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Plan

(1) Review of Chapter III § 5. The Invariant Differentials

(2) Chapter III § 6. The Dual Isogeny (continued)

(3) Chapter III § 7. The Tate Module
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Review of III. § 5. The Invariant Differentials

Let E/K be an elliptic curve given by the usual Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6.

Then

ω =
dx

2y + a1x + a3
∈ ΩE

has neither zeros nor poles. Any other differential with this property is a
K̄ ∗-multiple of ω.
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Proposition III 5.1

For ω as above, for every Q ∈ E ,

τ∗Qω = ω.
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Theorem III 5.2. Let E ,E ′ be elliptic curves, let ω be an invariant
differential on E , and let φ, ψ : E ′ → E be isogenies. Then

(φ+ ψ)∗ω = φ∗ω + ψ∗ω
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Proof.

Consider the variety E × E , its function field is

K̄ (E × E ) = Frac K̄ [x1, y1, x2, y2]/(F (x1, y1), F (x2, y2))

where

F (x1, y1) = y2
1 + a1x1y1 + a3y1 − (x3

1 + a2x
2
1 + a4x1 + a6)

F (x2, y2) = y2
2 + a1x2y2 + a3y2 − (x3

2 + a2x
2
2 + a4x2 + a6).

The space of meromorphic differentials on E × E , ΩE×E is defined
similarly as ΩE .
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Proof (continued).
ΩE×E is 2-dimensional vector over K̄ (E × E ).

It has basis

ω1 =
dx1

2y1 + a1x1 + a3
, ω2 =

dx2

2y2 + a1x2 + a3
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Proof (continued).

We have projection maps:

pr1 : E × E → E , (P,Q) 7→ P

pr2 : E × E → E , (P,Q) 7→ Q

We have

ω1 = pr∗1ω, ω2 = pr∗2ω

Consider the addition map

µ : E × E → E , (P,Q) 7→ P + Q

µ∗(ω) = f ω1 + gω2
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Proof (continued).

Because ω has no poles, so are ω1, ω2 and µ∗(ω). So f and g are regular
functions on E × E . Since E × E is projective, so f , g ∈ K̄ .
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Proof (continued).

For a fixed Q ∈ E . Let iQ : E → E × E be the map P 7→ (P,Q). So we
have the map

i∗Q : ΩE×E → ΩE

Apply this to the equation

µ∗(ω) = f ω1 + gω2

we get (note that µ ◦ iQ = τQ ,Pr1 ◦ iQ = Id ,Pr2 ◦ iQ = Q),

τ∗Qω = f ω

This proves f = 1. Similarly g = 1.
So

µ∗(ω) = ω1 + ω2
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Proof (continued).

Consider the map α : E → E × E , α(P) = (φ(P), ψ(P)), Then

φ+ ψ = µ ◦ α, pr1 ◦ α = φ, pr2 ◦ α = ψ

Apply α∗ to
µ∗(ω) = ω1 + ω2

we get

(φ+ ψ)∗ω = φ∗ω + ψ∗ω
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Corollary III 5.3.

Let ω be an invariant differential on an elliptic curve E . Let m ∈ Z. Then

[m]∗ω = mω
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Chapter III, §6. The Dual Isogeny (continued).

Theorem III 6.1. Let φ : E1 → E2 be a non-constant isogeny with
deg φ = m.
(a) There exists a unique isogeny

φ̂ : E2 → E1

satisfying
φ̂ ◦ φ = [m]

(b) as a group homomorphism, φ̂ equals to the composition

E2
κ−→ Pic0(E2)

φ∗−→ Pic0(E1)
κ−1

−→ E1
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Let φ : E1 → E2 be a non-constant isogeny. The dual isogeny to φ is the
unique isogeny φ̂ : E2 → E1 such that

φ̂ ◦ φ = [deg φ]

We define the dual isogeny of [0] to be [0].
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Theorem III 6.2.

Let φ : E1 → E2 be an isogeny.
(a) Let m = deg φ. Then

φ̂ ◦ φ = [m] on E1

φ ◦ φ̂ = [m] on E2

(b) Let λ : E2 → E3 be an isogeny. Then

λ̂ ◦ φ = φ̂ ◦ λ̂
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Theorem III 6.2 (continued).

(c) Let ψ : E1 → E2 be an isogeny. Then

φ̂+ ψ = φ̂+ ψ̂

(d) For all m ∈ Z,

[̂m] = [m], deg [m] = m2

(e)
deg φ̂ = deg φ

(f)
ˆ̂
φ = φ
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Definition.

Let A be an abelian group. A function

d : A→ R

is called a quadratic form if
(1)

d(−v) = d(v)

(2) The pairing A× A→ R given by

(u, v) 7→ d(u + v)− d(u)− d(v)

is bilinear.
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Example. A = Zn column vectors with entries in Z

M: an n × n symmetric matrix with entries in R.

d(v) = vTMv

is a quadratic form.

d(u + v)− d(u)− d(v) = uTMv + vTMu

Yongchang Zhu Short title 18 / 38



A quadratic form d is positive definite if

d(v) ≥ 0 for all v ∈ A, and q(v) = 0 iff v = 0.

In the above example, if M is positively definite, the corresponding
quadratic form is positive definite.
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Corollary III 6.3.

Let E1,E2 be elliptic curves. The degree map

deg : Hom(E1,E2)→ Z

is a positive definite quadratic form.

Proof. Using [deg φ] = φ̂ ◦ φ, we have

〈φ, ψ〉 = deg(φ+ ψ)− deg(φ)− deg(ψ)

[〈φ, ψ〉] = ̂(φ+ ψ) ◦ (φ+ ψ)− φ̂ ◦ φ− ψ̂ ◦ ψ = φ̂ ◦ ψ + ψ̂ ◦ φ

which is bilinear in φ and ψ.
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Corollary III 6.4.

Let E be an elliptic curve and m ∈ Z, m 6= 0. Let E [m] = ker [m].

(a) deg[m] = m2.

(b) If char(K ) = 0 or if m is relatively prime to charK , then
E [m] ' Z/mZ× Z/mZ.

(c) If charK = p, then
E [pe ] = {O} for all e = 1, 2, . . . or
E [pe ] = Z/peZ for all e = 1, 2, . . . .
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Proof.

(a) is in Theorem 6.2. (b) Since charK̄ = 0 or char K̄ is relatively prime
to m, |E [m]| = deg([m]) = m2.

For a prime p satisfying the condition of the Corollary, |E [p]| = p2 and
every element a ∈ E [p] satisfies pa = 0, this forces

E [p] ' Z/pZ× Z/pZ.
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Proof (continued).

For general m, for each prime divisor p of m,

{a ∈ E [m] | pa = 0} = E [p] ' Z/pZ× Z/pZ

This and the classification Theorem for finite abelian groups implies

E [m] ' Z/mZ× Z/mZ

(c) omitted.
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Chapter III. § 7. The Tate Module.

If E is defined over K , then GK̄/K acts on E (K̄ ) as automorphisms of
abelian groups. So GK̄/K acts on the group of m-torsion points E [m] for
each positive integer m.

Assume charK = 0 or m is relatively prime to charK , so we have a group
homomorphism

GK̄/K → Aut(E [m]) ' GL2(Z/mZ).

We take the inverse limit of E [ln] (l is a prime) to get a l-adic
representation of GK̄/K .
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Inverse Limits of Groups and Rings.

If we have a chain of surjective group (ring) homomorphisms

· · · → An → An−1 → · · · → A2 → A1

The inverse limit

lim
←

An

is a subgroup (subring) of Π∞i=1Ai that consists of elements

(. . . , an, an−1, . . . , a2, a1)

such that an 7→ an−1 for n = 2, 3, . . . .
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The operation on lim
←

An is the pointwise operation:

(. . . , an, an−1, . . . ) + (. . . , bn, bn−1, . . . ) = (. . . , an + bn, an−1 + bn−1, . . . )

(. . . , an, an−1, . . . ) · (. . . , bn, bn−1, . . . ) = (. . . , an · bn, an−1 · bn−1, . . . )
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Example. An = k[t]/(tn) = {cn−1t
n−1 + · · ·+ c1t + c0}.

An → An−1 be the obvious ring homomorphism:

cn−1t
n−1 + cn−2t

n−2 · · ·+ c1t + c0 7→ cn−2t
n−2 + · · ·+ c1t + c0

We have a chain of ring homomorphisms:

· · · → An → An−1 → · · · → A2 → A1

The inverse limit ring lim
←

An is just the ring of formal power series over k:

k[[t]] = {
∞∑
i=0

ci t
i}.
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Example. Let l be a prime. An = Z/lnZ, We have a chain of rings

· · · → Z/lnZ→ Z/ln−1Z→ · · · → Z/l2Z→ Z/lZ

The inverse limit ring

lim
←

Z/lnZ

is called the ring of l-adic integers, denoted by Zl .
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An element in Zl can be expressed as an infinite sum

c0 + c1l + c2l
2 + . . .
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Let E be an elliptic curve, l be a prime, we have map

E [ln]→ E [ln−1], P 7→ [l ]P

The inverse limit Tl(E )
def
= lim
←

E [ln] is an abelian group, and moreover is a

Zl -module, because of the commutative diagram

Z/lnZ× E [ln]→ Z/ln−1Z× E [ln−1]

↓ ↓
E [ln]→ E [ln−1]
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Proposition III 7.1.

As a Zl -module, the Tate module has the following structure.

(a)
Tl(E ) ' Zl × Zl if l 6= char(K )

(b)
Tl(E ) ' Zl or{0} if l = char(K )
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Assume E is defined over K . The action of GK̄/K on E [ln] commutes with
the maps [m], so GK̄/K acts on the Tate module Tl(E ).

Definition. The l-adic representation of GK̄/K on E is the map

ρl : GK̄/K → Aut(Tl(E ))

given above.
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A similar but simpler construction is the following:
Let U(ln) ⊂ K̄ ∗ be the subgroup given by

U(ln) = {a ∈ K ∗ | aln = 1}.

We have group homomorphism

U(ln)→ U(ln−1), a 7→ al
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The inverse limit Tl(U)
def
= lim
←

E [ln] is a Zl module and a l-adic

representation of GK̄/K . So we have 1-dimensional representation

GK̄/K → Aut(Tl(U)) ' Z∗l
(Assume l 6= charK )
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Theorem III 7.9 (Serre)

Let K be a number field and E/K an elliptic curve without complex
multiplication (i.e., End(E ) = Z). Then

(a) ρl(GK̄/K ) is of finite index in Aut(Tl(E )) for all primes l .

(b) For almost all primes l ,

ρl(GK̄/K ) = Aut(Tl(E ))
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End
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