Math 6170 C, Lecture on March 23, 2020

Yongchang Zhu

Plan

(1) Review of Chapter III §5. The Invariant Differentials
(2) Chapter III § 6. The Dual Isogeny (continued)
(3) Chapter III § 7. The Tate Module

Review of III. § 5. The Invariant Differentials

Let E / K be an elliptic curve given by the usual Weierstrass equation

$$
y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

Then

$$
\omega=\frac{d x}{2 y+a_{1} x+a_{3}} \in \Omega_{E}
$$

has neither zeros nor poles. Any other differential with this property is a \bar{K}^{*}-multiple of ω.

Proposition III 5.1

For ω as above, for every $Q \in E$,

$$
\tau_{Q}^{*} \omega=\omega
$$

Theorem III 5.2. Let E, E^{\prime} be elliptic curves, let ω be an invariant differential on E, and let $\phi, \psi: E^{\prime} \rightarrow E$ be isogenies. Then

$$
(\phi+\psi)^{*} \omega=\phi^{*} \omega+\psi^{*} \omega
$$

Proof.

Consider the variety $E \times E$, its function field is

$$
\bar{K}(E \times E)=\operatorname{Frac} \bar{K}\left[x_{1}, y_{1}, x_{2}, y_{2}\right] /\left(F\left(x_{1}, y_{1}\right), F\left(x_{2}, y_{2}\right)\right)
$$

where

$$
\begin{aligned}
& F\left(x_{1}, y_{1}\right)=y_{1}^{2}+a_{1} x_{1} y_{1}+a_{3} y_{1}-\left(x_{1}^{3}+a_{2} x_{1}^{2}+a_{4} x_{1}+a_{6}\right) \\
& F\left(x_{2}, y_{2}\right)=y_{2}^{2}+a_{1} x_{2} y_{2}+a_{3} y_{2}-\left(x_{2}^{3}+a_{2} x_{2}^{2}+a_{4} x_{2}+a_{6}\right)
\end{aligned}
$$

The space of meromorphic differentials on $E \times E, \Omega_{E \times E}$ is defined similarly as Ω_{E}.

Proof (continued).
$\Omega_{E \times E}$ is 2-dimensional vector over $\bar{K}(E \times E)$.
It has basis

$$
\omega_{1}=\frac{d x_{1}}{2 y_{1}+a_{1} x_{1}+a_{3}}, \quad \omega_{2}=\frac{d x_{2}}{2 y_{2}+a_{1} x_{2}+a_{3}}
$$

Proof (continued).

We have projection maps:

$$
\begin{aligned}
& \operatorname{pr}_{1}: E \times E \rightarrow E, \quad(P, Q) \mapsto P \\
& \operatorname{pr}_{2}: E \times E \rightarrow E, \quad(P, Q) \mapsto Q
\end{aligned}
$$

We have

$$
\omega_{1}=\operatorname{pr}_{1}^{*} \omega, \quad \omega_{2}=\operatorname{pr}_{2}^{*} \omega
$$

Consider the addition map

$$
\begin{gathered}
\mu: E \times E \rightarrow E, \quad(P, Q) \mapsto P+Q \\
\mu^{*}(\omega)=f \omega_{1}+g \omega_{2}
\end{gathered}
$$

Proof (continued).

Because ω has no poles, so are ω_{1}, ω_{2} and $\mu^{*}(\omega)$. So f and g are regular functions on $E \times E$. Since $E \times E$ is projective, so $f, g \in \bar{K}$.

Proof (continued).

For a fixed $Q \in E$. Let $i_{Q}: E \rightarrow E \times E$ be the map $P \mapsto(P, Q)$. So we have the map

$$
i_{Q}^{*}: \Omega_{E \times E} \rightarrow \Omega_{E}
$$

Apply this to the equation

$$
\mu^{*}(\omega)=f \omega_{1}+g \omega_{2}
$$

we get (note that $\mu \circ i_{Q}=\tau_{Q}, \operatorname{Pr}_{1} \circ i_{Q}=I d, \operatorname{Pr}_{2} \circ i_{Q}=Q$),

$$
\tau_{Q}^{*} \omega=f \omega
$$

This proves $f=1$. Similarly $g=1$.
So

$$
\mu^{*}(\omega)=\omega_{1}+\omega_{2}
$$

Proof (continued).

Consider the map $\alpha: E \rightarrow E \times E, \alpha(P)=(\phi(P), \psi(P))$, Then

$$
\phi+\psi=\mu \circ \alpha, \quad \operatorname{pr}_{1} \circ \alpha=\phi, \quad \operatorname{pr}_{2} \circ \alpha=\psi
$$

Apply α^{*} to

$$
\mu^{*}(\omega)=\omega_{1}+\omega_{2}
$$

we get

$$
(\phi+\psi)^{*} \omega=\phi^{*} \omega+\psi^{*} \omega
$$

Corollary III 5.3.

Let ω be an invariant differential on an elliptic curve E. Let $m \in \mathbb{Z}$. Then

$$
[m]^{*} \omega=m \omega
$$

Chapter III, §6. The Dual Isogeny (continued).

Theorem III 6.1. Let $\phi: E_{1} \rightarrow E_{2}$ be a non-constant isogeny with $\operatorname{deg} \phi=m$.
(a) There exists a unique isogeny

$$
\hat{\phi}: E_{2} \rightarrow E_{1}
$$

satisfying

$$
\hat{\phi} \circ \phi=[m]
$$

(b) as a group homomorphism, $\hat{\phi}$ equals to the composition

$$
E_{2} \xrightarrow{\kappa} \operatorname{Pic}^{0}\left(E_{2}\right) \xrightarrow{\phi^{*}} \operatorname{Pic}^{0}\left(E_{1}\right) \xrightarrow{\kappa^{-1}} E_{1}
$$

Let $\phi: E_{1} \rightarrow E_{2}$ be a non-constant isogeny. The dual isogeny to ϕ is the unique isogeny $\hat{\phi}: E_{2} \rightarrow E_{1}$ such that

$$
\hat{\phi} \circ \phi=[\operatorname{deg} \phi]
$$

We define the dual isogeny of $[0]$ to be [0].

Theorem III 6.2.

Let $\phi: E_{1} \rightarrow E_{2}$ be an isogeny.
(a) Let $m=\operatorname{deg} \phi$. Then

$$
\begin{array}{ll}
\hat{\phi} \circ \phi=[m] & \text { on } E_{1} \\
\phi \circ \hat{\phi}=[m] & \text { on } E_{2}
\end{array}
$$

(b) Let $\lambda: E_{2} \rightarrow E_{3}$ be an isogeny. Then

$$
\widehat{\lambda \circ \phi}=\hat{\phi} \circ \hat{\lambda}
$$

Theorem III 6.2 (continued).

(c) Let $\psi: E_{1} \rightarrow E_{2}$ be an isogeny. Then

$$
\widehat{\phi+\psi}=\hat{\phi}+\hat{\psi}
$$

(d) For all $m \in \mathbb{Z}$,

$$
\widehat{[m]}=[m], \quad \operatorname{deg}[m]=m^{2}
$$

(e)

$$
\operatorname{deg} \hat{\phi}=\operatorname{deg} \phi
$$

(f)

$$
\hat{\hat{\phi}}=\phi
$$

Definition.

Let A be an abelian group. A function

$$
d: A \rightarrow \mathbb{R}
$$

is called a quadratic form if
(1)

$$
d(-v)=d(v)
$$

(2) The pairing $A \times A \rightarrow \mathbb{R}$ given by

$$
(u, v) \mapsto d(u+v)-d(u)-d(v)
$$

is bilinear.

Example. $A=\mathbb{Z}^{n}$ column vectors with entries in \mathbb{Z}
M : an $n \times n$ symmetric matrix with entries in \mathbb{R}.

$$
d(v)=v^{T} M v
$$

is a quadratic form.

$$
d(u+v)-d(u)-d(v)=u^{T} M v+v^{T} M u
$$

A quadratic form d is positive definite if

$$
d(v) \geq 0 \quad \text { for all } v \in A, \text { and } q(v)=0 \text { iff } v=0
$$

In the above example, if M is positively definite, the corresponding quadratic form is positive definite.

Corollary III 6.3.

Let E_{1}, E_{2} be elliptic curves. The degree map

$$
\operatorname{deg}: \operatorname{Hom}\left(E_{1}, E_{2}\right) \rightarrow \mathbb{Z}
$$

is a positive definite quadratic form.
Proof. Using $[\operatorname{deg} \phi]=\hat{\phi} \circ \phi$, we have

$$
\begin{gathered}
\langle\phi, \psi\rangle=\operatorname{deg}(\phi+\psi)-\operatorname{deg}(\phi)-\operatorname{deg}(\psi) \\
{[\langle\phi, \psi\rangle]=(\widehat{\phi+\psi}) \circ(\phi+\psi)-\hat{\phi} \circ \phi-\hat{\psi} \circ \psi=\hat{\phi} \circ \psi+\hat{\psi} \circ \phi}
\end{gathered}
$$

which is bilinear in ϕ and ψ.

Corollary III 6.4.

Let E be an elliptic curve and $m \in \mathbb{Z}, m \neq 0$. Let $E[m]=\operatorname{ker}[m]$.
(a) $\operatorname{deg}[m]=m^{2}$.
(b) If $\operatorname{char}(K)=0$ or if m is relatively prime to char K, then $E[m] \simeq \mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / m \mathbb{Z}$.
(c) If char $K=p$, then
$E\left[p^{e}\right]=\{O\}$ for all $e=1,2, \ldots$ or
$E\left[p^{e}\right]=\mathbb{Z} / p^{e} \mathbb{Z}$ for all $e=1,2, \ldots$.

Proof.

(a) is in Theorem 6.2. (b) Since char $\bar{K}=0$ or char \bar{K} is relatively prime to $m,|E[m]|=\operatorname{deg}([m])=m^{2}$.

For a prime p satisfying the condition of the Corollary, $|E[p]|=p^{2}$ and every element $a \in E[p]$ satisfies $p a=0$, this forces

$$
E[p] \simeq \mathbb{Z} / p \mathbb{Z} \times \mathbb{Z} / p \mathbb{Z}
$$

Proof (continued).

For general m, for each prime divisor p of m,

$$
\{a \in E[m] \mid p a=0\}=E[p] \simeq \mathbb{Z} / p \mathbb{Z} \times \mathbb{Z} / p \mathbb{Z}
$$

This and the classification Theorem for finite abelian groups implies

$$
E[m] \simeq \mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / m \mathbb{Z}
$$

(c) omitted.

Chapter III. § 7. The Tate Module.

If E is defined over K, then $G_{\bar{K} / K}$ acts on $E(\bar{K})$ as automorphisms of abelian groups. So $G_{\bar{K} / K}$ acts on the group of m-torsion points $E[m]$ for each positive integer m.

Assume char $K=0$ or m is relatively prime to char K, so we have a group homomorphism

$$
G_{\bar{K} / K} \rightarrow \operatorname{Aut}(E[m]) \simeq G L_{2}(\mathbb{Z} / m \mathbb{Z})
$$

We take the inverse limit of $E\left[I^{n}\right]$ ($/$ is a prime) to get a I-adic representation of $G_{\bar{K} / K}$.

Inverse Limits of Groups and Rings.

If we have a chain of surjective group (ring) homomorphisms

$$
\cdots \rightarrow A_{n} \rightarrow A_{n-1} \rightarrow \cdots \rightarrow A_{2} \rightarrow A_{1}
$$

The inverse limit
$\lim A_{n}$
is a subgroup (subring) of $\Pi_{i=1}^{\infty} A_{i}$ that consists of elements

$$
\left(\ldots, a_{n}, a_{n-1}, \ldots, a_{2}, a_{1}\right)
$$

such that $a_{n} \mapsto a_{n-1}$ for $n=2,3, \ldots$

The operation on $\lim A_{n}$ is the pointwise operation:

$$
\left(\ldots, a_{n}, a_{n-1}, \ldots\right)+\left(\ldots, b_{n}, b_{n-1}, \ldots\right)=\left(\ldots, a_{n}+b_{n}, a_{n-1}+b_{n-1}, \ldots\right)
$$

$$
\left(\ldots, a_{n}, a_{n-1}, \ldots\right) \cdot\left(\ldots, b_{n}, b_{n-1}, \ldots\right)=\left(\ldots, a_{n} \cdot b_{n}, a_{n-1} \cdot b_{n-1}, \ldots\right)
$$

Example. $A_{n}=k[t] /\left(t^{n}\right)=\left\{c_{n-1} t^{n-1}+\cdots+c_{1} t+c_{0}\right\}$.
$A_{n} \rightarrow A_{n-1}$ be the obvious ring homomorphism:

$$
c_{n-1} t^{n-1}+c_{n-2} t^{n-2} \cdots+c_{1} t+c_{0} \mapsto c_{n-2} t^{n-2}+\cdots+c_{1} t+c_{0}
$$

We have a chain of ring homomorphisms:

$$
\cdots \rightarrow A_{n} \rightarrow A_{n-1} \rightarrow \cdots \rightarrow A_{2} \rightarrow A_{1}
$$

The inverse limit ring $\lim _{\leftarrow} A_{n}$ is just the ring of formal power series over k :

$$
k[[t]]=\left\{\sum_{i=0}^{\infty} c_{i} t^{i}\right\}
$$

Example. Let I be a prime. $A_{n}=\mathbb{Z} / I^{n} \mathbb{Z}$, We have a chain of rings

$$
\cdots \rightarrow \mathbb{Z} / I^{n} \mathbb{Z} \rightarrow \mathbb{Z} / I^{n-1} \mathbb{Z} \rightarrow \cdots \rightarrow \mathbb{Z} / I^{2} \mathbb{Z} \rightarrow \mathbb{Z} / I \mathbb{Z}
$$

The inverse limit ring

$$
\lim _{\leftarrow} \mathbb{Z} / I^{n} \mathbb{Z}
$$

is called the ring of I-adic integers, denoted by \mathbb{Z}_{I}.

An element in $\mathbb{Z}_{\text {/ }}$ can be expressed as an infinite sum

$$
c_{0}+c_{1} I+c_{2} I^{2}+\ldots
$$

Let E be an elliptic curve, I be a prime, we have map

$$
E\left[I^{n}\right] \rightarrow E\left[I^{n-1}\right], \quad P \mapsto[I] P
$$

The inverse limit $T_{l}(E) \stackrel{\text { def }}{=} \lim _{\leftarrow} E\left[I^{n}\right]$ is an abelian group, and moreover is a \mathbb{Z}_{l}-module, because of the commutative diagram

$$
\begin{array}{rll}
\mathbb{Z} / I^{n} \mathbb{Z} \times E\left[I^{n}\right] \rightarrow & \mathbb{Z} / I^{n-1} \mathbb{Z} \times E\left[I^{n-1}\right] \\
\downarrow & \downarrow \\
E\left[I^{n}\right] \rightarrow & E\left[I^{n-1}\right]
\end{array}
$$

Proposition III 7.1.

As a \mathbb{Z}_{\jmath}-module, the Tate module has the following structure.
(a)

$$
T_{l}(E) \simeq \mathbb{Z}_{l} \times \mathbb{Z}_{l} \quad \text { if } I \neq \operatorname{char}(K)
$$

(b)

$$
T_{l}(E) \simeq \mathbb{Z}_{l} \text { or }\{0\} \quad \text { if } I=\operatorname{char}(K)
$$

Assume E is defined over K. The action of $G_{\bar{K} / K}$ on $E\left[I^{n}\right]$ commutes with the maps $[m]$, so $G_{\bar{K} / K}$ acts on the Tate module $T_{l}(E)$.

Definition. The l-adic representation of $G_{\bar{K} / K}$ on E is the map

$$
\rho_{I}: G_{\bar{K} / K} \rightarrow \operatorname{Aut}\left(T_{l}(E)\right)
$$

given above.

A similar but simpler construction is the following: Let $U\left(I^{n}\right) \subset \bar{K}^{*}$ be the subgroup given by

$$
U\left(I^{n}\right)=\left\{a \in K^{*} \mid a^{l^{n}}=1\right\} .
$$

We have group homomorphism

$$
U\left(I^{n}\right) \rightarrow U\left(I^{n-1}\right), \quad a \mapsto a^{\prime}
$$

The inverse limit $T_{l}(U) \stackrel{\text { def }}{=} \lim _{\leftarrow} E\left[I^{n}\right]$ is a \mathbb{Z}_{l} module and a l-adic representation of $G_{\bar{K} / K}$. So we have 1-dimensional representation

$$
G_{\bar{K} / K} \rightarrow \operatorname{Aut}\left(T_{l}(U)\right) \simeq \mathbb{Z}_{l}^{*}
$$

(Assume $I \neq \operatorname{char} K$)

Theorem III 7.9 (Serre)

Let K be a number field and E / K an elliptic curve without complex multiplication (i.e., $\operatorname{End}(E)=\mathbb{Z}$). Then
(a) $\rho_{l}\left(G_{\bar{K} / K}\right)$ is of finite index in $\operatorname{Aut}\left(T_{l}(E)\right)$ for all primes l.
(b) For almost all primes I,

$$
\rho_{l}\left(G_{\bar{K} / K}\right)=\operatorname{Aut}\left(T_{l}(E)\right)
$$

End

