Math 6170 C, Lecture on March 11, 2020

Yongchang Zhu

★ E ► < E ►</p>

- (1) Review of Chapter III \S 1.
- (2) Chapter III § 2. The Group Law (continued)
- (3). Chapter III \S 3. Elliptic Curves

э

• • = • • = •

Definition. An **elliptic curve** over \overline{K} is a pair (E, O), where E is a smooth curve with genus one and $O \in E$.

The elliptic curve (E, O) is defined over K if E is defined over K and $O \in E(K)$.

3 1 4 3 1

Let (E, O) be an elliptic curve over K. Then E is isomorphic to the curve in \mathbb{P}^2 defined by an equation

$$E: Y^2 + a_1 XY + a_3 Y = X^3 + a_2 X^2 + a_4 X + a_6$$

with coefficients $a_1, \ldots, a_6 \in K$ and O = [0, 1, 0].

The above equation is called a Weierstrass equation.

Conversely if

$$E: y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6$$

is smooth, then it is an elliptic curve with O = [0, 1, 0].

æ

イロト イヨト イヨト イヨト

If $\operatorname{Char}(\bar{K}) \neq 2, 3$, the equation of *E* can simplified to

$$E: y^2 = x^3 - 27c_4x - 54c_6.$$

A curve defined by the above equation is smooth iff

$$\Delta = 1728^{-1}(c_4^3 - c_6^2) \neq 0$$

A B > A B >

A line in \mathbb{P}^2 is the variety defined by a homogeneous linear equation AX+BY+CZ=0

A, B, C are not all 0.

Theorem. Two different lines in \mathbb{P}^2 intersects at a unique point.

Example: the affine lines X + Y - 1 = 0 and X + Y - 2 = 0 don't intersect. Their projective closures

$$L_1: X + Y - Z = 0, \quad L_2: X + Y - 2Z = 0$$

intersect at [1, -1, 0].

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Suppose C : F(X, Y, Z) = 0 (in \mathbb{P}^2 , F is irreducible) is a smooth curve over \overline{K} defined by a homogeneous equation of degree d > 1, then any line intersect with C at exactly d points (counting multiplicity).

イロト イヨト イヨト イヨト

This follows from the following theorem:

Theorem. If G(X, Y) is a homogeneous polynomial of degree d, then

$$G(X,Y)=0$$

has exactly d solutions in \mathbb{P}^1 (counting multiplicity).

Proof. We have factorization $G(X, Y) = \prod_{i=1}^{d} (A_i X + B_i Y)$.

Solutions are $[-B_i, A_i]$.

A line can be expressed as

 $[X, Y, Z] = s[a_1, a_2, a_3] + t[b_1, b_2, b_3]$

substitute it to F(X, Y, Z) = 0, we get

$$F(a_1s + b_1t, a_2s + b_2t, a_3s + b_3t) = 0$$
(1)

Because F is irreducible, $F(a_1s + b_1t, a_2s + b_2t, a_3s + b_3t) \neq 0$ and is a homogeneous polynomial of s, t with degree d, so it has d solutions.

The multiplicity of a point P in the intersection is the multiplicity of its corresponding solution [s, t] of (1).

• • = • • = •

Let (E, O) be an elliptic curve over K given by a Weierstrass equation. So $E \in \mathbb{P}^2$ with equation

$$Y^{2}Z + a_{1}XYZ + a_{3}YZ^{2} = X^{3} + a_{2}X^{2}Z + a_{4}XZ + a_{6}Z^{3}.$$

For any line $L \subset \mathbb{P}^2$, L and E intersect at 3 points (counting with multiplicity).

If E and L are both defined over K, and if two of intersection points are defined over K, then the remaining intersection point is also defined over K.

A B < A B </p>

If a smooth curve $\mathcal{C} \subset \mathbb{P}^2$ is given by

$$C:F(X,Y,Z)=0$$

where F is a homogeneous irreducible polynomial.

If $P = [x_0, y_0, z_0]$ is a point in C, the **tangent line** of C at P is defined as

$$L: \partial_X F(x_0, y_0, z_0)X + \partial_Y F(x_0, y_0, z_0)Y + \partial_Z F(x_0, y_0, z_0)Z = 0.$$

A B M A B M

Assume F(X, Y, Z) has degree *m*, we have

$$F(tX, tY, tZ) = t^m F(X, Y, Z)$$

Take ∂_t and set t = 1, we get

$$\partial_X F(X, Y, Z)X + \partial_Y F(X, Y, Z)Y + \partial_Z F(X, Y, Z)Z = mF(X, Y, Z)$$

Put $(X, Y, Z) = (x_0, y_0, z_0)$, we get

 $\partial_X F(x_0, y_0, z_0) x_0 + \partial_Y F(x_0, y_0, z_0) y_0 + \partial_Z F(x_0, y_0, z_0) z_0 = mF(x_0, y_0, z_0) = 0.$

Our definition agrees with the affine case:

If (x_0, y_0) is a smooth point of the affine curve f(X, Y) = 0 in \mathbb{A}^2 . The tangent line at (x_0, y_0) is

$$\partial_X f(x_0, y_0)(X - x_0) + \partial_Y f(x_0, y_0)(Y - y_0) = 0.$$

- E > - E >

Lemma. Let $P = [x_0, y_0, z_0]$ be a point in the elliptic curve $E \subset \mathbb{P}^2$ with a Weierstrass equation F(X, Y, Z) = 0, L be the tangent line of E at P, then multiplicity of P in the intersection $E \cap L$ is at least 2.

L has equation

$$F_X(x_0, y_0, z_0)X + F_Y(x_0, y_0, z_0)Y + F_Z(x_0, y_0, z_0)Z = 0.$$

Without loss of generality, we may assume $F_Z(x_0, y_0, z_0) = C \neq 0$. The points in *L* are parameterized by

$$[X, Y, Z] = [X, Y, -C^{-1}F_X(x_0, y_0, z_0)X - C^{-1}F_Y(x_0, y_0, z_0)Y]$$

Substitute this to the equation of E, we have

$$F(X, Y, -C^{-1}F_X(x_0, y_0, z_0)X - C^{-1}F_Y(x_0, y_0, z_0)Y) = 0$$

4 B K 4 B K

We need to prove $[X, Y] = [x_0, y_0]$ is a solution of G(X, Y) = 0 with multiplicity ≥ 2 , where

$$G(X,Y) = F(X,Y,-C^{-1}F_X(x_0,y_0,z_0)X - C^{-1}F_Y(x_0,y_0,z_0)Y)$$

It is equivalent to prove

$$G_X(x_0, y_0) = G_Y(x_0, y_0) = 0$$

which can be proved by a direct computation.

A B + A B +

Tangent Line of E at O

The elliptic curve (E, O) with equation

 $E: Y^2Z + a_1XYZ + a_3YZ^2 - (X^3 + a_2X^2Z + a_4XZ + a_6Z^3) = 0$

and O = [0, 1, 0]. The tangent line at O is

$$L: Z = 0$$

The points in *L* are [X, Y, 0]. To find $L \cap E$, we solve the equation

$$G(X,Y)=-X^3=0$$

The solution is X = 0 with multiplicity 3.

$$L \cap E = \{O, O, O\}$$

 $P \in E(K)$, let L be the line connect O and P (if P = O, L is the tangent line at O). Let

$$L\cap E=(O,P,Q)$$

We define Q = -P.

By the previous example, we have

$$-O = O$$
.

э

• • = • • = •

Let (E, O) be an elliptic curve over K given by a Weierstrass equation. $P, Q \in E(K)$, let L be the line connect P and Q (if P = Q, L is the tangent line at P),

$$L \cap E = (P, Q, R)$$

We define P + Q = -R.

E(K) is an abelian group under + and O is the identity element. The inverse of P is -P.

э

イロト 不得下 イヨト イヨト

If *E* is a curve defined by a Weierstrass equation F(X, Y, Z) = 0 that is NOT smooth. Then $O = [0, 1, 0] \in E$ is a smooth point and there is only one singular point, the set $E_{ns}(K)$ of smooth points over *K* is an abelian group under + with identity element *O*.

One first define $Q \mapsto -Q$ and then define + as before.

To prove $E_{ns}(K)$ is closed under - and +, we use the follow Exercise.

Exercise. If a line L intersects E at the singular point P, then the multiplicity is at least 2.

• • = • • = •

Recall Riemann-Roch Theorem.

Let C be a smooth curve with genus g, $D \in Div(C)$, $K \in Div(C)$ is a canonical divisor. Then

$$I(D)-I(K-D)=\deg D+1-g.$$

4 3 4 3 4 3 4

If C is defined over $K \subset \overline{K}$. A divisor $D \in \text{Div}(C)$ is rational over K if it $G_{\overline{K}/K}$ -invariant.

Then

$$\mathcal{L}(D) = \{ f \in \overline{K}(C) \mid \operatorname{div}(f) \geq -D \}$$

is K-rational, that is,

$$\mathcal{L}_{\mathcal{K}}(D) = \{f \in \mathcal{K}(C) \mid \operatorname{div}(f) \geq -D\}$$

$$\dim_{\mathcal{K}}\mathcal{L}_{\mathcal{K}}(D)=\dim_{\bar{\mathcal{K}}}\mathcal{L}(D).$$

3 1 4 3 1

Let (E, O) be an elliptic curve defined over K. (a) There exist functions $x, y \in K(C)$ such that the map

$$\phi: E \to \mathbb{P}^2: \quad \phi(P) = [x(P), y(P), 1]$$

gives an isomorphism of E/K onto a curve given by a Weierstrass equation

$$Y^2 + a_1 X Y + a_3 Y = X^3 + a_2 X^2 + a_4 X + a_6$$

with coefficients $a_1, \ldots, a_6 \in K$ and such that $\phi(O) = [0, 1, 0]$.

(b) (c) (skipped)

Consider divisor D = n(O), g = 1, so deg K = 2g - 2 = 0. By R-R theorem

$$I(D) - I(K - D) = \deg D + 1 - g = n$$

Because deg(K - D) = -n < 0, so l(K - D) = 0. So l(n(O)) = n. That is

$$\mathcal{L}_{\mathcal{K}}(n(O)) = \{f \in \mathcal{K}(C) \,|\, \mathrm{div}\, f \geq -n(O)\}$$

is *n*-dimensional over *K*.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

It is clear that

$$\mathcal{L}_{\mathcal{K}}(1(O)) \subset \mathcal{L}_{\mathcal{K}}(2(O)) \subset \mathcal{L}_{\mathcal{K}}(3(O)) \subset \ldots$$

 and

$$f \in \mathcal{L}_{\mathcal{K}}(m(O)), g \in \mathcal{L}_{\mathcal{K}}(n(O))$$

implies that

$$fg \in \mathcal{L}_{K}((m+n)O)$$

3

<ロト < 四ト < 三ト < 三ト

1 is a basis for $\mathcal{L}_{\mathcal{K}}(1(O))$, let $x, y \in \mathcal{K}(E)$ be such that $\{1, x\}$

is a basis of $\mathcal{L}_{\mathcal{K}}(2(\mathcal{O}))$, and

$$\{1, x, y\}$$

is a basis of $\mathcal{L}_{\mathcal{K}}(3(\mathcal{O}))$.

$$\operatorname{ord}_O(x) = -2$$
, $\operatorname{ord}_O(y) = -3$.

э

• • = • • = •

Then

$$1, x, y, x^2, xy, y^2, x^3$$

are in $\mathcal{L}_{\mathcal{K}}(6(O))$ which has dimension 6.

So we have

$$A_1 + A_2 x + A_3 y + A_4 x^2 + A_5 x y + A_6 y^2 + A_7 x^3 = 0$$

for some A_i 's in K.

It is easy see that that $A_6 \neq 0$ and $A_7 \neq 0$. By replacing x with cx and y with dy, we assume $A_6 = 1$ and $A_7 = -1$.

4 B K 4 B K

So x, y satisfy a Weierstrass equation

$$y^{2} + a_{1}xy + a_{3}y = x^{3} + a_{2}x^{2} + a_{4}x + a_{6}.$$
 (2)

We denote by C the projective curve in \mathbb{P}^2 defined by the equation (2). We have a morphism

$$\phi: E \to \mathbb{P}^2, \quad \phi(P) = [x(P), y(P), 1]$$

The image is in C, we have a morphism

$$\phi: E \to C.$$

The function field of C is $K(x, y) \subset K(C)$.

[K(C) : K(x)] = 2[K(C); K(y)] = 3

SO

[K[C] : K(x, y)]is a common divisor of 2 and 3, so [K[C] : K(x, y)] = 1.

э

・ 同 ト ・ ヨ ト ・ ヨ ト

This proves K(C) = K(x, y).

To prove ϕ is an isomorphism, it remains to prove C is smooth.

If not, there is a morphism $\psi: \mathcal{C} \to \mathbb{P}^1$ of degree one 1.

this means $\phi \circ \psi : E \to \mathbb{P}^1$ has degree one. because E and \mathbb{P}^1 are both smooth, so E is isomorphic to \mathbb{P}^1 . Contradicts to g(E) = 1.

Let E be a curve of genus one, $P, Q \in E$, then $(P) \sim (Q)$ iff P = Q.

Proof. If $(P) \sim (Q)$, there is $f \in \overline{K}(C)^*$ such that

 $\operatorname{div}(f) = (P) - (Q)$

so $f \in \mathcal{L}((Q))$, by R-R, $\dim \mathcal{L}((Q)) = 1$, $1 \in \mathcal{L}((Q))$ so $f \in \overline{K}^*$. So P = Q.

3

The abelian group E and $\operatorname{Pic}^{0}(E)$ are isomorphic. The isomorphism $\kappa : E \to \operatorname{Pic}^{0}(E)$ is given as

 $P\mapsto \text{class of }(P)-(O).$

A B M A B M

The proof needs the following result:

$$V \stackrel{ ext{def}}{=} \{ \mathsf{a} \mathsf{X} + \mathsf{b} \mathsf{Y} + \mathsf{c} \mathsf{Z} \mid \mathsf{a}, \mathsf{b}, \mathsf{c} \in ar{\mathsf{K}} \}$$

For each $0 \neq f = aX + bY + cZ \in V$, $P \in E$, we define $\operatorname{ord}_P f$ as follows.

We choose $g \in V$ such that $g(P) \neq 0$, then $f/g \in \overline{K}(E)$,

 $\operatorname{ord}_P(f/g)$

is independent of the choice of g, we define

$$\operatorname{ord}_{P} f \stackrel{\text{def}}{=} \operatorname{ord}_{P}(f/g).$$

It is easy to see that for almost all $P \in E$, $\operatorname{ord}_P f = 0$. We define

$$\operatorname{div}(f) = \sum_{P \in E} \operatorname{ord}_P f(P)$$

 $\operatorname{div}(f)\in\operatorname{Div}(E).$

æ

イロト イヨト イヨト イヨト

Lemma. If $0 \neq f = aX + bY + cZ$ and the line L : aX + bY + cZ = 0 intersects to E at P, Q, R (counting with multiplicity), then

$$\operatorname{div} f = (P) + (Q) + (R).$$

This lemma is used to prove $\kappa : E \to \operatorname{Pic}^{0}(E)$ is a group homomorphism.

End

æ

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ -