Math 6170 C, Lecture on March 18, 2020

Yongchang Zhu

Plan

(1) Review of Chapter III § 4.
(2) Chapter III § 5. The Invariant Differential
(3) Chapter III § 6. The Dual Isogeny

III. § 4. Isogenies

Definition. Let E_{1} and E_{2} be elliptic curves. An isogeny between E_{1} and E_{2} is a morphism $\phi: E_{1} \rightarrow E_{2}$ such that $\phi(O)=O$.

Let

$$
\operatorname{Hom}\left(E_{1}, E_{2}\right)=\text { the set of isgenies } \phi: E_{1} \rightarrow E_{2} .
$$

$\operatorname{Hom}\left(E_{1}, E_{2}\right)$ is a group under the addition law:

$$
(\phi+\psi)(P)=\phi(P)+\psi(P)
$$

$\operatorname{End}(E)=\operatorname{Hom}(E, E)$ has a ring structure with multiplication given by composition.

For m a positive integer, we define

$$
[m]: E \rightarrow E, \quad P \mapsto P+\cdots+P(m \text { copies })
$$

We define [0] : $E \rightarrow E$ to be the constant map $P \mapsto O$.
For negative integer $-m$:

$$
\begin{gathered}
{[-m]: E \rightarrow E, \quad P \mapsto-[m] P=-(P+\cdots+P)(m \text { copies })} \\
{[m][n]=[m n], \quad[m]+[n]=[m+n]}
\end{gathered}
$$

The group of isogenies $\operatorname{Hom}\left(E_{1}, E_{2}\right)$ is a torsion free \mathbb{Z}-module.
The endomorphism ring $\operatorname{Hom}(E)$ is an integral domain of characteristic 0 containing \mathbb{Z} as a subring.
$\mathbb{Z} \rightarrow \operatorname{Hom}(E)=\operatorname{Hom}(E, E)$ is given by $n \mapsto[n]$.

Theorem III 4.8.

Let $\phi: E_{1} \rightarrow E_{2}$ be an isogeny. Then

$$
\phi(P+Q)=\phi(O)+\phi(Q)
$$

for all $P, Q \in E$. That is, ϕ is a group homomorphism.

Let $\phi \in \operatorname{Hom}\left(E_{1}, E_{2}\right)$ be a non-constant isogeny, Then

$$
|\operatorname{Ker}(\phi)|=\operatorname{deg}_{s} \phi
$$

So $\operatorname{Ker}(\phi)$ is a finite group.

Theorem 4.10.

The map

$$
\operatorname{Ker} \phi \rightarrow \operatorname{Aut}\left(\bar{K}\left(E_{1}\right) / \phi^{*} \bar{K}\left(E_{2}\right)\right)
$$

given by

$$
P \mapsto \tau_{P}^{*}
$$

is an isomorphism.

Corollary III 4.11.

Let

$$
\phi: E_{1} \rightarrow E_{2}, \quad \psi: E_{1} \rightarrow E_{3}
$$

be non-constant isogenies, and assume that ϕ is separable. If

$$
\operatorname{ker} \phi \subset \operatorname{ker} \psi,
$$

then there is unique isogeny

$$
\lambda: E_{2} \rightarrow E_{3}
$$

such that $\psi=\lambda \circ \phi$

Proof. We have

$$
\phi^{*} \bar{K}\left(E_{2}\right) \subset \bar{K}\left(E_{1}\right), \quad \psi^{*} \bar{K}\left(E_{3}\right) \subset \bar{K}\left(E_{1}\right) .
$$

Because ϕ is separable, so the extension $\phi^{*} \bar{K}\left(E_{2}\right) \subset \bar{K}\left(E_{1}\right)$ is Galois, and

$$
\begin{gathered}
\phi^{*} \bar{K}\left(E_{2}\right)=\bar{K}\left(E_{1}\right)^{\mathrm{ker} \phi} \\
\psi^{*} \bar{K}\left(E_{3}\right) \subset \bar{K}\left(E_{1}\right)^{\operatorname{ker} \psi} \subset \bar{K}\left(E_{1}\right)^{\mathrm{ker} \phi}=\phi^{*} \bar{K}\left(E_{2}\right)
\end{gathered}
$$

So we have

$$
\phi^{*} \bar{K}\left(E_{3}\right) \subset \phi^{*} \bar{K}\left(E_{2}\right) \subset \bar{K}\left(E_{1}\right)
$$

The first inclusion gives the isogeny $\lambda: E_{2} \rightarrow E_{2}$.

Proposition III 4.12.

Let E be an elliptic curve, and let Φ be a finite subgroup of E. Then there is a unique elliptic curve E^{\prime} and a separable isogeny

$$
\phi: E \rightarrow E^{\prime}
$$

such that

$$
\operatorname{ker} \phi=\varnothing
$$

Chapter III, § 5. The Invariant Differential

Let E / K be an elliptic curve given by the usual Weierstrass equation

$$
y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

Proposition III 1.5. The differential

$$
\omega=\frac{d x}{2 y+a_{1} x+a_{3}} \in \Omega_{E}
$$

has neither zeros nor poles.

Proof.

We write

$$
F(x, y)=y^{2}+a_{1} x y+a_{3} y-\left(x^{3}+a_{2} x^{2}+a_{4} x+a_{6}\right)
$$

The function field $\bar{K}(E)$ is

$$
\operatorname{Frac} \bar{K}[x, y] /(F(x, y))
$$

$$
\omega=\frac{d x}{2 y+a_{1} x+a_{3}}=\frac{d x}{F_{y}(x, y)}=\frac{d y}{-F_{x}(x, y)} .
$$

Let $P=\left(x_{0}, y_{0}\right) \in E, \bar{K}[E]_{P}$ local ring at $P, M_{p} \subset \bar{K}[E]_{P}$ be the maximal ideal.

It is easy to see that the ideal M_{p} is generated by $x-x_{0}$ and $y-y_{0}$.

Proof (continued).

$$
0=F(x, y)=F\left(x_{0}, y_{0}\right)+F_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+F_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)+\text { higher terms }
$$

$$
F_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+F_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)+\text { higher terms }=0
$$

Case 1. $F_{y}\left(x_{0}, y_{0}\right) \neq 0$. The above equation implies that $\operatorname{ord}_{P}\left(y-y_{0}\right) \geq \operatorname{ord}_{P}\left(x-x_{0}\right)$ so $x-x_{0}$ is a uniformizer at P. Case 2. $F_{x}\left(x_{0}, y_{0}\right) \neq 0$, then $y-y_{0}$ is a uniformizer at P.

Case 1.

$$
\omega=\frac{d x}{F_{y}(x, y)}=\frac{d\left(x-x_{0}\right)}{F_{y}(x, y)}
$$

We see that $\operatorname{ord} p \omega=0$.

Case 2.

$$
\omega=\frac{d y}{-F_{x}(x, y)}=\frac{d\left(y-y_{0}\right)}{-F_{x}(x, y)}
$$

We see that $\operatorname{ord}_{p} \omega=0$.

The proof for $P=[0,1,0]$, use the fact that x / y is a uniformizer.

Proposition III 5.1

For ω as above, for every $Q \in E$,

$$
\tau_{Q}^{*} \omega=\omega
$$

Proof.

$$
\tau_{Q}^{*} \omega=f \omega
$$

for some $f \in \bar{K}(E)^{*}$. Because τ_{Q} is an isomorphism,

$$
\operatorname{div}\left(\tau_{Q}^{*} \omega\right)=0
$$

On the other hand side, we have

$$
\operatorname{div}\left(\tau_{Q}^{*} \omega\right)=\operatorname{div}(f \omega)=\operatorname{div}(f)+\operatorname{div}(\omega)=\operatorname{div}(f)
$$

So $\operatorname{div}(f)=0, f \in \bar{K}^{*}$. We call this constant a_{Q}.
The map $E \rightarrow \mathbb{A}(\bar{K})$ given by $Q \mapsto a_{Q}$ is a morphism, since E is projective, the map is a constant map, So $a_{Q}=a_{O}=1$.

A non-zero differential on ω on E with $\operatorname{div}(\omega)=0$ is called an invariant differential. It is unique up to a scalar multiple by \bar{K}^{*}.

An invariant differential is translation invariant, that is, $\tau_{Q}^{*} \omega=\omega$ for all $Q \in E$.

Theorem III 5.2. Let E, E^{\prime} be elliptic curves, let ω be an invariant differential on E, and let $\phi, \psi: E^{\prime} \rightarrow E$ be two isogenies. Then

$$
(\phi+\psi)^{*} \omega=\phi^{*} \omega+\psi^{*} \omega
$$

Corollary III 5.3.

Let ω be an invariant differential on an elliptic curve E. Let $m \in \mathbb{Z}$. Then

$$
[m]^{*} \omega=m \omega
$$

Chapter III, §6. The Dual Isogeny.

Recall that for a non-constant morphism $\phi: C_{1} \rightarrow C_{2}$ of smooth curves, we have

$$
\phi^{*}: \operatorname{Pic}^{0}\left(C_{2}\right) \rightarrow \operatorname{Pic}^{0}\left(C_{1}\right)
$$

induced from

$$
\begin{gathered}
\phi^{*}: \operatorname{Div}\left(C_{2}\right) \rightarrow \operatorname{Div}\left(C_{1}\right) \\
\phi^{*}(Q)=\sum_{P \in \phi^{-1}(Q)} e_{\phi}(P)(P)
\end{gathered}
$$

If $\phi: E_{1} \rightarrow E_{2}$ is an non-constant isogeny, we have a group homomorphism

$$
E_{2} \xrightarrow{\kappa} \operatorname{Pic}^{0}\left(E_{2}\right) \xrightarrow{\phi^{*}} \operatorname{Pic}^{0}\left(E_{1}\right) \xrightarrow{\kappa^{-1}} E_{1}
$$

The composition map turns out to be an isogeny.

Theorem III 6.1.

Let $\phi: E_{1} \rightarrow E_{2}$ be a non-constant isogeny with $\operatorname{deg} \phi=m$.
(a) There exists a unique isogeny

$$
\hat{\phi}: E_{2} \rightarrow E_{1}
$$

satisfying

$$
\hat{\phi} \circ \phi=[m]
$$

(b) as a group homomorphism, $\hat{\phi}$ equals to the composition

$$
E_{2} \xrightarrow{\kappa} \operatorname{Pic}^{0}\left(E_{2}\right) \xrightarrow{\phi^{*}} \operatorname{Pic}^{0}\left(E_{1}\right) \xrightarrow{\kappa^{-1}} E_{1}
$$

Proof.

(a) Uniqueness is easy. Suppose that $\psi: E_{2} \rightarrow E_{3}$ is another non-constant isogeny of degree n, and suppose both $\hat{\phi}$ and $\hat{\psi}$ exist. Then

$$
(\hat{\phi} \circ \hat{\psi}) \circ(\psi \circ \phi)=\hat{\phi} \circ[n] \circ \phi=[n] \circ \hat{\phi} \circ \phi=[n m] .
$$

Since every isogeny can be decomposed as $\phi \circ \psi$, where ϕ is separable, ψ is a Frobenius morphism, it is enough to prove the existence for the following two cases

Case 1. ϕ is separable.

Case 2. ϕ is a Frobenius morphism.

Proof (continued).

Case 1. ϕ is separable. Since $\operatorname{deg} \phi=m$, so $|\operatorname{ker} \phi|=m$. So

$$
\operatorname{ker} \phi \subset \operatorname{ker}[m] .
$$

By Corollary III 4.11,

 there is an isogeny $\hat{\phi}: E_{2} \rightarrow E_{1}$ such that$$
\hat{\phi} \circ \phi=[m] .
$$

Case 2 and (b) (omitted).

Let $\phi: E_{1} \rightarrow E_{2}$ be a non-constant isogeny. The dual isogeny to ϕ is the isogeny $\hat{\phi}: E_{2} \rightarrow E_{1}$ such that

$$
\hat{\phi} \circ \phi=[\operatorname{deg} \phi]
$$

We define the dual isogeny of $[0]$ to be [0].

Theorem III 6.2.

Let $\phi: E_{1} \rightarrow E_{2}$ be an isogeny.
(a) Let $m=\operatorname{deg} \phi$. Then

$$
\begin{array}{ll}
\hat{\phi} \circ \phi=[m] & \text { on } E_{1} \\
\phi \circ \hat{\phi}=[m] & \text { on } E_{2}
\end{array}
$$

(b) Let $\lambda: E_{2} \rightarrow E_{2} 3$ be an isogeny. Then

$$
\widehat{\lambda \circ \phi}=\hat{\phi} \circ \hat{\lambda}
$$

Theorem III 6.2 (continued).

(c) Let $\psi: E_{1} \rightarrow E_{2}$ be an isogeny. Then

$$
\widehat{\phi+\psi}=\hat{\phi}+\hat{\psi}
$$

(d) For all $m \in \mathbb{Z}$,

$$
[\hat{m}]=[m], \quad \operatorname{deg}[m]=m^{2}
$$

(e)

$$
\operatorname{deg} \hat{\phi}=\operatorname{deg} \phi
$$

(f)

$$
\hat{\hat{\phi}}=\phi
$$

End

