .
$$

One proves that every element in $\bar{K}[V]_{P}-\operatorname{Ker}(e v)$ is invertible in $\bar{K}[V]_{P}$.

Proposition.

Let C be a curve and $P \in C$ a smooth point. Then $\bar{K}[C]_{P}$ is a discrete value ring.

Proof. We denote $\operatorname{Ker}(e v)=M_{P}$, which is a maximal ideal of $\bar{K}[C]_{P}$. Because P is smooth so

$$
\operatorname{dim}_{\bar{K}} M_{P} / M_{P}^{2}=\operatorname{dim} C=1
$$

The standard result in commutative algebra implies that $\bar{K}[C]_{P}$ is a discrete valuation ring.

The valuation is given by

$$
\begin{gathered}
\operatorname{ord}_{P}: \bar{K}[C]_{P} \rightarrow\{0,1,2, \ldots\} \cup\{\infty\} \\
\operatorname{ord}_{P}(0) \stackrel{\text { def }}{=} \infty
\end{gathered}
$$

For $f \notin M_{P}, \quad \operatorname{ord}_{P}(f) \stackrel{\text { def }}{=} 0$
For $f \in M_{P}, \quad \operatorname{ord}_{P}(f) \stackrel{\text { def }}{=} \max \left(d \mid f \in M_{P}^{d}\right)$

For any $t \in M_{P}-M_{P}^{2}$, every non-zero element in $\bar{K}[C]_{P}$ can be written as $t^{k} u$, where u is a unit, $k \geq 0 . \operatorname{ord}_{P}\left(t^{k} u\right)=k$.

Definition.

Let R be an integral domain, a surjective map $e: R \rightarrow\{0,1,2, \ldots\} \cup\{\infty\}$ is called a discrete valuation if (1). $e(a)=\infty$ iff $a=0$.
(2). $e(f g)=e(f)+e(g)$ for $f, g \neq 0$.
(3). $e(f+g) \geq \min (e(f), e(g))$.
(4). $e(f)=0$ iff f is a unit in R.

Then R is called a discrete valuation ring.
e can be extended to a map $e: \operatorname{Frac} R \rightarrow \mathbb{Z} \cup\{\infty\}$ by

$$
e\left(\frac{f}{g}\right)=e(f)-e(g)
$$

A discrete valuation ring is a local ring with the unique maximal

$$
M=\{a \in R \mid e(a)>0\} .
$$

It is a PID with only two prime ideals $\{0\}$ and M.

Example.

Given a prime p,

$$
\mathbb{Z}_{(p)}=\left\{\left.\frac{n}{m} \right\rvert\, p \nmid m\right\}
$$

is a discrete valuation ring with valuation

$$
e\left(p^{k} \frac{a}{b}\right)=k
$$

for a, b relatively prime to p.

Example.

Let k be a field, the formal power series ring $k[[t]]$ is a discrete valuation ring. Notice that $\sum_{i=0}^{\infty} c_{i} t^{i}$ is a unit iff $c_{0} \neq 0$. Every non-zero element in $k[[t]]$ can be uniquely written as

$$
t^{k} u, \quad k \in \mathbb{Z}_{\geq 0}, u \text { is a uint. }
$$

The evaluation is defined as

$$
e\left(t^{k} u\right)=k, \quad e(0)=\infty
$$

For example:

$$
e\left(2 t^{2}+t^{4}+\ldots\right)=2, e\left(1+t^{2}+\ldots\right)=0
$$

The completion of $\bar{K}[C]_{P}$ is $\bar{K}[[t]]$.

The field of rational functions $\bar{K}(C)$ is Frac $\bar{K}[C]_{p}$. So ord ${ }_{p}$ extends to

$$
\operatorname{ord}_{P}: \bar{K}(C) \rightarrow \mathbb{Z} \cup\{\infty\}
$$

$\operatorname{ord}_{P}(f)$ is called the order of f at P.

Proposition 1.2.

Let C be a smooth curve, $f \in \bar{K}(C)$ and $f \neq 0$, then for all $P \in C$ except finitely many points, $\operatorname{ord}_{P}(f)=0$.

Let C be a curve, $P \in C, t \in \bar{K}(C)$ is called a uniformizer at P if $\operatorname{ord}_{P}(t)=1$.

Proposition 1.2'. Assume \bar{K} is of characteristic 0 or positive characteristic p such every $a \in \bar{K}$ is a p-power, i.e., $x^{p}=a$ is solvable in \bar{K}. Let C be a curve over $\bar{K}, t \in \bar{K}(C)$ be a uniformizer at some point, then $\bar{K}(C)$ is a finite separable extension of $\bar{K}(t)$.

Proposition 1.2. Assume K is of characteristic 0 or positive characteristic p such every $a \in K$ is a p-power, i.e., $x^{p}=a$ is solvable in K. Let C be a curve over $K, t \in K(C)$ be a uniformizer at some point, then $K(C)$ is a finite separable extension of $K(t)$.

End

