Math 6170 C, Lecture on March 16, 2020

Yongchang Zhu

Plan.

(1) Review of Chapter III § 3.
(2) Chapter III § 4.

Reivew of III § 3.

Proposition III 3.1. Let (E, O) be an elliptic curve defined over K. There exist functions $x, y \in K(C)$ such that the map

$$
\phi: E \rightarrow \mathbb{P}^{2}: \quad \phi(P)=[x(P), y(P), 1]
$$

gives an isomorphism of E / K onto a curve given by a Weierstrass equation

$$
Y^{2}+a_{1} X Y+a_{3} Y=X^{3}+a_{2} X^{2}+a_{4} X+a_{6}
$$

with coefficients $a_{1}, \ldots, a_{6} \in K$ and such that $\phi(O)=[0,1,0]$.

Lemma 3.3.

Let E be a curve of genus one, $P, Q \in E$, then $(P) \sim(Q)$ iff $P=Q$.

Proposition III 3.4.

The abelian group E and $\operatorname{Pic}^{0}(E)$ are isomorphic. The isomorphism $\kappa: E \rightarrow \operatorname{Pic}^{0}(E)$ is given as

$$
P \mapsto \text { class of }(P)-(O)
$$

The proof needs the following result:

$$
V \stackrel{\text { def }}{=}\{a X+b Y+c Z \mid a, b, c \in \bar{K}\}
$$

For each $0 \neq f=a X+b Y+c Z \in V, P \in E$, we define ord ${ }_{p} f$ as follows.
We choose $g \in V$ such that $g(P) \neq 0$, then $f / g \in \bar{K}(E)$,

$$
\operatorname{ord}_{P}(f / g)
$$

is independent of the choice of g, we define

$$
\operatorname{ord}_{P} f \stackrel{\text { def }}{=} \operatorname{ord}_{P}(f / g) .
$$

It is easy to see that for almost all $P \in E$, ord $p f=0$. We define

$$
\begin{gathered}
\operatorname{div}(f)=\sum_{P \in E} \operatorname{ord}_{P} f(P) \\
\operatorname{div}(f) \in \operatorname{Div}(E)
\end{gathered}
$$

We have for $f, g \in V$, both are not 0 ,

$$
\operatorname{div}(f)-\operatorname{div}(g)=\operatorname{div}(f / g)
$$

Lemma. If $0 \neq f=a X+b Y+c Z$ and the line $L: a X+b Y+c Z=0$ intersects to E at P, Q, R (counting with multiplicity), then

$$
\operatorname{div} f=(P)+(Q)+(R)
$$

This lemma is used to prove $\kappa: E \rightarrow \operatorname{Pic}^{0}(E)$ is a group homomorphism.

Theorem 3.6

Let (E, O) be an elliptic curves over K, then

$$
+: E \times E \rightarrow E, \quad-: E \rightarrow E
$$

are morphisms of variety.

Proof. The formula for - shows that - is a rational map defined on an open subset of E. Because E is a smooth curve, by Proposition II 2.1, extends to whole E.

Proof of Theorem 3.6 (continued).

Note that for any given $a \in E$, the translation map $T_{a}: E \rightarrow E, x \mapsto x+a$ is a rational map, by Proposition II 2.1, T_{a} extends to whole E.

The formula for + shows that + is a rational map defined on an open subset $U \subset E \times E$.

$$
\phi_{a, b} \stackrel{\text { def }}{=} T_{-a-b} \circ(+) \circ\left(T_{a} \times T_{b}\right): E \times E \rightarrow E
$$

is a rational map defined by $U-(a, b)$.
$\phi_{a, b}=\phi_{a^{\prime}, b^{\prime}}$ on $(U-(a, b)) \cap\left(U-\left(a^{\prime}, b^{\prime}\right)\right)$, the union of all $U-(a, b)$ is $E \times E$. So + can be extend to all $E \times E$.

III. § 4. Isogenies

Definition. Let E_{1} and E_{2} be elliptic curves. An isogeny between E_{1} and E_{2} is a morphism $\phi: E_{1} \rightarrow E_{2}$ such that $\phi(O)=O$.
E_{1} and E_{2} are isogeneous if there is an isogeny ϕ between them with $\phi\left(E_{1}\right) \neq\{O\}$.

Let
$\operatorname{Hom}\left(E_{1}, E_{2}\right)$
be the set of isgenies $\phi: E_{1} \rightarrow E_{2}$.
$\operatorname{Hom}\left(E_{1}, E_{2}\right)$ is a group under the addition law:

$$
(\phi+\psi)(P)=\phi(P)+\psi(P)
$$

$\operatorname{End}(E)=\operatorname{Hom}(E, E)$ has a ring structure with multiplication given by composition.

If elliptic curves are defined K, we use subscripts K to denote the set of isogenies over K :
$\operatorname{Hom}_{K}\left(E_{1}, E_{2}\right)$ is the set of isogenies from E_{1} to E_{2} over K.
$\operatorname{End}_{K}(E)$ is the set of isogenies from E to itself over K.

For m a positive integer, we define

$$
[m]: E \rightarrow E, \quad P \mapsto P+\cdots+P(m \text { copies })
$$

We define [0] : $E \rightarrow E$ to be the constant map $P \mapsto O$.
For negative integer $-m$:

$$
\begin{gathered}
{[-m]: E \rightarrow E, \quad P \mapsto-[m] P=-(P+\cdots+P)(m \text { copies })} \\
{[m][n]=[m n], \quad[m]+[n]=[m+n]}
\end{gathered}
$$

Proposition III 4.2.

(a) Let E be an elliptic curve and $m \in \mathbb{Z}, m \neq 0$. Then the multiplication by m map $[m]$ is non-constant.
(b) Let E_{1}, E_{2} be elliptic curves, the group of isogenies $\operatorname{Hom}\left(E_{1}, E_{2}\right)$ is a torsion free \mathbb{Z}-module.
(c) Let E be an elliptic curve, then the endomorphism ring $\operatorname{Hom}(E)$ is an integral domain of characteristic 0
\mathbb{Z} is a subring of $\operatorname{End}(E)$.

Theorem III 4.8.

Let $\phi: E_{1} \rightarrow E_{2}$ be an isogeny. Then

$$
\phi(P+Q)=\phi(O)+\phi(Q)
$$

for all $P, Q \in E$. That is, ϕ is a group homomorphism.

Proof.

If $\phi=O$, there is nothing to prove. Otherwise ϕ is a finite map, it induces a homomorphism

$$
\phi_{*}: \operatorname{Pic}^{0}\left(E_{1}\right) \rightarrow \operatorname{Pic}^{0}\left(E_{2}\right)
$$

given by

$$
\phi_{*}\left(\text { class of } \sum n_{i}\left(P_{i}\right)\right)=\text { class of } \sum n_{i}\left(\phi P_{i}\right)
$$

See II.3.7. Recall we have group isomorphisms

$$
\begin{gathered}
\kappa_{i}: E_{i} \rightarrow \operatorname{Pic}^{0}\left(E_{i}\right) \\
P \mapsto \text { class of }(P)-(O)
\end{gathered}
$$

Proof (continued).

We have commutative diagram:

$$
\begin{aligned}
& E_{1} \longrightarrow \operatorname{Pic}^{0}\left(E_{1}\right) \\
& \downarrow \phi \quad \downarrow \phi_{*} \\
& E_{2} \longrightarrow \operatorname{Pic}^{0}\left(E_{2}\right)
\end{aligned}
$$

Let ϕ be a non-constant isogeny, Then

$$
|\operatorname{Ker}(\phi)|=\operatorname{deg}_{s} \phi
$$

So $\operatorname{Ker}(\phi)$ is a finite group.

Theorem 4.10.

Let $\phi: E_{1} \rightarrow E_{2}$ be a non-constant isogeny.
(a) For every $O \in E_{2}$,

$$
\left|\phi^{-1}(Q)\right|=\operatorname{deg}_{s} \phi
$$

(b) The map

$$
\operatorname{Ker} \phi \rightarrow \operatorname{Aut}\left(\bar{K}\left(E_{1}\right) / \phi^{*} \bar{K}\left(E_{2}\right)\right)
$$

given by

$$
P \mapsto \tau_{P}
$$

is an isomorphism.
(c) Assume that ϕ is separable. Then ϕ is unramified. And $\bar{K}\left(E_{1}\right)$ is a Galois extension of $\bar{K}\left(E_{2}\right)$ with Galois group isomorphic to $\operatorname{Ker} \phi$.

Proposition III 4.12.

Let E be an elliptic curve, and let Φ be a finite subgroup of E. Then there is a unique elliptic curve E^{\prime} and a separable isogeny

$$
\phi: E \rightarrow E^{\prime}
$$

such that

$$
\operatorname{ker} \phi=\varnothing
$$

Proof.

Φ acts on $\bar{K}(E)$. The fixed point field

$$
\bar{K}(E)^{\Phi}
$$

is a subfield of $\bar{K}(E)$. The extension $\bar{K}(E)^{\Phi} \subset \bar{K}(E)$ is a Galois extension with Galois group Φ.

In general, if F is a field, Φ is a finite subgroup of automorphisms of F, then $F^{\Phi} \subset F$ is a finite Galois extension with Galois group Φ.

Proof (continued).

$\bar{K}(E)^{\Phi}$ is a finitely generated field over \bar{K} with transcendental degree 1 over \bar{K}. So it corresponds to a smooth curve C over \bar{K}.

The embedding $\bar{K}(E)^{\Phi} \subset \bar{K}(E)$ gives a morphism of curves

$$
\phi: E \rightarrow C
$$

with $\operatorname{deg} \phi=|\Phi|$.

Proof (continued).

It is clear that $\phi \circ \tau_{a}=\phi$ for every $a \in \Phi$. So $\phi^{-1}(b)$ is closed under the translation by τ_{a} with $a \in \Phi$.
$|\Phi| \leq\left|\phi^{-1}(b)\right| \leq \operatorname{deg}(\phi)=|\Phi|$
So

$$
\left|\phi^{-1}(b)\right| \leq \operatorname{deg}(\phi)
$$

Our map ϕ is unramified, separable.

Proof (continued). By Hurwitz formula (II 5.9), genus $C=1$. $(C, \phi(O))$ is an elliptic curve.

Chapter III, § 5. The Invariant Differential

Let E / K be an elliptic curve given by the usual Weierstrass equation

$$
y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

The differential

$$
\omega=\frac{d x}{2 y+a_{1} x+a_{3}} \in \Omega_{E}
$$

has neither zeros nor poles.

Proposition 5.1

For ω as above, for every $Q \in E$,

$$
\tau_{Q}^{*} \omega=\omega
$$

Proof.

$$
\tau_{Q}^{*} \omega=f \omega
$$

for some $f \in \bar{K}(E)^{*}$.

$$
\operatorname{div}\left(\tau_{Q}^{*} \omega\right)=0
$$

On the other hand side, we have

$$
\operatorname{div}\left(\tau_{Q}^{*} \omega\right)=\operatorname{div}(f \omega)=\operatorname{div}(f)+\operatorname{div}(\omega)=\operatorname{div}(f)
$$

So $\operatorname{div}(f)=0, f \in \bar{K}^{*}$. We call this constant a_{Q}.
$a_{Q} \equiv 1$ for all Q.

Theorem III 5.2. Let E, E^{\prime} be elliptic curves, let ω be an invariant differential on E, and let $\phi, \psi: E^{\prime} \rightarrow E$ be two isogenies. Then

$$
(\phi+\psi)^{*} \omega=\phi^{*} \omega+\psi^{*} \omega
$$

End

