Math 6170 C, Lecture on Feb 26, 2020

Yongchang Zhu

Plan.

(1) Review of the concept of rational map and morphisms between projective varieties (I § 3)
(2). Review of local ring at a smooth point of a curve (II. § 1)
(3). Chapter II, § 2.

Morphisms between Projective Varieties

Let $V_{1} \subset \mathbb{P}^{n}(\bar{K}), V_{2} \subset \mathbb{P}^{m}(\bar{K})$ be projective varieties. A rational map from V_{1} to V_{2} is a map of the form

$$
\phi(P)=\left[f_{0}(P), \ldots, f_{m}(P)\right]
$$

where $f_{0}, \ldots, f_{m} \in \bar{K}\left(V_{1}\right)$ have the property that for every $P \in V_{1}$ at which f_{0}, \ldots, f_{m} are all defined, and $f_{i}(P)$ are not all 0 ,

$$
\begin{equation*}
\phi(P)=\left[f_{0}(P), \ldots, f_{m}(P)\right] \in V_{2} \tag{1}
\end{equation*}
$$

The domain of ϕ includes the set
$\left\{P \in V_{1} \mid\right.$ all $f_{0}(P), \ldots, f_{1}(P)$ are defined and at least one is not 0$\}$.

Definition.

A rational map $V_{1} \rightarrow V_{2}$ given by $\left[f_{0}, \ldots, f_{m}\right]$ is regular at a point Q, if there is a function $g \in \bar{K}\left(V_{1}\right)$ such that each $g f_{i}$ is regular at Q, and for some $i,\left(g f_{i}\right)(Q) \neq 0$
If such a g exists, we set

$$
\phi(Q)=\left[\left(g f_{0}\right)(Q), \ldots,\left(g f_{m}\right)(Q)\right] .
$$

Exercise: $\phi(Q)$ is well-defined. That is, if there is another set $\tilde{g} \in \bar{K}\left(V_{1}\right)$ satisfying the similar condition, then

$$
\left[\left(g f_{0}\right)(Q), \ldots,\left(g f_{m}\right)(Q)\right]=\left[\left(\tilde{g} f_{0}\right)(Q), \ldots,\left(\tilde{g} f_{m}\right)(Q)\right]
$$

Hint: Prove that $\tilde{g} g^{-1}$ and $\tilde{g}^{-1} g$ are both regular at Q.

Local Ring of a Curve at a Smooth Point: An Example

For a curve C over $\bar{K}, P \in C$ a smooth point, the local ring $\bar{K}[C]_{P}$ is a discrete valuation.

We have a surjective valuation map

$$
\operatorname{ord}_{P}: \bar{K}[C]_{P} \rightarrow\{0,1, \ldots\} \cup\{\infty\}
$$

It extends to a map

$$
\operatorname{ord} p: \bar{K}(C) \rightarrow \mathbb{Z} \cup\{\infty\}
$$

$t \in \bar{K}[C]_{P}$ is called a uniformizer if

$$
\operatorname{ord}_{P}(t)=1
$$

Every nonzero element $f \in \bar{K}(C)$ can be written as

$$
f=t^{k} u, \quad k \in \mathbb{Z}, u \text { is a unit in } \bar{K}[C]_{P}
$$

$$
V=\left\{(x, y) \in \mathbb{A}^{2}(\bar{K}) \mid y^{2}=x(x-1)(x-\lambda)\right\}
$$

Assume $\lambda \neq 0,1$, every point in V is regular. Its projective closure

$$
\bar{V}=\left\{[x, y, z] \in \mathbb{P}^{2}(\bar{K}) \mid y^{2} z=x(x-z)(x-\lambda z)\right\}
$$

has only one point at infinity: $[0,1,0]$, which is also regular.

So \bar{V} is a smooth curve. This is an example of Legendre curve, which is an elliptic curve. Its function field is

$$
\bar{K}(V)=\bar{K}(\bar{V})=\operatorname{Frac} \bar{K}[X, Y] /\left(Y^{2}-X(X-1)(X-\lambda)\right)
$$

$P=(0,0) \in V$. The local ring at P is

$$
\bar{K}[V]_{P}=\left\{\left.\frac{f}{g} \in \bar{K}(V) \right\rvert\, g(P) \neq 0\right\} .
$$

It is easy to see that $\bar{K}[V]_{P}$ consists of the elements of the form

$$
\frac{f(X, Y)}{g(X, Y)}
$$

such that $g(0,0) \neq 0$, i.e., the constant term of g is non-zero. The maximal ideal M_{P} of $\bar{K}[V]_{P}$ consists of the elements of the form

$$
\frac{f(X, Y)}{g(X, Y)}
$$

such that $f(0,0)=0, g(0,0) \neq 0$.

One finds that $\operatorname{dim}_{\bar{K}} M_{P} / M_{P}^{2}=1, Y+M_{P}^{2}$ is the generator of M_{P} / M_{P}^{2}. So

$$
\operatorname{ord}_{P}(Y)=1
$$

Because $X-1$ and $X-\lambda$ are units in $\bar{K}[V]_{P}$, so

$$
\operatorname{ord}_{P}(X-1)=\operatorname{ord}_{P}(X-\lambda)=0
$$

By relation $Y^{2}=X(X-1)(X-\lambda)$, we have

$$
\operatorname{ord}_{P}(X)=2
$$

Exercise (1) Find $\operatorname{ord}_{P}\left(Y^{2}-X\right)$

(2) Prove that $\frac{Y^{2}-X}{Y^{2}+(1-\lambda) X}$ is a regular at P

Chapter II § 2. Maps between Curves

Proposition 2.1. Let C be a curve, $V \subset \mathbb{P}^{N}(\bar{K})$ a variety, $P \in C$ a smooth point, and $\phi: C \rightarrow V$ a rational map. Then ϕ is regular at P. In particular, if C is smooth, then ϕ is regular at all points in C, so it is a morphism.

Proof. Suppose $\phi=\left[f_{0}, f_{1}, \ldots, f_{N}\right], f_{i} \in \bar{K}(C)$, Not all f_{0}, \ldots, f_{N} are 0 .
Choose a uniformizer $t \in \bar{K}(C)$ at P. Then each non-zero f_{i} can be written as $f_{i}=t^{k_{i}} u_{i}, k_{i} \in \mathbb{Z}, u_{i} \in \bar{K}[C]$ is a unit.

We assume $f_{j} \neq 0$ and k_{j} is the smallest among all k_{i} 's then $t^{-k_{j}} f_{0}, t^{-k_{j}} f_{1}, \ldots, t^{-k_{j}} f_{N}$ are all regular at P and $\left(t^{-k_{j}} f_{j}\right)(P)=u_{i}(P) \neq 0$.

This proves ϕ is regular at P.

Example 2.2.

Let C / K be a smooth curve and $f \in K(C)$ a non-zero rational function. Then f defines a rational map (also denoted by f for simplicity)

$$
f: C \rightarrow \mathbb{P}^{1}(\bar{K}), \quad P \mapsto[f(P), 1]
$$

The formula makes sense for P 's with $\operatorname{ord} P(f) \geq 0$.
For P a pole of f, we take a uniformizer t at P, then $f=t^{-k} u, k<0$, $u \in \bar{K}[C]_{P}$ is a unit, so $u(P) \neq 0$.

$$
f: P \mapsto\left[\left(t^{k} f\right)(P), t^{k}(P)\right]=[u(P), 0]=[1,0] .
$$

The above map is not the non-constant map ∞. Conversely, any morphism that is not constant map ∞ is given by a unique non-zero $f \in \bar{K}(C)$.

Theorem 2.3.

Let $\phi: C_{1} \rightarrow C_{2}$ be a morphism of curves. Then ϕ is either constant or surjective.

Proof. Because C_{1} is projective, so $\operatorname{Im}(\phi)$ is a closed subset of C_{2}. And $\operatorname{Im}(\phi)$ is connected. Since C_{2} is a curve, a closed connected subset is either a point or C_{2} itself.

Rationality Question.

If a projective variety V is defined over K, this means that $V \subset \mathbb{P}^{n}(\bar{K})$ has the property that its ideal $I(V)$ can be generated by homogeneous polynomials f_{1}, \ldots, f_{m} in $K\left[X_{0}, X_{1}, \ldots, X_{n}\right]$.

The function field $K(V)$ over K is defined to be the subfield of Frac $K[X] /\left(f_{1}, \ldots, f_{m}\right)$ that consists of elements of degree 0 . If V_{1}, V_{2} are both defined over K, then one can define the concept of a rational map or a morphism from V_{1} to V_{2} defined over K.

Let C_{1} / K and C_{2} / K be curves and $\phi: C_{1} \rightarrow C_{2}$ a non-constant rational map defined over K. Then ϕ induces an field extension

$$
\phi^{*}: K\left(C_{2}\right) \rightarrow K\left(C_{1}\right)
$$

Theorem 2.4.

Let C_{1} / K and C_{2} / K be curves. Assume both are smooth (i.e., all \bar{K}-points are smooth. Then
(a). Let $\phi: C_{1} \rightarrow C_{2}$ be a non-constant morphism defined over K. Then $K\left(C_{1}\right)$ is a finite extension of $K\left(C_{2}\right)$.
(b). Let $\iota: K\left(C_{2}\right) \rightarrow K\left(C_{1}\right)$ be an injection of fields fixing K. Then there is unique non-constant morphism $\phi: C_{1} \rightarrow C_{2}$ defined over K that induces the ι.
(c). If \mathbb{K} is finitely generated extension of K of transcendental degree 1 satisfying $\mathbb{K} \cap \bar{K}=K$, then there exists a unique smooth curve C over K such that $K(C)=\mathbb{K}$.

Proof of (a): Because $K\left(C_{1}\right)$ and $K\left(C_{2}\right)$ have transcendental degree 1 over K, and both are finitely generated field extensions of K.

The following two categories are anti-equivalent:
Geometric Category: Objects are smooth curves defined over K. Morphisms are non-constant rational maps defined over K.

Algebaic Category: Objects are finitely generated field extensions \mathbb{K} of K with $\mathbb{K} \cap \bar{K}=K$ and $\operatorname{Tr} \operatorname{deg} \mathbb{K} / K=1$. Morphisms are field homomorphisms over K.

Another example of anti-equivalence of categories:

Geometric Category: objects are compact Hausdorff topological spaces, morphisms are continuous maps.

Algebaic Category: objects are unital commutative C^{*}-algebras, morphisms are C^{*}-homomorphisms.

An easy example of anti-equivalence of categories:

Geometric Category: objects are finite sets, morphisms are maps.

Algebaic Category: objects are unital finite dimensional commutative \mathbb{C}-algebras with no non-zero nilpotent algebras, morphisms are \mathbb{C}-algebra homomorphisms.

Definition.

Let $\phi: C_{1} \rightarrow C_{2}$ be a non-constant map of curves over K, we define the degree of f by

$$
\operatorname{deg} \phi=\left[K\left(C_{1}\right): K\left(C_{2}\right)\right] .
$$

Definition.

Let $\phi: C_{1} \rightarrow C_{2}$ be a non-constant map of smooth curves, and let $P \in C_{1}$. The ramification index of ϕ at P, denoted by $e_{\phi}(P)$, is given by

$$
e_{\phi}(P)=\operatorname{ord} P\left(\phi^{*} t_{\phi(P)}\right),
$$

where $t_{\phi(P)} \in K\left(C_{2}\right)$ is a uniformizer at $\phi(P)$.
Note that $e_{\phi}(P) \geq 1$, because

$$
C_{1} \xrightarrow{\phi} C_{2} \xrightarrow{t_{\phi(P)}} \mathbb{P}^{1}, \quad P \mapsto \phi(P) \mapsto 0
$$

We say that ϕ is unramified at P if $e_{\phi}(P)=1, \phi$ is unramified if ϕ is unramified at every point of $C_{1}(\bar{K})$.

Complex analytic analog of ramification:

$$
f: \mathbb{C} \rightarrow \mathbb{C}, \quad f(z)=z^{5}
$$

f is ramified at $z=0$, the ramification index is 5. f is unramified at all other points: for any $c \neq 0$, any root of the equation $z^{5}-c=0$ has multiplicity 1.

Proposition 2.6.

Let ϕ be a non-constant map of smooth curves.
(a) For every $Q \in C_{2}$,

$$
\sum_{P \in \phi^{-1}(Q)} e_{\phi}(P)=\operatorname{deg}(\phi)
$$

(b) For all but finitely many $Q \in C_{2}$,

$$
\left|\phi^{-1}(Q)\right|=\operatorname{deg}_{s}(\phi)
$$

where $\operatorname{deg}_{s}(\phi)$ is the separable degree of the field extension ϕ^{*}.
(c) Let $\psi: C_{2} \rightarrow C_{3}$ be another non-constant map. Then for all $P \in C_{1}$,

$$
e_{\psi \circ \phi}(P)=e_{\phi}(P) e_{\psi}(\phi P)
$$

Sketch of Proof of (a).

Consider the field extension $\bar{K}\left(C_{2}\right) \subset \bar{K}\left(C_{1}\right)$ induced by ϕ. Let R be the integral closure of the local ring $\bar{K}\left[C_{2}\right]_{Q}$ in $\bar{K}\left(C_{1}\right)$, then R is a free module of $\bar{K}\left[C_{2}\right]_{Q}$ with rank $\operatorname{deg}(\phi) . R$ has exactly $\left|\phi^{-1}(Q)\right|$ maximal ideals, each corresponds a point in $\phi^{-1}(Q)$. Then consider $R / R M_{Q}$ as a vector space of $\bar{K}\left[C_{2}\right]_{Q} / M_{Q}=\bar{K}$ with dimension $\operatorname{deg}(\phi)$. Then prove

$$
R / R M_{Q}=\oplus_{P \in \phi^{-1}(Q)}(\bar{K})^{e_{\phi}(P)} .
$$

This will prove (a).

Corollary.

A map $\phi: C_{1} \rightarrow C_{2}$ is unramified iff $\left|\phi^{-1}(Q)\right|=\operatorname{deg}(\phi)$ for all $Q \in C_{2}$.

The Frobenius Map.

If $\operatorname{char}(K)=p>0$, and let $q=p^{r}$. For any n-variable polynomial $f \in K[X]$, let $f^{(q)}$ be the polynomial obtained from f by raising each coefficient of f to the q-th power.

Then for any curve C / K we can define a new curve $C^{(q)} / K$ by describing its homogeneous ideal as

$$
I\left(C^{(q)}\right)=\text { ideal generated by } f^{(q)}, f \in I(C)
$$

There is a natural map from C to $C^{(q)}$, called the q-power Frobenius morphism, given by

$$
\phi\left(\left[x_{0}, \ldots, x_{n}\right]\right)=\left[x_{0}^{q}, \ldots, x_{n}^{q}\right]
$$

Then

$$
\phi^{*} K\left(C^{(q)}\right)=\left\{f^{q} \mid f \in K(C)\right\}
$$

so the field extension $K\left(C^{(q)}\right) \subset K(C)$ is a purely inseparable of degree q.
Conversely of $\phi: C \rightarrow C^{\prime}$ is a non-constant morphism of smooth curves over K such that $\phi^{*}: K\left(C^{\prime}\right) \rightarrow K(C)$ is a purely inseparable extension of degree q, then $C^{\prime}=C^{(q)}$ and ϕ is the q-power Frobenius map.

II § 3. Divisor.

Let C be a curve over \bar{K}. A divisor of C is a formal finite \mathbb{Z}-linear combination of points in C :

$$
n_{1}\left(P_{1}\right)+\cdots+n_{k}\left(P_{k}\right)
$$

This sum can be regarded as the sum over all the points P in C

$$
\sum_{P \in C} n_{P}(P)
$$

such that for $P=P_{i}, n_{P}=n_{i}$ and all other k_{P} are 0 .

The set of all divisors is denoted by

$$
\operatorname{Div}(C)
$$

which has a group structure under the obvious addition.
The degree of $D=\sum_{P \in C} n_{P}(P)$ is

$$
\operatorname{deg} D=\sum_{P \in C} n_{P}
$$

End

