Math 6170 C, Lecture on Feb 24, 2020

Yongchang Zhu

		ng	

Today's Plan:

(1) Review and Examples of Chapter one.

(2). Section 1 of Chapter two.

The complex number field ${\mathbb C}$ below can be replaced by any algebraically closed field.

Principal ideal $I = (X^2 + Y^2 - 1) \subset \mathbb{C}[X, Y]$ is a prime ideal,

because $X^2 + Y^2 - 1$ is an irreducible polynomial in $\mathbb{C}[X, Y]$,

Proof. Because $X^2 + Y^2 - 1$ is irreducible one variable polynomial over field $\mathbb{C}(Y)$.

$$V\stackrel{\rm def}{=}\{(x,y)\in\mathbb{C}^2\mid x^2+y^2-1=0\}$$
 is an affine variety (in $\mathbb{A}^2(\mathbb{C})).$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

The coordinate ring of V is $\mathbb{C}[V] = \mathbb{C}[X, Y]/(X^2 + Y^2 - 1)$

The field of rational functions on V is

 $\mathbb{C}(V) = \operatorname{Frac} \mathbb{C}[V].$

It is the algebraic extension of $\mathbb{C}(X)$ by the $Y^2 + (X^2 - 1) = 0$. So the transcendental degree of $\mathbb{C}(V)$ is the same as that of $\mathbb{C}(Y)$, which is 1. So dim V = 1. This proves dim V = 1. It is an affine curve.

Does V have any singular points?

э

• • = • • = •

Image: Image:

Recall that if an affine variety V variety in $\mathbb{A}^n(\mathbb{C})$ has the prime ideal I(V) generated by $f_1, \ldots, f_m \in \mathbb{C}[X_1, \ldots, X_n]$. A point $x = (x_1, \ldots, x_n) \in V$ is called a **regular point** (smooth point) if the rank of the $n \times m$ matrix

$$\partial_i f_j(x_1,\ldots,x_n)$$

is $n - \dim V$.

x is called a **singular point** if it is NOT regular. The set of singular points of V is a proper closed subset of V.

For V given by

$$V = \{(x, y) \in \mathbb{C}^2 \mid x^2 + y^2 - 1 = 0\}$$

Its ideal is generated by $X^2 + Y^2 - 1$. A point (x, y) is a singular point on V iff

$$x^2 + y^2 - 1 = 0$$
 and $(2x, 2y)$ has rank 0

equivalently

$$x^{2} + y^{2} - 1 = 0, 2x = 0, 2y = 0.$$

So V has no singular point. V is a smooth affine curve.

A B < A B </p>

We embed
$$\mathbb{A}^2(\mathbb{C})$$
 into

by

$$\mathbb{P}^2(\mathbb{C}) = \{[x, y, z] \mid x, y, z \in \mathbb{C} \text{ not all } 0\}$$
 $(x, y) \mapsto [x, y, 1]$

Recall that [x, y, z] = [x', y', z'] iff there is $\lambda \neq 0$ such that $x = \lambda x', y = \lambda y', z = \lambda z'$.

3

イロト イヨト イヨト イヨト

The projective closure of V is given as the zero set of homogenization of $X^2 + Y^2 - 1$:

$$X^2 + Y^2 - Z^2 = 0$$

$$ar{V} = \{ [x, y, z] \in \mathbb{P}^2(\mathbb{C}) \mid x^2 + y^2 - z^2 = 0 \}$$

The points [x, y, z] in \overline{V} with $z \neq 0$ is identified with the points in V.

$$\bar{V} - V = \{ [x, y, z] \mid x^2 + y^2 - z^2 = 0, z = 0 \} = \{ [1, i, 0], [1, -i, 0] \}.$$

э

イロト 不得 トイヨト イヨト

 $X^2 - Y^3$ is an irreducible polynomial in $\mathbb{C}[X, Y]$.

The zero set

$$V = \{(x, y) \mid x^2 - y^3 = 0\}$$

is an affine variety in $\mathbb{A}^2(\mathbb{C})$.

The coordinate ring of V is

$$\mathbb{C}[V] = \mathbb{C}[X, Y]/(X^2 - Y^3).$$

э

• • = • • = •

Image: Image:

The field $\mathbb{C}(V)$ of rational functions of V is the algebraic extension of $\mathbb{C}(Y)$ by $X^2 - Y^3 = 0$, it has transcendental degree 1 over \mathbb{C} , so

$$\dim V = 1.$$

The singular points of V are the solution set of

$$x^2 - y^3 = 0, \ 2x = 0, -3y^2 = 0.$$

The only solution is (0,0). So all the points in V except (0,0) are regular points.

• • = • • = •

The projective closure of V is the solution set (in $\mathbb{P}^2(\mathbb{C})$) of the homogeneous equation

$$\overline{V} = \{ [x, y, z] \in \mathbb{P}^2(\mathbb{C}) \mid x^2 z - y^3 = 0 \}.$$

Notice that $X^2Z - Y^3$ is the homogenization of $X^2 - Y^3$.

$$\overline{V} - V = \{ [x, y, z] \mid x^2 z - y^3 = 0, z = 0 \} = \{ [1, 0, 0] \}.$$

A B M A B M

Is this new point [1,0,0] a regular point in \overline{V} ?

We do the dehomogenization of $X^2Z - Y^3$ with respect X, i.e., we set X = 1, we get $Z - Y^3$. [1,0,0] corresponds to (0,0) in the affine curve

$$V' = \{(y, z) \mid z - y^3 = 0\}.$$

One checks that (0,0) is regular in V'.

The projective curve \bar{V} has only one singular point.

For an affine variety V with coordinate ring

$$\mathbb{C}[V] = \mathbb{C}[X_1,\ldots,X_n]/I(V).$$

Every $f(X_1, \ldots, X_n) + I(V)$ defines a function

$$V \to \mathbb{C}, \ (x_1, \ldots, x_n) \mapsto f(x_1, \ldots, x_n).$$

What is about a rational function $\frac{f+l}{g+l} \in \mathbb{C}(V)$? this element is often written as $\frac{f}{g}$ $(f, g \in \mathbb{C}[X_1, \dots, X_n])$, it defines a function on

$$V - \{x \in V \mid g(x) = 0\}, \quad x \mapsto \frac{f(x)}{g(x)}.$$

く 目 ト く ヨ ト く ヨ ト

The largest possible domain of f/g may be larger than $V - \{x \in V | g(x) = 0\}$. Since f/g may have a different expression \tilde{f}/\tilde{g} . Then it defines on $V - \{x \in V | \tilde{g}(x) = 0\}$.

The union of all such domains is the largest domain of the rational function f/g.

• • = • • = •

For a projective variety $V \subset \mathbb{P}^n(\mathbb{C})$ with the ideal $I(V) \subset \mathbb{C}[X_0, X_1, \dots, X_n]$. The graded ring

$$\mathbb{C}[X_0, X_1, \ldots, X_n]/I(V)$$

are NOT functions on V. Because the points in $\mathbb{P}^{n}(\mathbb{C})$ is an equivalence class.

$$[x_0, x_1, \ldots, x_n] = [\lambda x_0, \lambda x_1, \ldots, \lambda x_n].$$

For any polynomial $f(X_0, X_1, \ldots, X_n)$, usually

$$f(x_0, x_1, \ldots, x_n) \neq f(\lambda x_0, \lambda x_1, \ldots, \lambda x_n).$$

.

The graded ring

$$\mathbb{C}[X_0, X_1, \ldots, X_n]/I(V) = \oplus_{k=0}^{\infty} R_k$$

is interpreted as the sum of sections of line bundles on V:

$$R_k = \Gamma(\mathcal{L}^k).$$

∃ ► < ∃ ►

We consider the degree 0 elements in

$$\operatorname{Frac} \mathbb{C}[X_0, X_1, \ldots, X_n]/I(V),$$

that is, the elements that can be written as

$$\frac{f+I(V)}{g+I(V)}$$
, f and g are homogeneous, deg $f = \deg g$.

The quotient is often written as $\frac{f}{g}$. The collection of all such elements is a subfield, we denote it by

 $\mathbb{C}(V).$

The set of all the homogenous elements of degree 0 is a subfield of $\operatorname{Frac} \mathbb{C}[X]/I(V)$.

It is called the **function field** of projective variety V and is denoted by $\mathbb{C}(V)$.

э

(1) マン・ション・

For

$$\frac{f}{g} \in \mathbb{C}(V), \quad f, g \in \mathbb{C}[X], \quad \deg f = \deg g = d$$

if $[x_0, x_1, \dots, x_n] \in V$ with $g(x_0, x_1, \dots, x_n) \neq 0$. Then
$$\frac{f(x_0, \dots, x_n)}{g(x_0, \dots, x_n)}$$

is independent of the homogeneous coordinates, because

$$f(\lambda x_0,\ldots,\lambda x_n) = \lambda^d f(x_0,\ldots,x_n), \quad g(\lambda x_0,\ldots,\lambda x_n) = \lambda^d g(x_0,\ldots,x_n).$$

æ

イロト イヨト イヨト イヨト

So $rac{f}{g} \in \mathbb{C}(V)$ defines a function on $V - \{[x] \in V \mid g(x) = 0\}$

which is an open set in V.

The largest domain of $rac{f}{g}$ is the union of all $V - \{[x] \in V \mid ilde{g}(x)
eq 0\}$

where $\frac{f}{g} = \frac{\tilde{f}}{\tilde{g}}$.

æ

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

If $V \subset \mathbb{A}^n(\mathbb{C})$ is an affine variety, $\overline{V} \subset \mathbb{P}^n(\mathbb{C})$ is the projective closure. Then $\mathbb{C}(V) = \mathbb{C}(\overline{V})$ are isomorphic.

Prove for Examples 1, $V = \{(x, y) | x^2 + y^2 - 1 = 0\}$ first, then you try to prove the general case.

If $V \subset \mathbb{A}^n(\bar{K})$ and $W \subset \mathbb{A}^m(\bar{K})$ are affine varieties. A map $\phi : V \to W$ is called a morphism of affine varieties if there is a polynomial map

$$\Phi:\mathbb{A}^n(\bar{K})\to\mathbb{A}^m(\bar{K})$$

such that

 $\Phi(V)\subset W$

and

$$\Phi|_V = \phi : V \to W$$

4 3 4 3 4 3 4

A polynomial map $\Phi : \mathbb{A}^n(\bar{K}) \to \mathbb{A}^m(\bar{K})$ is a map given by

$$y_1 = p_1(x_1, ..., x_n)$$

 $y_2 = p_2(x_1, ..., x_n)$
...
 $y_m = p_m(x_1, ..., x_n).$

where $p_1, \ldots, p_m \in \overline{K}[X_1, \ldots, X_n]$.

Such a Φ induces a ring homomorphism

$$\Phi^*: \bar{K}[Y] = \bar{K}[Y_1, \dots, Y_m] \mapsto \bar{K}[X_1, \dots, X_n] = \bar{K}[X].$$
$$\Phi^*(Y_i) = p_i(X_1, \dots, X_n).$$

3

イロト 不得 トイヨト イヨト

The condition $\Phi(V) \subset W$ implies that

 $\Phi^*(I(W)) \subset I(V).$

(Prove it! it is just a bit abstract, but not hard)

So we have a \overline{K} -algebra homomorphism

$$\phi^*: \bar{K}[Y]/I(W) \to \bar{K}[X]/I(V)$$

that is,

 $\phi^*: \bar{K}[W] \to \bar{K}[V].$

• • = • • = •

Conversely if we have \bar{K} -algebra homomorphism

$$\psi: \bar{K}[W] \to \bar{K}[V]$$

then we have a morphism

$$\phi: V \to W$$

such that $\phi^* = \psi$.

æ

The set of morphisms $V \to W$ are in one-to-one correspondence with the set of \overline{K} -algebra homomorphisms $\overline{K}[W] \to \overline{K}[V]$.

V and W are isomorphic iff $\overline{K}[W]$ and $\overline{K}[V]$ are isomorphic as \overline{K} -algebras.

The category of affine varieties over \overline{K} is anti-equivalent to the category of finitely generated commutative \overline{K} -algebras that are integral domains.

We first discuss the morphism between $\mathbb{P}^n(\bar{K})$ and $\mathbb{P}^m(\bar{K})$. Given m+1 homogeneous polynomials $f_0(X_0, \ldots, X_n), \ldots, f_m(X_0, \ldots, X_n)$. Assume all f_i have the **same degree** d. Then it defines a map from $\phi : \mathbb{P}^n(\bar{K}) \to \mathbb{P}^m(\bar{K})$

$$\phi([x_0, x_1, \dots, x_n]) = [f_0(x), f_1(x), \dots, f_m(x)]$$

Because the condition f_i 's are homogeneous with the equal degree, so ϕ is well-defined.

The domain of ϕ is the open set

$$D_f \stackrel{\text{def}}{=} \mathbb{P}^n(\bar{K}) - \{[x_0,\ldots,x_n] \mid f_0(x) = f_1(x) = \cdots = f_m(x) = 0\}$$

We call such a map a **rational map** from $\mathbb{P}^n(\bar{K})$ to $\mathbb{P}^m(\bar{K})$.

イロト 不得 トイヨト イヨト

If we have another set of m + 1 homogeneous polynomials of equal degree

$$g_0(X_0,\ldots,X_n),\ldots,g_m(X_0,\ldots,X_n)$$

So we have a map from

$$D_g \stackrel{\text{def}}{=} \mathbb{P}^n(\bar{K}) - \{[x_0, \dots, x_n] \mid g_0(x) = g_1(x) = \dots = g_m(x) = 0\}$$

to $\mathbb{P}^m(\bar{K})$.

Suppose $f_i g_j = f_j g_i$ for all $0 \le i, j \le m$, the on the intersection $D_f \cap D_g$, two maps are equal.

These two maps are considered equal. The domain of a rational map is the union of all D_f 's.

A B M A B M

Definition.

Let $V \subset \mathbb{P}^n(\bar{K})$, $W \subset \mathbb{P}^m(\bar{K})$ be projective varieties. A rational map $\phi: V_1 \to V_2$ is a map of the form

$$\phi([x_0,\ldots,x_n])=[\phi_0(x),\phi_1(x),\ldots,\phi_m(x)]$$

where ϕ_i 's are homogeneous polynomials of equal degree, and for every $f \in I(W)$,

$$f(\phi_0(X),\ldots,\phi_m(X))\in I(V_1).$$

The domain of ϕ includes

$$D_{\phi} \stackrel{\text{def}}{=} V - \{ [x] | \phi_0(x) = \phi_1(x) = \cdots = \phi_m(x) = 0 \}.$$

If we have another rational map defined by another set of homogeneous polynomials ψ_0, \ldots, ψ_m of equal degree and satisfies $\phi_i \psi_j = \phi_j \psi_i$ for all $0 \le i, j \le m$, then two maps are equal on

$D_{\phi} \cap D_{\psi}$.

We consider as the same rational map. The domain of the rational map is the union of all D_{ϕ} 's.

A **morphism** of projective varieties V to W is a rational map $\phi : V \to W$ that has domain V.

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

V and W are isomorphic if there are morphisms $\phi : V \to W$ and $\psi : W \to V$ such that $\phi \circ \psi = Id_W$ and $\psi \circ \phi = Id_V$.

3

Exercise 1. Prove the composition of morphisms is a morphism.

Exercise 2. Prove the map $\phi: \{X^2+Y^2-Z^2=0\} o \mathbb{P}^1$ given by $[x,y,z]\mapsto [xy,z^2]$

is an isomorphism.

3

• • = • • = •

- The word "curve" in this Chapter means a projective variety of dimension 1 over $\bar{K}.$
- Recall that K is a separable field, \overline{K} is the algebraic closure of K.

Definition. For a projective variety V with rational function field $\bar{K}(V)$ and a point P, the local ring of P is

$$ar{K}[V]_P = \{rac{f}{g} \in ar{K}(V) \mid g(P) \neq 0\}.$$

If V is an affine variety, $P \in V$, \bar{V} is a projective closure of V, then the local rings

$$\bar{K}[V]_P = \bar{K}[\bar{V}]_P.$$

The function fields $\bar{K}(V)$ and $\bar{K}(\bar{V})$ are equal.

 $\bar{K}[V]_P$ is a subring of $\bar{K}(V)$. It has unique maximal ideal given by the kernel of homomorphism

$$ev: \overline{K}[V]_P \to \overline{K}, \quad \frac{f}{g} \mapsto \frac{f(P)}{g(P)}.$$

One proves that every element in $\overline{K}[V]_P - Ker(ev)$ is invertible in $\overline{K}[V]_P$.

Let C be a curve and $P \in C$ a smooth point. Then $\overline{K}[C]_P$ is a discrete value ring.

Proof. We denote $Ker(ev) = M_P$, which is a maximal ideal of $\overline{K}[C]_P$. Because P is smooth so

$$\dim_{\bar{K}} M_P / M_P^2 = \dim C = 1$$

The standard result in commutative algebra implies that $\overline{K}[C]_P$ is a discrete valuation ring.

A B < A B </p>

The valuation is given by

$$\operatorname{ord}_{P}: \overline{K}[C]_{P} \to \{0, 1, 2, \dots\} \cup \{\infty\}$$
$$\operatorname{ord}_{P}(0) \stackrel{\operatorname{def}}{=} \infty$$
$$\operatorname{For} f \notin M_{P}, \quad \operatorname{ord}_{P}(f) \stackrel{\operatorname{def}}{=} 0$$
$$\operatorname{For} f \in M_{P}, \quad \operatorname{ord}_{P}(f) \stackrel{\operatorname{def}}{=} \max(d \mid f \in M_{P}^{d})$$

For any $t \in M_P - M_P^2$, every non-zero element in $\overline{K}[C]_P$ can be written as $t^k u$, where u is a unit, $k \ge 0$. $\operatorname{ord}_P(t^k u) = k$.

Let R be an integral domain, a surjective map $e: R \rightarrow \{0, 1, 2, ...\} \cup \{\infty\}$ is called a **discrete valuation** if (1). $e(a) = \infty$ iff a = 0. (2). e(fg) = e(f) + e(g) for $f, g \neq 0$. (3). $e(f+g) \ge \min(e(f), e(g))$. (4). e(f) = 0 iff f is a unit in R.

Then *R* is called a **discrete valuation ring**.

イロト イヨト イヨト -

e can be extended to a map e : Frac $R \to \mathbb{Z} \cup \{\infty\}$ by

$$e(\frac{f}{g})=e(f)-e(g).$$

A discrete valuation ring is a local ring with the unique maximal

$$M = \{ a \in R \, | \, e(a) > 0 \}.$$

It is a PID with only two prime ideals $\{0\}$ and M.

4 3 4 3 4 3 4

Given a prime p,

$$\mathbb{Z}_{(p)} = \{\frac{n}{m} \mid p \nmid m\}$$

is a discrete valuation ring with valuation

$$e(p^k \frac{a}{b}) = k$$

for a, b relatively prime to p.

э

★ E ► < E ►</p>

Example.

Let k be a field, the formal power series ring k[[t]] is a discrete valuation ring. Notice that $\sum_{i=0}^{\infty} c_i t^i$ is a unit iff $c_0 \neq 0$. Every non-zero element in k[[t]] can be uniquely written as

$$t^k u$$
, $k \in \mathbb{Z}_{\geq 0}$, u is a uint.

The evaluation is defined as

$$e(t^k u) = k, \quad e(0) = \infty$$

For example:

$$e(2t^2 + t^4 + \dots) = 2, e(1 + t^2 + \dots) = 0$$

The completion of $\overline{K}[C]_P$ is $\overline{K}[[t]]$.

æ

イロト イヨト イヨト イヨト

The field of rational functions $\bar{K}(C)$ is $\operatorname{Frac} \bar{K}[C]_P$. So ord_P extends to $\operatorname{ord}_P : \bar{K}(C) \to \mathbb{Z} \cup \{\infty\}.$

 $\operatorname{ord}_{P}(f)$ is called the order of f at P.

▶ ▲ 聖 ▶ ▲ 理 ▶

Let C be a smooth curve, $f \in \overline{K}(C)$ and $f \neq 0$, then for all $P \in C$ except finitely many points, $\operatorname{ord}_P(f) = 0$.

Let C be a curve, $P \in C$, $t \in \overline{K}(C)$ is called a **uniformizer at** P if $\operatorname{ord}_{P}(t) = 1$.

Proposition 1.2'. Assume \bar{K} is of characteristic 0 or positive characteristic *p* such every $a \in \bar{K}$ is a *p*-power, i.e., $x^p = a$ is solvable in \bar{K} . Let *C* be a curve over \bar{K} , $t \in \bar{K}(C)$ be a uniformizer at some point, then $\bar{K}(C)$ is a finite separable extension of $\bar{K}(t)$.

Proposition 1.2. Assume K is of characteristic 0 or positive characteristic p such every $a \in K$ is a p-power, i.e., $x^p = a$ is solvable in K. Let C be a curve over K, $t \in K(C)$ be a uniformizer at some point, then K(C) is a finite separable extension of K(t).

End

æ

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ -