Math 6170 C, Lecture on Feb 26, 2020

Yongchang Zhu

		ng	

토 에 제 토 에

- (1) Review of the concept of rational map and morphisms between projective varieties (I \S 3)
- (2). Review of local ring at a smooth point of a curve (II. $\S 1$)
- (3). Chapter II, \S 2.

• • = • • = •

Let $V_1 \subset \mathbb{P}^n(\bar{K})$, $V_2 \subset \mathbb{P}^m(\bar{K})$ be projective varieties. A rational map from V_1 to V_2 is a map of the form

$$\phi(P) = [f_0(P), \ldots, f_m(P)]$$

where $f_0, \ldots, f_m \in \overline{K}(V_1)$ have the property that for every $P \in V_1$ at which f_0, \ldots, f_m are all defined, and $f_i(P)$ are not all 0,

$$\phi(P) = [f_0(P), \dots, f_m(P)] \in V_2 \tag{1}$$

The domain of ϕ includes the set

 $\{P \in V_1 \mid \text{all } f_0(P), \ldots, f_1(P) \text{ are defined and at least one is not } 0\}.$

3

A rational map $V_1 \rightarrow V_2$ given by $[f_0, \ldots, f_m]$ is regular at a point Q, if there is a function $g \in \overline{K}(V_1)$ such that each gf_i is regular at Q, and for some i, $(gf_i)(Q) \neq 0$ If such a g exists, we set

$$\phi(Q) = [(gf_0)(Q), \ldots, (gf_m)(Q)].$$

イロト イヨト イヨト -

Exercise: $\phi(Q)$ is well-defined. That is, if there is another set $\tilde{g} \in \bar{K}(V_1)$ satisfying the similar condition, then

$$[(gf_0)(Q),\ldots,(gf_m)(Q)]=[(\tilde{g}f_0)(Q),\ldots,(\tilde{g}f_m)(Q)]$$

Hint: Prove that $\tilde{g}g^{-1}$ and $\tilde{g}^{-1}g$ are both regular at Q.

• = • • = •

For a curve *C* over \overline{K} , $P \in C$ a smooth point, the local ring $\overline{K}[C]_P$ is a discrete valuation.

We have a surjective valuation map

$$\operatorname{ord}_{P}: \overline{K}[C]_{P} \to \{0, 1, \dots\} \cup \{\infty\}$$

It extends to a map

$$\operatorname{ord}_{P}: \overline{K}(C) \to \mathbb{Z} \cup \{\infty\}$$

 $t \in \bar{K}[C]_P$ is called a **uniformizer** if

$$\operatorname{ord}_P(t) = 1.$$

Every nonzero element $f \in \overline{K}(C)$ can be written as

 $f=t^k u, \qquad k\in \mathbb{Z}, u \ \text{ is a unit in } \bar{K}[C]_P.$

э

$$V = \{(x,y) \in \mathbb{A}^2(\bar{K}) \mid y^2 = x(x-1)(x-\lambda)\}$$

Assume $\lambda \neq 0, 1$, every point in V is regular. Its projective closure

$$ar{V}=\{[x,y,z]\in \mathbb{P}^2(ar{K})\mid y^2z=x(x-z)(x-\lambda z)\}$$

has only one point at infinity: [0, 1, 0], which is also regular.

э

(4回) (4回) (4回)

So \bar{V} is a smooth curve. This is an example of Legendre curve, which is an elliptic curve. Its function field is

$$ar{K}(V) = ar{K}(ar{V}) = \operatorname{Frac} ar{K}[X,Y]/(Y^2 - X(X-1)(X-\lambda))$$

 $P = (0,0) \in V$. The local ring at P is

$$ar{K}[V]_P = \{rac{f}{g} \in ar{K}(V) \mid g(P)
eq 0\}.$$

(B)

It is easy to see that $\bar{K}[V]_P$ consists of the elements of the form

$$\frac{f(X,Y)}{g(X,Y)}$$

such that $g(0,0) \neq 0$, i.e., the constant term of g is non-zero. The maximal ideal M_P of $\bar{K}[V]_P$ consists of the elements of the form

$$\frac{f(X,Y)}{g(X,Y)}$$

such that $f(0,0) = 0, g(0,0) \neq 0$.

One finds that $\dim_{\bar{K}} M_P / M_P^2 = 1$, $Y + M_P^2$ is the generator of M_P / M_P^2 . So ord_P(Y) = 1

Because X - 1 and $X - \lambda$ are units in $\overline{K}[V]_P$, so

$$\operatorname{ord}_{P}(X-1) = \operatorname{ord}_{P}(X-\lambda) = 0.$$

By relation $Y^2 = X(X-1)(X-\lambda)$, we have

 $\operatorname{ord}_P(X) = 2$

イロト イヨト イヨト -

Exercise (1) Find $\operatorname{ord}_P(Y^2 - X)$

(2) Prove that $\frac{Y^2-X}{Y^2+(1-\lambda)X}$ is a regular at P

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Proposition 2.1. Let C be a curve, $V \subset \mathbb{P}^{N}(\overline{K})$ a variety, $P \in C$ a smooth point, and $\phi : C \to V$ a rational map. Then ϕ is regular at P. In particular, if C is smooth, then ϕ is regular at all points in C, so it is a morphism.

Proof. Suppose $\phi = [f_0, f_1, \ldots, f_N]$, $f_i \in \overline{K}(C)$, Not all f_0, \ldots, f_N are 0.

Choose a uniformizer $t \in \overline{K}(C)$ at P. Then each non-zero f_i can be written as $f_i = t^{k_i}u_i$, $k_i \in \mathbb{Z}$, $u_i \in \overline{K}[C]$ is a unit.

We assume $f_j \neq 0$ and k_j is the smallest among all k_i 's then $t^{-k_j}f_0, t^{-k_j}f_1, \ldots, t^{-k_j}f_N$ are all regular at P and $(t^{-k_j}f_j)(P) = u_i(P) \neq 0$.

This proves ϕ is regular at *P*.

Let C/K be a smooth curve and $f \in K(C)$ a non-zero rational function. Then f defines a rational map (also denoted by f for simplicity)

$$f: C \to \mathbb{P}^1(\bar{K}), \quad P \mapsto [f(P), 1]$$

The formula makes sense for P's with $\operatorname{ord}_P(f) \ge 0$.

For P a pole of f, we take a uniformizer t at P, then $f = t^{-k}u$, k < 0, $u \in \overline{K}[C]_P$ is a unit, so $u(P) \neq 0$.

$$f: P \mapsto [(t^k f)(P), t^k(P)] = [u(P), 0] = [1, 0].$$

A B M A B M

The above map is not the non-constant map ∞ . Conversely, any morphism that is not constant map ∞ is given by a unique non-zero $f \in \overline{K}(C)$.

3 K 4 3 K

Let $\phi: C_1 \to C_2$ be a morphism of curves. Then ϕ is either constant or surjective.

Proof. Because C_1 is projective, so $Im(\phi)$ is a closed subset of C_2 . And $Im(\phi)$ is connected. Since C_2 is a curve, a closed connected subset is either a point or C_2 itself.

A B > A B >

If a projective variety V is defined over K, this means that $V \subset \mathbb{P}^n(\bar{K})$ has the property that its ideal I(V) can be generated by homogeneous polynomials f_1, \ldots, f_m in $K[X_0, X_1, \ldots, X_n]$.

The function field K(V) over K is defined to be the subfield of $\operatorname{Frac} K[X]/(f_1, \ldots, f_m)$ that consists of elements of degree 0. If V_1, V_2 are both defined over K, then one can define the concept of a rational map or a morphism from V_1 to V_2 defined over K.

Let C_1/K and C_2/K be curves and $\phi: C_1 \to C_2$ a non-constant rational map defined over K. Then ϕ induces an field extension

 $\phi^*: K(C_2) \to K(C_1)$

э

イロト イヨト イヨト イヨト

Let C_1/K and C_2/K be curves. Assume both are smooth (i.e., all \bar{K} -points are smooth. Then

(a). Let $\phi : C_1 \to C_2$ be a non-constant morphism defined over K. Then $K(C_1)$ is a finite extension of $K(C_2)$.

(b). Let $\iota : K(C_2) \to K(C_1)$ be an injection of fields fixing K. Then there is unique non-constant morphism $\phi : C_1 \to C_2$ defined over K that induces the ι .

イロト イヨト イヨト ・

(c). If \mathbb{K} is finitely generated extension of K of transcendental degree 1 satisfying $\mathbb{K} \cap \overline{K} = K$, then there exists a unique smooth curve C over K such that $K(C) = \mathbb{K}$.

Proof of (a): Because $K(C_1)$ and $K(C_2)$ have transcendental degree 1 over K, and both are finitely generated field extensions of K.

The following two categories are anti-equivalent:

Geometric Category: Objects are smooth curves defined over K. Morphisms are non-constant rational maps defined over K.

Algebaic Category: Objects are finitely generated field extensions \mathbb{K} of K with $\mathbb{K} \cap \overline{K} = K$ and $\operatorname{Tr} \deg \mathbb{K}/K = 1$. Morphisms are field homomorphisms over K.

Another example of anti-equivalence of categories:

Geometric Category: objects are compact Hausdorff topological spaces, morphisms are continuous maps.

Algebaic Category: objects are unital commutative C^* -algebras, morphisms are C^* -homomorphisms.

An easy example of anti-equivalence of categories:

Geometric Category: objects are finite sets, morphisms are maps.

Algebaic Category: objects are unital finite dimensional commutative \mathbb{C} -algebras with no non-zero nilpotent algebras, morphisms are \mathbb{C} -algebra homomorphisms.

A B < A B </p>

Let $\phi: C_1 \to C_2$ be a non-constant map of curves over K, we define the **degree** of f by

$$\deg \phi = [K(C_1) : K(C_2)].$$

æ

イロト イ理ト イヨト イヨト

Let $\phi : C_1 \to C_2$ be a non-constant map of smooth curves, and let $P \in C_1$. The **ramification index** of ϕ at P, denoted by $e_{\phi}(P)$, is given by

$$e_{\phi}(P) = \operatorname{ord}_{P}(\phi^{*}t_{\phi(P)}),$$

where $t_{\phi(P)} \in K(C_2)$ is a uniformizer at $\phi(P)$.

Note that $e_{\phi}(P) \geq 1$, because

$$C_1 \stackrel{\phi}{\to} C_2 \stackrel{t_{\phi(P)}}{\to} \mathbb{P}^1, \ P \mapsto \phi(P) \mapsto 0$$

We say that ϕ is **unramified at** P if $e_{\phi}(P) = 1$, ϕ is unramified if ϕ is unramified at every point of $C_1(\bar{K})$.

э

A B M A B M

Complex analytic analog of ramification:

$$f: \mathbb{C} \to \mathbb{C}, \quad f(z) = z^5$$

f is ramified at z = 0, the ramification index is 5. *f* is unramified at all other points: for any $c \neq 0$, any root of the equation $z^5 - c = 0$ has multiplicity 1.

Let ϕ be a non-constant map of smooth curves. (a) For every $Q \in C_2$,

$$\sum_{P\in\phi^{-1}(Q)}e_{\phi}(P)=\deg{(\phi)}.$$

(b) For all but finitely many $Q \in C_2$,

$$|\phi^{-1}(Q)| = \deg_s(\phi).$$

where $\deg_s(\phi)$ is the separable degree of the field extension ϕ^* . (c) Let $\psi : C_2 \to C_3$ be another non-constant map. Then for all $P \in C_1$,

$$e_{\psi\circ\phi}(P) = e_{\phi}(P)e_{\psi}(\phi P)$$

• • = • • = •

Consider the field extension $\bar{K}(C_2) \subset \bar{K}(C_1)$ induced by ϕ . Let R be the integral closure of the local ring $\bar{K}[C_2]_Q$ in $\bar{K}(C_1)$, then R is a free module of $\bar{K}[C_2]_Q$ with rank deg (ϕ) . R has exactly $|\phi^{-1}(Q)|$ maximal ideals, each corresponds a point in $\phi^{-1}(Q)$. Then consider R/RM_Q as a vector space of $\bar{K}[C_2]_Q/M_Q = \bar{K}$ with dimension deg (ϕ) . Then prove

$$R/RM_Q = \oplus_{P \in \phi^{-1}(Q)} (\bar{K})^{e_{\phi}(P)}.$$

This will prove (a).

A map $\phi: C_1 \to C_2$ is unramified iff $|\phi^{-1}(Q)| = \deg(\phi)$ for all $Q \in C_2$.

3

ヘロト ヘロト ヘヨト ヘヨト

If char(K) = p > 0, and let $q = p^r$. For any *n*-variable polynomial $f \in K[X]$, let $f^{(q)}$ be the polynomial obtained from f by raising each coefficient of f to the q-th power.

Then for any curve C/K we can define a new curve $C^{(q)}/K$ by describing its homogeneous ideal as

 $I(C^{(q)}) = \text{ideal generated by } f^{(q)}, f \in I(C)$

イロン イヨン イヨン

There is a natural map from C to $C^{(q)}$, called the q-power Frobenius morphism, given by

$$\phi([x_0,\ldots,x_n])=[x_0^q,\ldots,x_n^q]$$

э

(B)

Then

$$\phi^* \mathcal{K}(\mathcal{C}^{(q)}) = \{ f^q \mid f \in \mathcal{K}(\mathcal{C}) \}$$

so the field extension $K(C^{(q)}) \subset K(C)$ is a purely inseparable of degree q.

Conversely of $\phi : C \to C'$ is a non-constant morphism of smooth curves over K such that $\phi^* : K(C') \to K(C)$ is a purely inseparable extension of degree q, then $C' = C^{(q)}$ and ϕ is the q-power Frobenius map. Let C be a curve over \overline{K} . A divisor of C is a formal finite \mathbb{Z} -linear combination of points in C:

$$n_1(P_1)+\cdots+n_k(P_k).$$

This sum can be regarded as the sum over all the points P in C

$$\sum_{P\in C} n_P(P)$$

such that for $P = P_i$, $n_P = n_i$ and all other k_P are 0.

The set of all divisors is denoted by

 $\operatorname{Div}(C)$

which has a group structure under the obvious addition.

The degree of $D = \sum_{P \in C} n_P(P)$ is $\deg D = \sum_{P \in C} n_P.$

(本部) (本語) (本語) (二语

End

æ

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ -