Math 6170 C, Lecture on March 18, 2020

Yongchang Zhu

₹ Ξ ► < Ξ ►

- (1) Review of Chapter III \S 4.
- (2) Chapter III § 5. The Invariant Differential
- (3) Chapter III \S 6. The Dual Isogeny

• • = • • = •

Definition. Let E_1 and E_2 be elliptic curves. An **isogeny** between E_1 and E_2 is a morphism $\phi: E_1 \to E_2$ such that $\phi(O) = O$.

Let

$$\operatorname{Hom}(E_1, E_2) = \operatorname{the set} \operatorname{of} \operatorname{isgenies} \phi : E_1 \to E_2.$$

 $Hom(E_1, E_2)$ is a group under the addition law:

$$(\phi + \psi)(P) = \phi(P) + \psi(P).$$

3

(日)

 $\operatorname{End}(E) = \operatorname{Hom}(E, E)$ has a ring structure with multiplication given by composition.

æ

For m a positive integer, we define

$$[m]: E \to E, P \mapsto P + \cdots + P (m \text{ copies}).$$

We define $[0] : E \to E$ to be the constant map $P \mapsto O$.

For negative integer -m:

$$[-m]: E \to E, P \mapsto -[m]P = -(P + \cdots + P)$$
 (m copies).

$$[m][n] = [mn], \ [m] + [n] = [m+n]$$

æ

The group of isogenies $Hom(E_1, E_2)$ is a torsion free \mathbb{Z} -module.

The endomorphism ring $\operatorname{Hom}(E)$ is an integral domain of characteristic 0 containing \mathbb{Z} as a subring.

 $\mathbb{Z} \to \operatorname{Hom}(E) = \operatorname{Hom}(E, E)$ is given by $n \mapsto [n]$.

イロト 不得 トイヨト イヨト

Let $\phi: E_1 \to E_2$ be an isogeny. Then

$$\phi(P+Q) = \phi(O) + \phi(Q)$$

for all $P, Q \in E$. That is, ϕ is a group homomorphism.

3

イロト 不得 トイヨト イヨト

Let $\phi \in \operatorname{Hom}(\mathit{E}_1, \mathit{E}_2)$ be a non-constant isogeny, Then

 $|\mathrm{Ker}(\phi)| = \mathrm{deg}_{s}\phi$

So $Ker(\phi)$ is a finite group.

æ

* 圖 ト * ヨ ト * ヨ ト -

The map

$$\operatorname{Ker} \phi \to \operatorname{Aut}(\bar{K}(E_1)/\phi^*\bar{K}(E_2))$$

given by

 $P \mapsto \tau_P^*$

is an isomorphism.

æ

Let

$$\phi: E_1 \rightarrow E_2, \quad \psi: E_1 \rightarrow E_3$$

be non-constant isogenies, and assume that ϕ is separable. If

 $\ker \phi \subset \ker \psi,$

then there is unique isogeny

$$\lambda: E_2 \rightarrow E_3$$

such that $\psi = \lambda \circ \phi$

э

・ 同 ト ・ ヨ ト ・ ヨ ト

Proof. We have

$$\phi^*\bar{K}(E_2)\subset \bar{K}(E_1), \ \psi^*\bar{K}(E_3)\subset \bar{K}(E_1).$$

Because ϕ is separable, so the extension $\phi^* \overline{K}(E_2) \subset \overline{K}(E_1)$ is Galois, and

$$\phi^*\bar{K}(E_2)=\bar{K}(E_1)^{\ker\phi}.$$

$$\psi^* \bar{K}(E_3) \subset \bar{K}(E_1)^{\ker \psi} \subset \bar{K}(E_1)^{\ker \phi} = \phi^* \bar{K}(E_2)$$

So we have

$$\phi^*\bar{K}(E_3)\subset\phi^*\bar{K}(E_2)\subset\bar{K}(E_1)$$

The first inclusion gives the isogeny $\lambda : E_2 \rightarrow E_2$.

э

イロト 不得 トイヨト イヨト

Let *E* be an elliptic curve, and let Φ be a finite subgroup of *E*. Then there is a unique elliptic curve *E'* and a separable isogeny

$$\phi: E \to E'$$

such that

$$\ker \phi = \Phi.$$

4 3 4 3 4 3 4

Let E/K be an elliptic curve given by the usual Weierstrass equation

$$y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6.$$

Proposition III 1.5. The differential

$$\omega = \frac{dx}{2y + a_1 x + a_3} \in \Omega_E$$

has neither zeros nor poles.

4 3 4 3 4 3 4

Proof.

We write

$$F(x, y) = y^{2} + a_{1}xy + a_{3}y - (x^{3} + a_{2}x^{2} + a_{4}x + a_{6})$$

The function field $\bar{K}(E)$ is

 $\operatorname{Frac} \bar{K}[x,y]/(F(x,y))$

$$\omega = \frac{dx}{2y + a_1x + a_3} = \frac{dx}{F_y(x, y)} = \frac{dy}{-F_x(x, y)}.$$

Let $P = (x_0, y_0) \in E$, $\overline{K}[E]_P$ local ring at P, $M_p \subset \overline{K}[E]_P$ be the maximal ideal.

It is easy to see that the ideal M_p is generated by $x - x_0$ and $y - y_0$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Proof (continued).

$$0 = F(x, y) = F(x_0, y_0) + F_x(x_0, y_0)(x - x_0) + F_y(x_0, y_0)(y - y_0) + \text{higher terms}$$

$$F_x(x_0, y_0)(x - x_0) + F_y(x_0, y_0)(y - y_0) +$$
higher terms = 0

Case 1. $F_y(x_0, y_0) \neq 0$. The above equation implies that $\operatorname{ord}_P(y - y_0) \geq \operatorname{ord}_P(x - x_0)$ so $x - x_0$ is a uniformizer at P. Case 2. $F_x(x_0, y_0) \neq 0$, then $y - y_0$ is a uniformizer at P.

Case 1.

$$\omega = \frac{dx}{F_y(x,y)} = \frac{d(x-x_0)}{F_y(x,y)}$$

We see that $\operatorname{ord}_{P}\omega = 0$.

Case 2.

$$\omega = \frac{dy}{-F_x(x,y)} = \frac{d(y-y_0)}{-F_x(x,y)}$$

We see that $\operatorname{ord}_{P}\omega = 0$.

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

The proof for P = [0, 1, 0], use the fact that x/y is a uniformizer.

æ

For ω as above, for every $Q \in E$,

$$\tau_Q^*\omega=\omega.$$

æ

$$\tau_Q^*\omega = f\omega$$

for some $f \in \overline{K}(E)^*$. Because τ_Q is an isomorphism,

$$\operatorname{div}(\tau_Q^*\omega)=0.$$

On the other hand side, we have

$$\operatorname{div}(\tau_Q^*\omega) = \operatorname{div}(f\omega) = \operatorname{div}(f) + \operatorname{div}(\omega) = \operatorname{div}(f).$$

So $\operatorname{div}(f) = 0$, $f \in \overline{K}^*$. We call this constant a_Q .

The map $E \to \mathbb{A}(\overline{K})$ given by $Q \mapsto a_Q$ is a morphism, since E is projective, the map is a constant map, So $a_Q = a_O = 1$.

(日本) (日本) (日本)

A non-zero differential on ω on E with $\operatorname{div}(\omega) = 0$ is called an **invariant** differential. It is unique up to a scalar multiple by \overline{K}^* .

An invariant differential is translation invariant, that is, $\tau_Q^*\omega = \omega$ for all $Q \in E$.

• • = • • = •

Theorem III 5.2. Let E, E' be elliptic curves, let ω be an invariant differential on E, and let $\phi, \psi : E' \to E$ be two isogenies. Then

$$(\phi + \psi)^* \omega = \phi^* \omega + \psi^* \omega$$

∃ ► < ∃ ►

Let ω be an invariant differential on an elliptic curve E. Let $m \in \mathbb{Z}$. Then

 $[m]^*\omega = m\omega$

æ

Recall that for a non-constant morphism $\phi: {\it C}_1 \rightarrow {\it C}_2$ of smooth curves, we have

$$\phi^* : \operatorname{Pic}^0(\mathcal{C}_2) \to \operatorname{Pic}^0(\mathcal{C}_1)$$

induced from

$$\phi^*:\mathrm{Div}(\mathcal{C}_2)\to\mathrm{Div}(\mathcal{C}_1)$$

$$\phi^*(\mathcal{Q}) = \sum_{\mathcal{P}\in\phi^{-1}(\mathcal{Q})} e_\phi(\mathcal{P})(\mathcal{P}).$$

э

• • = • • = •

Image: Image:

If $\phi: \mathit{E}_1 \rightarrow \mathit{E}_2$ is an non-constant isogeny, we have a group homomorphism

$$E_2 \xrightarrow{\kappa} \operatorname{Pic}^0(E_2) \xrightarrow{\phi^*} \operatorname{Pic}^0(E_1) \xrightarrow{\kappa^{-1}} E_1$$

The composition map turns out to be an isogeny.

æ

Let $\phi: E_1 \to E_2$ be a non-constant isogeny with $\deg \phi = m$. (a) There exists a unique isogeny

$$\hat{\phi}: E_2 \to E_1$$

satisfying

$$\hat{\phi} \circ \phi = [m]$$

(b) as a group homomorphism, $\hat{\phi}$ equals to the composition

$$E_2 \xrightarrow{\kappa} \operatorname{Pic}^0(E_2) \xrightarrow{\phi^*} \operatorname{Pic}^0(E_1) \xrightarrow{\kappa^{-1}} E_1$$

3 × 4 3 ×

(a) Uniqueness is easy. Suppose that $\psi: E_2 \to E_3$ is another non-constant isogeny of degree *n*, and suppose both $\hat{\phi}$ and $\hat{\psi}$ exist. Then

$$(\hat{\phi} \circ \hat{\psi}) \circ (\psi \circ \phi) = \hat{\phi} \circ [n] \circ \phi = [n] \circ \hat{\phi} \circ \phi = [nm].$$

Since every isogeny can be decomposed as $\phi \circ \psi$, where ϕ is separable, ψ is a Frobenius morphism, it is enough to prove the existence for the following two cases

Case 1. ϕ is separable.

Case 2. ϕ is a Frobenius morphism.

Case 1. ϕ is separable. Since $\deg \phi = m$, so $|\ker \phi| = m$. So

 $\ker \phi \subset \ker[m].$

By Corollary III 4.11, there is an isogeny $\hat{\phi}: E_2 \to E_1$ such that

 $\hat{\phi} \circ \phi = [m].$

Case 2 and (b) (omitted).

A B < A B </p>

Let $\phi: E_1 \to E_2$ be a non-constant isogeny. The **dual isogeny** to ϕ is the isogeny $\hat{\phi}: E_2 \to E_1$ such that

$$\hat{\phi} \circ \phi = [\deg \phi]$$

We define the dual isogeny of [0] to be [0].

• • = • • = •

Let $\phi: E_1 \to E_2$ be an isogeny. (a) Let $m = \deg \phi$. Then

$$\hat{\phi} \circ \phi = [m]$$
 on E_1
 $\phi \circ \hat{\phi} = [m]$ on E_2

(b) Let $\lambda: E_2 \rightarrow E_23$ be an isogeny. Then

$$\widehat{\lambda\circ\phi}=\hat{\phi}\circ\hat{\lambda}$$

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Theorem III 6.2 (continued).

(c) Let $\psi: E_1 \to E_2$ be an isogeny. Then

$$\widehat{\phi+\psi}=\hat{\phi}+\hat{\psi}$$

(d) For all $m \in \mathbb{Z}$, $[\hat{m}] = [m], \quad \deg[m] = m^2$

(e)

$$\deg \hat{\phi} = \deg \phi$$

(f)

$$\hat{\hat{\phi}} = \phi$$

э

A (10) × (10)

End

æ

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ -