Math 6170 C, Lecture on March 11, 2020

Yongchang Zhu

Plan.

(1) Review of Chapter III § 1.
(2) Chapter III § 2. The Group Law (continued)
(3). Chapter III § 3. Elliptic Curves

Reivew of III § 1.

Definition. An elliptic curve over \bar{K} is a pair (E, O), where E is a smooth curve with genus one and $O \in E$.

The elliptic curve (E, O) is defined over K if E is defined over K and $O \in E(K)$.

Proposition III 3.1.

Let (E, O) be an elliptic curve over K. Then E is isomorphic to the curve in \mathbb{P}^{2} defined by an equation

$$
E: Y^{2}+a_{1} X Y+a_{3} Y=X^{3}+a_{2} X^{2}+a_{4} X+a_{6}
$$

with coefficients $a_{1}, \ldots, a_{6} \in K$ and $O=[0,1,0]$.
The above equation is called a Weierstrass equation.

Conversely if

$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

is smooth, then it is an elliptic curve with $O=[0,1,0]$.

If $\operatorname{Char}(\bar{K}) \neq 2,3$, the equation of E can simplified to

$$
E: y^{2}=x^{3}-27 c_{4} x-54 c_{6} .
$$

A curve defined by the above equation is smooth iff

$$
\Delta=1728^{-1}\left(c_{4}^{3}-c_{6}^{2}\right) \neq 0
$$

Chapter III. § 2. The Group Law (continued).

A line in \mathbb{P}^{2} is the variety defined by a homogeneous linear equation

$$
A X+B Y+C Z=0
$$

A, B, C are not all 0 .
Theorem. Two different lines in \mathbb{P}^{2} intersects at a unique point.

Example: the affine lines $X+Y-1=0$ and $X+Y-2=0$ don't intersect. Their projective closures

$$
L_{1}: X+Y-Z=0, \quad L_{2}: X+Y-2 Z=0
$$

intersect at $[1,-1,0]$.

Theorem.

Suppose $C: F(X, Y, Z)=0$ (in \mathbb{P}^{2}, F is irreducible) is a smooth curve over \bar{K} defined by a homogeneous equation of degree $d>1$, then any line intersect with C at exactly d points (counting multiplicity).

This follows from the following theorem:
Theorem. If $G(X, Y)$ is a homogeneous polynomial of degree d, then

$$
G(X, Y)=0
$$

has exactly d solutions in \mathbb{P}^{1} (counting multiplicity).
Proof. We have factorization $G(X, Y)=\prod_{i=1}^{d}\left(A_{i} X+B_{i} Y\right)$.
Solutions are $\left[-B_{i}, A_{i}\right]$.

A line can be expressed as

$$
[X, Y, Z]=s\left[a_{1}, a_{2}, a_{3}\right]+t\left[b_{1}, b_{2}, b_{3}\right]
$$

substitute it to $F(X, Y, Z)=0$, we get

$$
\begin{equation*}
F\left(a_{1} s+b_{1} t, a_{2} s+b_{2} t, a_{3} s+b_{3} t\right)=0 \tag{1}
\end{equation*}
$$

Because F is irreducible, $F\left(a_{1} s+b_{1} t, a_{2} s+b_{2} t, a_{3} s+b_{3} t\right) \neq 0$ and is a homogeneous polynomial of s, t with degree d, so it has d solutions.

The multiplicity of a point P in the intersection is the multiplicity of its corresponding solution $[s, t]$ of (1).

Let (E, O) be an elliptic curve over K given by a Weierstrass equation. So $E \in \mathbb{P}^{2}$ with equation

$$
Y^{2} Z+a_{1} X Y Z+a_{3} Y Z^{2}=X^{3}+a_{2} X^{2} Z+a_{4} X Z+a_{6} Z^{3} .
$$

For any line $L \subset \mathbb{P}^{2}, L$ and E intersect at 3 points (counting with multiplicity).

If E and L are both defined over K, and if two of intersection points are defined over K, then the remaining intersection point is also defined over K.

Tangent Line of a Smooth Curve.

If a smooth curve $C \subset \mathbb{P}^{2}$ is given by

$$
C: F(X, Y, Z)=0
$$

where F is a homogeneous irreducible polynomial.
If $P=\left[x_{0}, y_{0}, z_{0}\right]$ is a point in C, the tangent line of C at P is defined as

$$
L: \partial_{X} F\left(x_{0}, y_{0}, z_{0}\right) X+\partial_{Y} F\left(x_{0}, y_{0}, z_{0}\right) Y+\partial_{Z} F\left(x_{0}, y_{0}, z_{0}\right) Z=0
$$

Proof of P is in L

Assume $F(X, Y, Z)$ has degree m, we have

$$
F(t X, t Y, t Z)=t^{m} F(X, Y, Z)
$$

Take ∂_{t} and set $t=1$, we get

$$
\partial_{X} F(X, Y, Z) X+\partial_{Y} F(X, Y, Z) Y+\partial_{Z} F(X, Y, Z) Z=m F(X, Y, Z)
$$

Put $(X, Y, Z)=\left(x_{0}, y_{0}, z_{0}\right)$, we get
$\partial_{X} F\left(x_{0}, y_{0}, z_{0}\right) x_{0}+\partial_{Y} F\left(x_{0}, y_{0}, z_{0}\right) y_{0}+\partial_{Z} F\left(x_{0}, y_{0}, z_{0}\right) z_{0}=m F\left(x_{0}, y_{0}, z_{0}\right)=0$.

Our definition agrees with the affine case:
If $\left(x_{0}, y_{0}\right)$ is a smooth point of the affine curve $f(X, Y)=0$ in \mathbb{A}^{2}. The tangent line at $\left(x_{0}, y_{0}\right)$ is

$$
\partial_{X} f\left(x_{0}, y_{0}\right)\left(X-x_{0}\right)+\partial_{Y} f\left(x_{0}, y_{0}\right)\left(Y-y_{0}\right)=0
$$

Lemma. Let $P=\left[x_{0}, y_{0}, z_{0}\right]$ be a point in the elliptic curve $E \subset \mathbb{P}^{2}$ with a Weierstrass equation $F(X, Y, Z)=0, L$ be the tangent line of E at P, then multiplicity of P in the intersection $E \cap L$ is at least 2 .

Proof.

L has equation

$$
F_{X}\left(x_{0}, y_{0}, z_{0}\right) X+F_{Y}\left(x_{0}, y_{0}, z_{0}\right) Y+F_{Z}\left(x_{0}, y_{0}, z_{0}\right) Z=0
$$

Without loss of generality, we may assume $F_{Z}\left(x_{0}, y_{0}, z_{0}\right)=C \neq 0$. The points in L are parameterized by

$$
[X, Y, Z]=\left[X, Y,-C^{-1} F_{X}\left(x_{0}, y_{0}, z_{0}\right) X-C^{-1} F_{Y}\left(x_{0}, y_{0}, z_{0}\right) Y\right]
$$

Substitute this to the equation of E, we have

$$
F\left(X, Y,-C^{-1} F_{X}\left(x_{0}, y_{0}, z_{0}\right) X-C^{-1} F_{Y}\left(x_{0}, y_{0}, z_{0}\right) Y\right)=0
$$

Proof (continued).

We need to prove $[X, Y]=\left[x_{0}, y_{0}\right]$ is a solution of $G(X, Y)=0$ with multiplicity ≥ 2, where

$$
G(X, Y)=F\left(X, Y,-C^{-1} F_{X}\left(x_{0}, y_{0}, z_{0}\right) X-C^{-1} F_{Y}\left(x_{0}, y_{0}, z_{0}\right) Y\right)
$$

It is equivalent to prove

$$
G_{X}\left(x_{0}, y_{0}\right)=G_{Y}\left(x_{0}, y_{0}\right)=0
$$

which can be proved by a direct computation.

Tangent Line of E at O

The elliptic curve (E, O) with equation

$$
E: Y^{2} Z+a_{1} X Y Z+a_{3} Y Z^{2}-\left(X^{3}+a_{2} X^{2} Z+a_{4} X Z+a_{6} Z^{3}\right)=0
$$

and $O=[0,1,0]$. The tangent line at O is

$$
L: Z=0
$$

The points in L are [$X, Y, 0]$.
To find $L \cap E$, we solve the equation

$$
G(X, Y)=-X^{3}=0
$$

The solution is $X=0$ with multiplicity 3 .

$$
L \cap E=\{O, O, O\}
$$

$P \in E(K)$, let L be the line connect O and P (if $P=O, L$ is the tangent line at O). Let

$$
L \cap E=(O, P, Q)
$$

We define $Q=-P$.

By the previous example, we have

$$
-O=O
$$

Definition.

Let (E, O) be an elliptic curve over K given by a Weierstrass equation. $P, Q \in E(K)$, let L be the line connect P and Q (if $P=Q, L$ is the tangent line at P),

$$
L \cap E=(P, Q, R)
$$

We define $P+Q=-R$.

Proposition III.2.2.

$E(K)$ is an abelian group under + and O is the identity element. The inverse of P is $-P$.

If E is a curve defined by a Weierstrass equation $F(X, Y, Z)=0$ that is NOT smooth. Then $O=[0,1,0] \in E$ is a smooth point and there is only one singular point, the set $E_{n s}(K)$ of smooth points over K is an abelian group under + with identity element O.

One first define $Q \mapsto-Q$ and then define + as before.

To prove $E_{n s}(K)$ is closed under - and + , we use the follow Exercise.
Exercise. If a line L intersects E at the singular point P, then the multiplicity is at least 2.

Chapter III § 3. Elliptic Curves.

Recall Riemann-Roch Theorem.
Let C be a smooth curve with genus $g, D \in \operatorname{Div}(C), K \in \operatorname{Div}(C)$ is a canonical divisor. Then

$$
I(D)-I(K-D)=\operatorname{deg} D+1-g
$$

If C is defined over $K \subset \bar{K}$. A divisor $D \in \operatorname{Div}(C)$ is rational over K if it $G_{\bar{K} / K^{-i n v a r i a n t}}$.

Then

$$
\mathcal{L}(D)=\{f \in \bar{K}(C) \mid \operatorname{div}(f) \geq-D\}
$$

is K-rational, that is,

$$
\begin{gathered}
\mathcal{L}_{K}(D)=\{f \in K(C) \mid \operatorname{div}(f) \geq-D\} \\
\operatorname{dim}_{K} \mathcal{L}_{K}(D)=\operatorname{dim}_{\bar{K}} \mathcal{L}(D)
\end{gathered}
$$

Proposition III 3.1.

Let (E, O) be an elliptic curve defined over K.
(a) There exist functions $x, y \in K(C)$ such that the map

$$
\phi: E \rightarrow \mathbb{P}^{2}: \quad \phi(P)=[x(P), y(P), 1]
$$

gives an isomorphism of E / K onto a curve given by a Weierstrass equation

$$
Y^{2}+a_{1} X Y+a_{3} Y=X^{3}+a_{2} X^{2}+a_{4} X+a_{6}
$$

with coefficients $a_{1}, \ldots, a_{6} \in K$ and such that $\phi(O)=[0,1,0]$.
(b) (c) (skipped)

Proof.

Consider divisor $D=n(O), g=1$, so $\operatorname{deg} K=2 g-2=0$. By R-R theorem

$$
I(D)-I(K-D)=\operatorname{deg} D+1-g=n
$$

Because $\operatorname{deg}(K-D)=-n<0$, so $I(K-D)=0$. So $I(n(O))=n$. That is

$$
\mathcal{L}_{K}(n(O))=\{f \in K(C) \mid \operatorname{div} f \geq-n(O)\}
$$

is n-dimensional over K.

It is clear that

$$
\mathcal{L}_{K}(1(O)) \subset \mathcal{L}_{K}(2(O)) \subset \mathcal{L}_{K}(3(O)) \subset \ldots
$$

and

$$
f \in \mathcal{L}_{K}(m(O)), \quad g \in \mathcal{L}_{K}(n(O))
$$

implies that

$$
f g \in \mathcal{L}_{K}((m+n) O)
$$

1 is a basis for $\mathcal{L}_{K}(1(O))$, let $x, y \in K(E)$ be such that

$$
\{1, x\}
$$

is a basis of $\mathcal{L}_{K}(2(O))$, and

$$
\{1, x, y\}
$$

is a basis of $\mathcal{L}_{K}(3(O))$.

$$
\operatorname{ord}_{O}(x)=-2, \quad \operatorname{ord}_{O}(y)=-3
$$

Then

$$
1, x, y, x^{2}, x y, y^{2}, x^{3}
$$

are in $\mathcal{L}_{K}(6(O))$ which has dimension 6 .
So we have

$$
A_{1}+A_{2} x+A_{3} y+A_{4} x^{2}+A_{5} x y+A_{6} y^{2}+A_{7} x^{3}=0
$$

for some A_{i} 's in K.

It is easy see that that $A_{6} \neq 0$ and $A_{7} \neq 0$. By replacing x with $c x$ and y with $d y$, we assume $A_{6}=1$ and $A_{7}=-1$.

So x, y satisfy a Weierstrass equation

$$
\begin{equation*}
y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6} \tag{2}
\end{equation*}
$$

We denote by C the projective curve in \mathbb{P}^{2} defined by the equation (2).
We have a morphism

$$
\phi: E \rightarrow \mathbb{P}^{2}, \quad \phi(P)=[x(P), y(P), 1]
$$

The image is in C, we have a morphism

$$
\phi: E \rightarrow C .
$$

The function field of C is $K(x, y) \subset K(C)$.

$$
[K(C): K(x)]=2
$$

$$
[K(C) ; K(y)]=3
$$

so
$[K[C]: K(x, y)]$
is a common divisor of 2 and 3 , so $[K[C]: K(x, y)]=1$.

This proves $K(C)=K(x, y)$.
To prove ϕ is an isomorphism, it remains to prove C is smooth.
If not, there is a morphism $\psi: C \rightarrow \mathbb{P}^{1}$ of degree one 1 .
this means $\phi \circ \psi: E \rightarrow \mathbb{P}^{1}$ has degree one. because E and \mathbb{P}^{1} are both smooth, so E is isomorphic to \mathbb{P}^{1}. Contradicts to $g(E)=1$.

Lemma 3.3.

Let E be a curve of genus one, $P, Q \in E$, then $(P) \sim(Q)$ iff $P=Q$.
Proof. If $(P) \sim(Q)$, there is $f \in \bar{K}(C)^{*}$ such that

$$
\operatorname{div}(f)=(P)-(Q)
$$

so $f \in \mathcal{L}((Q))$, by $\mathrm{R}-\mathrm{R}, \operatorname{dim} \mathcal{L}((Q))=1,1 \in \mathcal{L}((Q))$ so $f \in \bar{K}^{*}$. So $P=Q$.

Proposition III 3.4.

The abelian group E and $\operatorname{Pic}^{0}(E)$ are isomorphic. The isomorphism $\kappa: E \rightarrow \operatorname{Pic}^{0}(E)$ is given as

$$
P \mapsto \text { class of }(P)-(O)
$$

The proof needs the following result:

$$
V \stackrel{\text { def }}{=}\{a X+b Y+c Z \mid a, b, c \in \bar{K}\}
$$

For each $0 \neq f=a X+b Y+c Z \in V, P \in E$, we define ord ${ }_{p} f$ as follows.
We choose $g \in V$ such that $g(P) \neq 0$, then $f / g \in \bar{K}(E)$,

$$
\operatorname{ord}_{P}(f / g)
$$

is independent of the choice of g, we define

$$
\operatorname{ord}_{P} f \stackrel{\text { def }}{=} \operatorname{ord}_{P}(f / g) .
$$

It is easy to see that for almost all $P \in E$, ordp $f=0$. We define

$$
\begin{gathered}
\operatorname{div}(f)=\sum_{P \in E} \operatorname{ord}_{P} f(P) \\
\operatorname{div}(f) \in \operatorname{Div}(E)
\end{gathered}
$$

Lemma. If $0 \neq f=a X+b Y+c Z$ and the line $L: a X+b Y+c Z=0$ intersects to E at P, Q, R (counting with multiplicity), then

$$
\operatorname{div} f=(P)+(Q)+(R)
$$

This lemma is used to prove $\kappa: E \rightarrow \operatorname{Pic}^{0}(E)$ is a group homomorphism.

End

