Math 6170 C, Lecture on March 2, 2020

Yongchang Zhu

Plan.

(1) Example of Curve: \mathbb{P}^{1}
(2). Chapter II. § 3. Divisors
(3). Chapter II, § 4. Differentials

Curve \mathbb{P}^{1}

$C=\mathbb{P}^{1}(\bar{K}) \subset \mathbb{P}^{1}(\bar{K})$. Its ideal is $I(C)=\{0\}$. Its function field $\bar{K}(C)$ is the degree 0 elements in $\operatorname{Frac} \bar{K}[X, Y]$, i.e.,

$$
\bar{K}(C)=\left\{\left.\frac{f(X, Y)}{g(X, Y)} \right\rvert\, f, g \text { homogeneous, and } \operatorname{deg} f=\operatorname{deg} g\right\}
$$

$$
\frac{f(X, Y)}{g(X, Y)} \mapsto \frac{f(X, 1)}{g(X, 1)}
$$

identify $\bar{K}(C)$ with
Frac $\bar{K}[X]$

This agrees with the fact that the projective closure of $\mathbb{A}^{1}(\bar{K})$ is $\mathbb{P}^{1}(\bar{K})$ The function field of $\mathbb{A}^{1}(\bar{K})$ is Frac $\bar{K}[X]=\bar{K}(X)$. As a set

$$
C=\mathbb{P}^{1}(\bar{K})=\mathbb{A}^{1}(\bar{K}) \cup\{\infty\}=\bar{K} \cup\{\infty\}
$$

where ∞ has homogeneous coordinate $[1,0]$.

If $P=a \in \bar{K}$ is a point in C, the local ring at P is

$$
\bar{K}[C]_{P}=\left\{\left.\frac{f(X)}{g(X)} \right\rvert\, g(a) \neq 0\right\}
$$

A uniformizer at P is $X-a$.

What is the local ring of ∞ ? what is a uniformizer at ∞ ?

Recall $\infty=[1,0]$, we identify the function field of $C=\mathbb{P}^{1}(\bar{K})$ with Frac $\bar{K}[Y]=\bar{K}(Y)$ by

$$
\frac{f(X, Y)}{g(X, Y)} \mapsto \frac{f(1, Y)}{g(1, Y)}
$$

The identification of $\bar{K}(X) \sim \bar{K}(Y)$ is given by

$$
f(X) \mapsto f\left(Y^{-1}\right) .
$$

The local ring of ∞ in $\bar{K}(Y)$ is

$$
\left\{\left.\frac{h(Y)}{g(Y)} \right\rvert\, g(0) \neq 0\right\}
$$

A uniformizer at ∞ is Y.
In the setting $\bar{K}(X), \frac{1}{X}$ is a uniformizer at ∞ and the local ring of ∞ is

$$
\begin{gathered}
\left\{\left.\frac{f(X)}{g(X)} \right\rvert\, \operatorname{deg} f \leq \operatorname{deg} g\right\} \\
\operatorname{ord}_{\infty}\left(\frac{f(X)}{g(X)}\right)=\operatorname{deg} g-\operatorname{deg} f
\end{gathered}
$$

$\mathbb{P}^{1}(\bar{K})$ is defined on K, its function field over K is

$$
K(C)=K(X)
$$

The Galois group $G_{\bar{K} / K}$ acts on $\mathbb{P}^{1}(\bar{K})$, the fixed point is the K-rational points $\mathbb{P}^{1}(K)=K \cup\{\infty\}$.

The group $G L_{2}(\bar{K})$ acts on $\mathbb{P}^{1}(\bar{K})$ as automorphisms of projective varieties:

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot[x, y]=[a x+b y, c x+d y]
$$

In the identification $\mathbb{P}^{1}(\bar{K})=\bar{K} \cup\{\infty\}$, the above action is given by

$$
\begin{gathered}
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot x=\frac{a x+b}{c x+d} \\
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot \infty=\frac{a}{c}
\end{gathered}
$$

$$
C_{1}=\mathbb{P}^{1}(\bar{K}) \text { and } C_{2}=\mathbb{P}^{1}(\bar{K}) .
$$

Let X_{1} be a uniformizer of $0 \in \mathbb{A}^{1} \subset \mathbb{P}^{1}(\bar{K})$, so $\bar{K}\left(C_{1}\right)=\bar{K}\left(X_{1}\right)$.
Similarly let X_{2} be a uniformizer of $0 \in \mathbb{A}^{1} \subset \mathbb{P}^{1}(\bar{K})$, so $\bar{K}\left(C_{2}\right)=\bar{K}\left(X_{2}\right)$.

Let $h\left(X_{1}\right)=a_{n} X_{1}^{n}+\cdots+a_{1} X_{1}+a_{0}$ be a degree n polynomial, $n \geq 1 . h$ gives a morphism $\phi: C_{1} \rightarrow C_{2}$ given by

$$
\phi(a)=h(a) \quad \text { for } a \in \bar{K} ; \quad \phi(\infty)=\infty
$$

It induces the field extension

$$
\phi^{*}: \bar{K}\left(X_{2}\right) \rightarrow \bar{K}\left(X_{1}\right)
$$

given by

$$
\frac{f\left(X_{2}\right)}{g\left(X_{2}\right)} \mapsto \frac{f\left(h\left(X_{1}\right)\right)}{g\left(h\left(X_{1}\right)\right)}
$$

What is $\operatorname{deg} \phi$?
$\operatorname{deg} \phi=n$.
Method 1. Compute $\left[\bar{K}\left(X_{1}\right): \bar{K}\left(X_{2}\right)\right]$,

$$
\bar{K}\left(X_{1}\right)=\bar{K}\left(X_{2}\right)\left[X_{1}\right]
$$

The minimal polynomial of X_{1} over $\bar{K}\left(X_{2}\right)$ is

$$
a_{n} Y^{n}+\cdots+a_{1} Y+a_{0}-X_{2}
$$

Method 2 (Assume Char $K=0$). For almost all $a \in \bar{K}$, the equation

$$
\phi\left(X_{1}\right)=a
$$

equivalently

$$
a_{n} X_{1}^{n}+\cdots+a_{1} X_{1}+a_{0}=a
$$

has exactly n solutions.

$$
\begin{aligned}
& \phi(\infty)=\infty \cdot \phi^{-1}(\infty)=\{\infty\} . \\
& e_{\phi}(\infty)=n
\end{aligned}
$$

Exercise: find all the ramified points and the ramification indices.

Chapter II, § 3. Divisors

Let C be a curve over \bar{K}. A divisor of C is a formal \mathbb{Z}-linear combination of points in C :

$$
\sum_{P \in C} n_{P}(P)
$$

such that almost all coefficients n_{P} are 0

The set of all divisors is denoted by

$\operatorname{Div}(C)$

which has a group structure under the obvious addition

$$
D_{1}=2\left(P_{1}\right)-3\left(P_{2}\right), \quad D_{2}=-\left(P_{2}\right)+5\left(P_{3}\right)
$$

Then

$$
D_{1}+D_{2}=2\left(P_{1}\right)-4\left(P_{2}\right)+5\left(P_{3}\right)
$$

The degree of $D=\sum_{P \in C} n_{P}(P)$ is

$$
\operatorname{deg} D=\sum_{P \in C} n_{P}
$$

Assume C is smooth, $f \in \bar{K}(C), f \neq 0$.

$$
\operatorname{div}(f)=\sum_{P \in C} \operatorname{ord}_{P}(f)(P)
$$

This defines a group homomorphism

$$
\operatorname{div}: \bar{K}(C)^{*} \rightarrow \operatorname{Div}(C)
$$

because

$$
\operatorname{ord}_{P}(f g)=\operatorname{ord}_{P}(f)+\operatorname{ord}_{P}(g)
$$

Proposition 3.1.

Let C be a smooth curve over \bar{K} and $f \in \bar{K}(C)^{*}$. Then (a) $\operatorname{div}(f)=0$ iff $f \in \bar{K}^{*}$.
(b) $\operatorname{deg}(\operatorname{div}(f))=0$.

Proof of (a). If $f \in \bar{K}^{*}$, then $\operatorname{ord} P(f)=0$ for all $P \in C$, so $\operatorname{div}(f)=0$. Conversely, if $\operatorname{div} f=0$. f gives a morphism $f: C \rightarrow \mathbb{P}^{1}(\bar{K})$, this maps doesn't take value ∞ as $\operatorname{div} f=0$. So f is a constant. SO $f \in \bar{K}^{*}$.
(b) will be proved later.

A divisor of the form $\operatorname{div}(f)$ is called a principal divisor.

The set of all principal divisors is a subgroup of $\operatorname{Div} C$. It is the image of the group homomorphism:

$$
\operatorname{div}: \bar{K}(C)^{*} \rightarrow \operatorname{Div}(C)
$$

The divisor class group or Picard group of C, denoted by $\operatorname{Pic}(C)$, is defined to be the quotient

$$
\operatorname{Div}(C) /\left\{\operatorname{div}(f) \mid f \in \bar{K}(C)^{*}\right\}
$$

Definition.

The degree 0 part of the divisor class group of C, which we denote by $\operatorname{Pic}^{0}(C)$, is the quotient of $\operatorname{Div}^{0}(C)$ by $\left\{\operatorname{div}(f) \mid f \in \bar{K}(C)^{*}\right\}$.

We have the exact sequence

$$
1 \rightarrow \bar{K}^{*} \rightarrow \bar{K}(C)^{*} \rightarrow \operatorname{Div}^{0}(C) \rightarrow \operatorname{Pic}^{0}(C) \rightarrow 0
$$

The analogous exact sequence for a number field F with the ring of integers R is
$1 \rightarrow \operatorname{units}(R) \rightarrow F^{*} \rightarrow$ fractional ideals \rightarrow ideal class group of $F \rightarrow 1$

Idea: Number fields and function fields $\bar{K}(C)$ have lots in common.

A better analog involves Arakelov theory for number fields (arithmetic curves).

Let $\phi: C_{1} \rightarrow C_{2}$ be a non-constant morphism of smooth curves
ϕ induces a field embedding

$$
\phi^{*}: \bar{K}\left(C_{2}\right) \rightarrow \bar{K}\left(C_{1}\right)
$$

and

$$
\phi_{*}: \bar{K}\left(C_{1}\right) \rightarrow \bar{K}\left(C_{2}\right)
$$

which is the norm map of the embedding ϕ^{*}.

We define a group homomorphism

$$
\begin{gathered}
\phi^{*}: \operatorname{Div}\left(C_{2}\right) \rightarrow \operatorname{Div}\left(C_{1}\right) \\
\phi^{*}(Q)=\sum_{P \in \phi^{-1}(Q)} e_{\phi}(P)(P)
\end{gathered}
$$

and a group homomorphism

$$
\begin{gathered}
\phi_{*}: \operatorname{Div}\left(C_{1}\right) \rightarrow \operatorname{Div}\left(C_{2}\right) \\
\phi_{*}(P)=(\phi P)
\end{gathered}
$$

Proposition 3.6.

Let $\phi: C_{1} \rightarrow C_{2}$ be a non-constant morphism of smooth curves. Then
(a) $\operatorname{deg}\left(\phi^{*} D\right)=(\operatorname{deg} \phi)(\operatorname{deg} D)$ for $D \in \operatorname{Div}\left(C_{2}\right)$.
(b) $\phi^{*}(\operatorname{div} f)=\operatorname{div}\left(\phi^{*} f\right)$ for $f \in \bar{K}\left(C_{2}\right)^{*}$.
(c) $\operatorname{deg}\left(\phi_{*} D\right)=\operatorname{deg} D$ for $D \in \operatorname{Div}\left(C_{1}\right)$.
(d) $\phi_{*}(\operatorname{div} f)=\operatorname{div}\left(\phi_{*} f\right)$ for $f \in \bar{K}\left(C_{1}\right)$.
(e) $\phi_{*} \circ \phi^{*}: \operatorname{Div}\left(C_{2}\right) \rightarrow \operatorname{Div}\left(C_{2}\right)$ is the multiplication by $\operatorname{deg} \phi$.
(f) If $\psi: C_{2} \rightarrow C_{3}$ is another such map, then

$$
(\psi \circ \phi)^{*}=\phi^{*} \circ \psi^{*}, \quad(\psi \circ \phi)_{*}=\psi_{*} \circ \phi_{*}
$$

From the Proposition, we see that ϕ^{*} and ϕ_{*} take divisors of degree 0 to divisors of degree 0 , and the principal divisors to principal divisors. So they induces maps

$$
\phi^{*}: \operatorname{Pic}^{0}\left(C_{2}\right) \rightarrow \operatorname{Pic}^{0}\left(C_{1}\right), \quad \phi_{*}: \operatorname{Pic}^{0}\left(C_{1}\right) \rightarrow \operatorname{Pic}^{0}\left(C_{2}\right)
$$

Proof of $\operatorname{deg} \operatorname{div}(f)=0$ for $f \in \bar{K}(C)^{*}$.
$f: C \rightarrow \mathbb{P}^{1}(\bar{K})$, it is easy to see that

$$
\operatorname{div}(f)=f^{*}((0)-(\infty))=f^{*}(0)-f^{*}(\infty)
$$

So $\operatorname{deg} \operatorname{div}(f)=\operatorname{deg} f^{*}(0)-\operatorname{deg} f^{*}(\infty)=\operatorname{deg} f-\operatorname{deg} f=0$.

Rationality Issues:

If C is defined over K, then the Galois group $G_{\bar{K} / K}$ acts on C, so $G_{\bar{K} / K}$ acts on $\operatorname{Div}(C)$: for $\sigma \in G_{\bar{K} / K}$,

$$
\left(n_{1}\left(P_{1}\right)+\cdots+n_{k}\left(P_{k}\right)\right)^{\sigma} \stackrel{\text { def }}{=} n_{1}\left(P_{1}^{\sigma}\right)+\cdots+n_{k}\left(P_{k}^{\sigma}\right) .
$$

A divisor

$$
D=n_{1}\left(P_{1}\right)+\cdots+n_{k}\left(P_{k}\right) \in \operatorname{Div}(C)
$$

is defined over K if D is fixed by all $\sigma \in G_{\bar{K} / K}$.
This doesn't mean each $P_{i} \in C(K)$.

For example, $K=\mathbb{R}, \bar{K}=\mathbb{C}, G_{\mathbb{C} / \mathbb{R}}=\{e, \tau\}$.

$$
(2+i)+(2-i) \in \operatorname{Div}\left(\mathbb{P}^{1}\right)
$$

is defined over \mathbb{R}, but $2 \pm i \notin \mathbb{P}^{1}(\mathbb{R})$

The set of divisors defined over K is denoted by $\operatorname{Div}_{K}(C)$.
Similarly $G_{\bar{K} / K}$ acts on $\operatorname{Pic}^{0}(C)$, the fixed point set is denoted by

$$
\operatorname{Pic}_{K}^{0}(C)
$$

Chapter II. § 4. Differentials

Definition. Let C be a curve. The space of meromorphic differential forms on C, denoted by Ω_{C}, is the $\bar{K}(C)$-vector space generated by symbols of the form $d f$ for $f \in \bar{K}(C)$, subject to the following three relations:
(1). $d(f+g)=d f+d g$
(2) $d(f g)=g d f+f d g$
(3) $d a=0$ for $a \in \bar{K}$.

Let $\phi: C_{1} \rightarrow C_{2}$ be a non-constant map of curves, $\phi^{*}: \bar{K}\left(C_{2}\right) \rightarrow \bar{K}\left(C_{1}\right)$ is the corresponding field extension. It induces a \bar{K}-linear map on differentials:

$$
\begin{gathered}
\phi^{*}: \Omega_{C_{2}} \rightarrow \Omega_{C_{1}} \\
\phi^{*}(f d g)=\left(\phi^{*} f\right) d\left(\phi^{*} g\right)
\end{gathered}
$$

Proposition 4.2.

Let C be a curve.
(a) Ω_{C} is a 1-dimensional $\bar{K}(C)$-vector space.
(b) Let $x \in \bar{K}(C)$. Then $d x$ is a $\bar{K}(C)$ basis for Ω_{C} iff $\bar{K}(C) / \bar{K}(x)$ is a finite separable extension.
(c) Let $\phi: C_{1} \rightarrow C_{2}$ be a non-constant morphism. Then ϕ is separable (equivalently $\bar{K}\left(C_{1}\right) / \bar{K}\left(C_{2}\right)$ is a separable extension) iff

$$
\phi^{*}: \Omega_{C_{2}} \rightarrow \Omega_{C_{1}}
$$

is injective.

The proof uses the following formulas: For $y \in \bar{K}(C), c \in \bar{K}$,

$$
d(k y)=k d y
$$

That is, the symbol is \bar{K}-linear.

For $y \in \bar{K}(C)$,

$$
d\left(y^{n}\right)=n y^{n-1} d y
$$

For $P(y) \in \bar{K}[y]$,

$$
d P(y)=P^{\prime}(y) d y
$$

Proposition 4.3.

Let C be a smooth curve, $P \in C, t \in \bar{K}(C)$ be a uniformizer at P.
(a) For every $\omega \in \Omega_{C}$, there exists a unique $g \in \bar{K}(C)$ such that

$$
\omega=g d t
$$

We denote g by $\omega / d t$.
(b) Let $f \in \bar{K}(C)$ be regular at P, then $d f / d t$ is also regular at P.
(c) The number $\operatorname{ord}_{P}(\omega / d t)$ does not depends the choice of uniformizer t. We call this value the order of ω at P, and also denote it by $\operatorname{ord} P(\omega)$.

End

