Math 6170 C, Lecture on March 2, 2020

Yongchang Zhu

		ng	

토 에 제 토 에

- (1) Example of Curve: \mathbb{P}^1
- (2). Chapter II. \S 3. Divisors
- (3). Chapter II, \S 4. Differentials

æ

イロト イヨト イヨト イヨト

 $C = \mathbb{P}^1(\bar{K}) \subset \mathbb{P}^1(\bar{K})$. Its ideal is $I(C) = \{0\}$. Its function field $\bar{K}(C)$ is the degree 0 elements in Frac $\bar{K}[X, Y]$, i.e.,

$$ar{\mathcal{K}}(\mathcal{C}) = \{ rac{f(X,Y)}{g(X,Y)} \mid f, \ g \ ext{homogeneous, and } \deg f = \deg g \}.$$

э

$$\frac{f(X,Y)}{g(X,Y)}\mapsto \frac{f(X,1)}{g(X,1)}$$

identify $\bar{K}(C)$ with

Frac $\bar{K}[X]$

This agrees with the fact that the projective closure of $\mathbb{A}^1(\bar{K})$ is $\mathbb{P}^1(\bar{K})$ The function field of $\mathbb{A}^1(\bar{K})$ is $\operatorname{Frac} \bar{K}[X] = \bar{K}(X)$. As a set

$$\mathcal{C} = \mathbb{P}^1(ar{K}) = \mathbb{A}^1(ar{K}) \cup \{\infty\} = ar{K} \cup \{\infty\}$$

where ∞ has homogeneous coordinate [1,0].

If $P = a \in \overline{K}$ is a point in C, the local ring at P is

$$\bar{K}[C]_P = \{ \frac{f(X)}{g(X)} \mid g(a) \neq 0 \}.$$

A uniformizer at P is X - a.

What is the local ring of ∞ ? what is a uniformizer at ∞ ?

4 3 4 3 4 3 4

Recall $\infty = [1,0]$, we identify the function field of $C = \mathbb{P}^1(\bar{K})$ with $\operatorname{Frac} \bar{K}[Y] = \bar{K}(Y)$ by

$$\frac{f(X,Y)}{g(X,Y)}\mapsto \frac{f(1,Y)}{g(1,Y)}$$

The identification of $\bar{K}(X) \sim \bar{K}(Y)$ is given by

 $f(X) \mapsto f(Y^{-1}).$

3

イロト 不得 トイヨト イヨト

The local ring of ∞ in $\bar{K}(Y)$ is

$$\{\frac{h(Y)}{g(Y)} \mid g(0) \neq 0\}$$

A uniformizer at ∞ is Y.

In the setting $\bar{K}(X),\ \frac{1}{X}$ is a uniformizer at ∞ and the local ring of ∞ is

$$\{\frac{f(X)}{g(X)} \mid \deg f \leq \deg g\}.$$

$$\operatorname{ord}_{\infty}(\frac{f(X)}{g(X)}) = \deg g - \deg f$$

æ

 $\mathbb{P}^1(\bar{K})$ is defined on K, its function field over K is

$$K(C) = K(X).$$

The Galois group $G_{\bar{K}/K}$ acts on $\mathbb{P}^1(\bar{K})$, the fixed point is the K-rational points $\mathbb{P}^1(K) = K \cup \{\infty\}$.

A B < A B </p>

The group $GL_2(\bar{K})$ acts on $\mathbb{P}^1(\bar{K})$ as automorphisms of projective varieties:

$$\begin{pmatrix} \mathsf{a} & \mathsf{b} \\ \mathsf{c} & \mathsf{d} \end{pmatrix} \cdot [\mathsf{x}, \mathsf{y}] = [\mathsf{a}\mathsf{x} + \mathsf{b}\mathsf{y}, \mathsf{c}\mathsf{x} + \mathsf{d}\mathsf{y}]$$

æ

In the identification $\mathbb{P}^1(ar{K})=ar{K}\cup\{\infty\}$, the above action is given by

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot x = \frac{ax+b}{cx+d}$$
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \infty = \frac{a}{c}$$

2

イロト イヨト イヨト イヨト

 $C_1 = \mathbb{P}^1(\bar{K})$ and $C_2 = \mathbb{P}^1(\bar{K})$.

Let X_1 be a uniformizer of $0 \in \mathbb{A}^1 \subset \mathbb{P}^1(\bar{K})$, so $\bar{K}(C_1) = \bar{K}(X_1)$.

Similarly let X_2 be a uniformizer of $0 \in \mathbb{A}^1 \subset \mathbb{P}^1(\bar{K})$, so $\bar{K}(C_2) = \bar{K}(X_2)$.

3

イロト イヨト イヨト ・

Let $h(X_1) = a_n X_1^n + \cdots + a_1 X_1 + a_0$ be a degree *n* polynomial, $n \ge 1$. *h* gives a morphism $\phi : C_1 \to C_2$ given by

$$\phi(a) = h(a) \text{ for } a \in \overline{K}; \quad \phi(\infty) = \infty.$$

It induces the field extension

$$\phi^*: \overline{K}(X_2) \to \overline{K}(X_1)$$

given by

$$\frac{f(X_2)}{g(X_2)} \mapsto \frac{f(h(X_1))}{g(h(X_1))}$$

э

What is $\deg \phi$?

 $\deg \phi = n.$

Method 1. Compute $[\overline{K}(X_1) : \overline{K}(X_2)]$, $\overline{K}(X_1) = \overline{K}(X_2)[X_1]$

The minimal polynomial of X_1 over $\bar{K}(X_2)$ is

$$a_nY^n + \cdots + a_1Y + a_0 - X_2$$

э

Method 2 (Assume $\operatorname{Char} K = 0$). For almost all $a \in \overline{K}$, the equation

$$\phi(X_1) = a$$

equivalently

$$a_nX_1^n+\cdots+a_1X_1+a_0=a$$

has exactly *n* solutions.

(B)

$$\phi(\infty) = \infty. \ \phi^{-1}(\infty) = \{\infty\}.$$

 $e_{\phi}(\infty) = n$

Exercise: find all the ramified points and the ramification indices.

æ

• • = • • = •

Let *C* be a curve over \overline{K} . A divisor of *C* is a formal \mathbb{Z} -linear combination of points in *C*:

$$\sum_{P\in C} n_P(P)$$

such that almost all coefficients n_P are 0

The set of all divisors is denoted by

$\operatorname{Div}(C)$

which has a group structure under the obvious addition

$$D_1 = 2(P_1) - 3(P_2), \quad D_2 = -(P_2) + 5(P_3)$$

$$D_1 + D_2 = 2(P_1) - 4(P_2) + 5(P_3)$$

The degree of $D = \sum_{P \in C} n_P(P)$ is

$$\deg D = \sum_{P \in C} n_P.$$

Then

э

• • = • • = •

Assume C is smooth, $f \in \overline{K}(C)$, $f \neq 0$.

$$\operatorname{div}(f) = \sum_{P \in C} \operatorname{ord}_P(f)(P).$$

This defines a group homomorphism

div :
$$\overline{K}(C)^* \to \operatorname{Div}(C)$$
.

because

$$\operatorname{ord}_P(fg) = \operatorname{ord}_P(f) + \operatorname{ord}_P(g)$$

э

(B)

Let C be a smooth curve over \overline{K} and $f \in \overline{K}(C)^*$. Then (a) $\operatorname{div}(f) = 0$ iff $f \in \overline{K}^*$. (b) $\operatorname{deg}(\operatorname{div}(f)) = 0$.

Proof of (a). If $f \in \overline{K}^*$, then $\operatorname{ord}_P(f) = 0$ for all $P \in C$, so $\operatorname{div}(f) = 0$. Conversely, if $\operatorname{div} f = 0$. f gives a morphism $f : C \to \mathbb{P}^1(\overline{K})$, this maps doesn't take value ∞ as $\operatorname{div} f = 0$. So f is a constant. SO $f \in \overline{K}^*$.

(b) will be proved later.

A divisor of the form div(f) is called a **principal divisor**.

The set of all principal divisors is a subgroup of Div C. It is the image of the group homomorphism:

 $\operatorname{div}:\bar{K}(C)^*\to\operatorname{Div}(C)$

• • = • • = •

The **divisor class group** or **Picard group** of *C*, denoted by Pic(C), is defined to be the quotient

 $\operatorname{Div}(\mathcal{C})/\{\operatorname{div}(f) \mid f \in \overline{\mathcal{K}}(\mathcal{C})^*\}$

.

The **degree** 0 part of the divisor class group of *C*, which we denote by $\operatorname{Pic}^{0}(C)$, is the quotient of $\operatorname{Div}^{0}(C)$ by $\{\operatorname{div}(f) \mid f \in \overline{K}(C)^{*}\}$.

We have the exact sequence

$$1 o ar{K}^* o ar{K}(\mathcal{C})^* o \operatorname{Div}^0(\mathcal{C}) o \operatorname{Pic}^0(\mathcal{C}) o 0.$$

4 B K 4 B K

The analogous exact sequence for a number field F with the ring of integers R is

 $1 \to \mathrm{units}(R) \to F^* \to \mathrm{fractional\ ideals} \to \mathrm{ideal\ class\ group\ of}\ F \to 1$

Idea: Number fields and function fields $\bar{K}(C)$ have lots in common.

A better analog involves Arakelov theory for number fields (arithmetic curves).

(日)

Let $\phi: {\it C}_1 \rightarrow {\it C}_2$ be a non-constant morphism of smooth curves

 ϕ induces a field embedding

$$\phi^*: \bar{K}(\mathcal{C}_2) \to \bar{K}(\mathcal{C}_1)$$

and

$$\phi_*: \bar{K}(C_1) \to \bar{K}(C_2)$$

which is the norm map of the embedding ϕ^* .

æ

イロト 不得 トイヨト イヨト

We define a group homomorphism

$$\phi^* : \operatorname{Div}(\mathcal{C}_2) \to \operatorname{Div}(\mathcal{C}_1)$$

$$\phi^*(Q)=\sum_{P\in\phi^{-1}(Q)}e_\phi(P)(P).$$

and a group homomorphism

$$\phi_*: \operatorname{Div}(\mathcal{C}_1) \to \operatorname{Div}(\mathcal{C}_2)$$

$$\phi_*(P) = (\phi P)$$

æ

★ E ► < E ►</p>

Proposition 3.6.

Let $\phi: {\it C}_1 \rightarrow {\it C}_2$ be a non-constant morphism of smooth curves. Then

(a) $\deg(\phi^*D) = (\deg \phi)(\deg D)$ for $D \in \operatorname{Div}(C_2)$.

(b)
$$\phi^*(\operatorname{div} f) = \operatorname{div}(\phi^* f)$$
 for $f \in \overline{K}(C_2)^*$.

(c) $\deg(\phi_*D) = \deg D$ for $D \in \operatorname{Div}(C_1)$.

(d)
$$\phi_*(\operatorname{div} f) = \operatorname{div}(\phi_* f)$$
 for $f \in \overline{K}(C_1)$.

(e) $\phi_* \circ \phi^* : \operatorname{Div}(\mathcal{C}_2) \to \operatorname{Div}(\mathcal{C}_2)$ is the multiplication by $\operatorname{deg} \phi$.

(f) If $\psi: C_2 \to C_3$ is another such map, then

$$(\psi \circ \phi)^* = \phi^* \circ \psi^*, \quad (\psi \circ \phi)_* = \psi_* \circ \phi_*$$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへの

From the Proposition, we see that ϕ^* and ϕ_* take divisors of degree 0 to divisors of degree 0, and the principal divisors to principal divisors. So they induces maps

$$\phi^* : \operatorname{Pic}^0(\mathcal{C}_2) \to \operatorname{Pic}^0(\mathcal{C}_1), \quad \phi_* : \operatorname{Pic}^0(\mathcal{C}_1) \to \operatorname{Pic}^0(\mathcal{C}_2)$$

4 3 4 3 4 3 4

Proof of $\deg \operatorname{div}(f) = 0$ for $f \in \overline{K}(C)^*$.

 $f: C
ightarrow \mathbb{P}^1(ar{K})$, it is easy to see that

$$\operatorname{div}(f) = f^*((0) - (\infty)) = f^*(0) - f^*(\infty)$$

So

$$\deg \operatorname{div}(f) = \deg f^*(0) - \deg f^*(\infty) = \deg f - \deg f = 0.$$

2

イロト イヨト イヨト イヨト

Rationality Issues:

If C is defined over K, then the Galois group $G_{\bar{K}/K}$ acts on C, so $G_{\bar{K}/K}$ acts on Div(C): for $\sigma \in G_{\bar{K}/K}$,

$$(n_1(P_1) + \cdots + n_k(P_k))^{\sigma} \stackrel{\text{def}}{=} n_1(P_1^{\sigma}) + \cdots + n_k(P_k^{\sigma}).$$

э

• = • • = •

A divisor

$$D = n_1(P_1) + \cdots + n_k(P_k) \in \operatorname{Div}(C)$$

is **defined over** K if D is fixed by all $\sigma \in G_{\bar{K}/K}$.

This doesn't mean each $P_i \in C(K)$.

æ

イロト イポト イヨト イヨト

For example, $K = \mathbb{R}$, $\overline{K} = \mathbb{C}$, $G_{\mathbb{C}/\mathbb{R}} = \{e, \tau\}$. $(2 + i) + (2 - i) \in \operatorname{Div}(\mathbb{P}^1)$ is defined over \mathbb{R} , but $2 \pm i \notin \mathbb{P}^1(\mathbb{R})$

э

イロト イヨト イヨト

The set of divisors defined over K is denoted by $\text{Div}_{K}(C)$.

Similarly $G_{\bar{K}/K}$ acts on $\operatorname{Pic}^0(\mathcal{C})$, the fixed point set is denoted by

 $\operatorname{Pic}_{K}^{0}(C)$

æ

• • = • • = •

Definition. Let *C* be a curve. The space of meromorphic differential forms on *C*, denoted by Ω_C , is the $\overline{K}(C)$ -vector space generated by symbols of the form *df* for $f \in \overline{K}(C)$, subject to the following three relations:

(1).
$$d(f + g) = df + dg$$

(2) $d(fg) = gdf + fdg$
(3) $da = 0$ for $a \in \overline{K}$.

Let $\phi: C_1 \to C_2$ be a non-constant map of curves, $\phi^*: \overline{K}(C_2) \to \overline{K}(C_1)$ is the corresponding field extension. It induces a \overline{K} -linear map on differentials:

 $\phi^*: \Omega_{C_2} \to \Omega_{C_1}$

 $\phi^*(\mathit{fdg}) = (\phi^* f) d(\phi^* g)$

• • = • • = •

Let C be a curve.

(a) Ω_C is a 1-dimensional $\bar{K}(C)$ -vector space.

(b) Let $x \in \overline{K}(C)$. Then dx is a $\overline{K}(C)$ basis for Ω_C iff $\overline{K}(C)/\overline{K}(x)$ is a finite separable extension.

(c) Let $\phi : C_1 \to C_2$ be a non-constant morphism. Then ϕ is separable (equivalently $\overline{K}(C_1)/\overline{K}(C_2)$ is a separable extension) iff

$$\phi^*: \Omega_{C_2} \to \Omega_{C_1}$$

is injective.

- E - - E -

The proof uses the following formulas: For $y \in \overline{K}(C)$, $c \in \overline{K}$,

$$d(ky) = kdy$$

That is, the symbol is \overline{K} -linear.

(B)

For $y \in \overline{K}(C)$,

$$d(y^n) = ny^{n-1}dy$$

For $P(y) \in \overline{K}[y]$,

dP(y) = P'(y)dy.

3

イロン イ理 とく ヨン イ ヨン

Let C be a smooth curve, $P \in C$, $t \in \overline{K}(C)$ be a uniformizer at P.

(a) For every $\omega \in \Omega_{\mathcal{C}}$, there exists a unique $g \in \bar{\mathcal{K}}(\mathcal{C})$ such that

 $\omega = g dt.$

We denote g by ω/dt .

(b) Let $f \in \overline{K}(C)$ be regular at P, then df/dt is also regular at P.

(c) The number $\operatorname{ord}_P(\omega/dt)$ does not depends the choice of uniformizer t. We call this value the order of ω at P, and also denote it by $\operatorname{ord}_P(\omega)$.

▲ 圖 ▶ ▲ 国 ▶ ▲ 国 ▶ →

End

æ

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ -