Math 6170 C, Lecture on March 25, 2020

Yongchang Zhu

Plan

(1) Review of III § 6. Isogeny and Dual Isogeny
(2) Review of Chapter III § 7. The Tate Module
(3) Chapter III § 8. The Weil Pairing

Review of Chapter III, §6. Isogeny and Dual Isogeny.

Let E_{1}, E_{2} be elliptic curves over \bar{K}. A morphism $\phi: E_{1} \rightarrow E_{2}$ with $\phi\left(O_{1}\right)=O_{2}$ is called an isogeny.

An isogeny is a group homomorphism. The set $\operatorname{Hom}\left(E_{1}, E_{2}\right)$ is a \mathbb{Z}-module. $\operatorname{End}(E) \stackrel{\text { def }}{=} \operatorname{Hom}(E, E)$ is a ring.

For an non-constant isogeny $\phi: E_{1} \rightarrow E_{2}$, the dual isogeny is the unique isogeny $\hat{\phi}: E_{2} \rightarrow E_{1}$ such that

$$
\hat{\phi} \circ \phi=[\operatorname{deg} \phi] .
$$

The dual isogeny of [0] is defined to be [0].

The properties of dual isogeny:

Let $\phi: E_{1} \rightarrow E_{2}$ and $\lambda: E_{2} \rightarrow E_{3}$ be isogenies. Then

$$
\widehat{\lambda \circ \phi}=\hat{\phi} \circ \hat{\lambda}
$$

Let $\phi, \psi: E_{1} \rightarrow E_{2}$ be isogenies. Then

$$
\widehat{\phi+\psi}=\hat{\phi}+\hat{\psi}
$$

$$
\hat{\hat{\phi}}=\phi
$$

Corollary III 6.3.

Let E_{1}, E_{2} be elliptic curves. The degree map

$$
\operatorname{deg}: \operatorname{Hom}\left(E_{1}, E_{2}\right) \rightarrow \mathbb{Z}
$$

is a positive definite quadratic form.

Corollary III 6.4.

Let E be an elliptic curve and $m \in \mathbb{Z}, m \neq 0$. Let $E[m]=\operatorname{ker}[m]$.
(a) $\operatorname{deg}[m]=m^{2}$.
(b) If $\operatorname{char}(K)=0$ or if m is relatively prime to char K, then $E[m] \simeq \mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / m \mathbb{Z}$.
(c) If char $K=p$, then
$E\left[p^{e}\right]=\{O\}$ for all $e=1,2, \ldots$ or
$E\left[p^{e}\right]=\mathbb{Z} / p^{e} \mathbb{Z}$ for all $e=1,2, \ldots$.

Review of Chapter III. § 7. The Tate Module.

If E is defined over K, then $G_{\bar{K} / K}$ acts on $E(\bar{K})$ as automorphisms of abelian groups. So $G_{\bar{K} / K}$ acts on the group of m-torsion points $E[m]$ for each positive integer m.

Assume char $K=0$ or m is relatively prime to char K, so we have a group homomorphism

$$
G_{\bar{K} / K} \rightarrow \operatorname{Aut}(E[m]) \simeq G L_{2}(\mathbb{Z} / m \mathbb{Z})
$$

We take the inverse limit of $E\left[I^{n}\right]$ ($/$ is a prime) to get a I-adic representation of $G_{\bar{K} / K}$.

Let E be an elliptic curve, I be a prime, we have map

$$
E\left[I^{n}\right] \rightarrow E\left[I^{n-1}\right], \quad P \mapsto[I] P
$$

The inverse limit $T_{l}(E) \stackrel{\text { def }}{=} \lim _{\leftarrow} E\left[I^{n}\right]$ is an abelian group, and moreover the inverse is a $\mathbb{Z}_{\text {ן }}$ module, because of the commutative diagram

$$
\begin{array}{ccc}
\mathbb{Z} / I^{n} \mathbb{Z} \times E\left[I^{n}\right] & \rightarrow & \mathbb{Z} / I^{n-1} \mathbb{Z} \times E\left[I^{n-1}\right] \\
\downarrow & & \downarrow \\
E\left[I^{n}\right] & \rightarrow & E\left[I^{n-1}\right]
\end{array}
$$

Proposition III 7.1.

As a \mathbb{Z}_{\jmath}-module, the Tate module has the following structure.
(a)

$$
T_{l}(E) \simeq \mathbb{Z}_{l} \times \mathbb{Z}_{l} \quad \text { if } l \neq \operatorname{char}(K)
$$

(b)

$$
T_{l}(E) \simeq \mathbb{Z}_{l} \text { or }\{0\} \quad \text { if } I=\operatorname{char}(K)
$$

Assume E is defined over K. The action of $G_{\bar{K} / K}$ on $E\left[I^{n}\right]$ commutes with the maps $[m]$, so $G_{\bar{K} / K}$ acts on the Tate module $T_{l}(E)$.

Definition. The I-adic representation of $G_{\bar{K} / K}$ on E is the map

$$
\rho_{I}: G_{\bar{K} / K} \rightarrow \operatorname{Aut}\left(T_{l}(E)\right)
$$

given above.

A similar but simpler construction is the following:
Let $U\left(I^{n}\right) \subset \bar{K}^{*}$ be the subgroup given by

$$
U\left(I^{n}\right)=\left\{a \in \bar{K}^{*} \mid a^{I^{n}}=1\right\} .
$$

We have group homomorphism

$$
U\left(I^{n}\right) \rightarrow U\left(I^{n-1}\right), \quad a \mapsto a^{\prime}
$$

The inverse limit $T_{l}(U) \stackrel{\text { def }}{=} \lim _{\leftarrow} E\left[I^{n}\right]$ is a \mathbb{Z}_{l} module and a l-adic representation of $G_{\bar{K} / K}$. So we have 1-dimensional representation

$$
G_{\bar{K} / K} \rightarrow \operatorname{Aut}\left(T_{l}(U)\right) \simeq \mathbb{Z}_{l}^{*}
$$

(Assume $I \neq \operatorname{char} K$)

III § 8. The Weil Pairing.

Recall a non-constant morphism $\phi: C_{1} \rightarrow C_{2}$ induces

$$
\begin{gathered}
\phi^{*}: \operatorname{Div}\left(C_{2}\right) \rightarrow \operatorname{Div}\left(C_{1}\right) \\
\phi^{*}(Q)=\sum_{P \in \phi^{-1}(Q)} e_{\phi}(P)(P) .
\end{gathered}
$$

ϕ also induces an embedding of fields

$$
\begin{aligned}
& \phi^{*}: \bar{K}\left(C_{2}\right) \rightarrow \bar{K}\left(C_{1}\right) \\
& \left(\phi^{*} f\right)(P)=f(\phi(P)) .
\end{aligned}
$$

The two $\phi^{* \prime}$ s are compatible:

$$
\operatorname{div}\left(\phi^{*} f\right)=\phi^{*}(\operatorname{div}(f))
$$

Let m be a positive integer, assume char $K=0$ or m is relatively prime to char $K>0$. E be an elliptic curve over K. The Weil pairing is a skew-symmetric non-degenerate bilinear map

$$
E[m] \times E[m] \rightarrow \mu_{m}(\bar{K})
$$

Lemma

For every $T \in E[m]$, there is $f \in \bar{K}(E)^{*}$ such that

$$
\operatorname{div}(f)=m(T)-m(O)
$$

and $[m]^{*} f=f \circ[m]=g^{m}$ for some $g \in \bar{K}(E)$.
Proof. Recall that a divisor $\sum_{i=1}^{n} N_{i}\left(P_{i}\right) \in \operatorname{Div}^{0}(E)$ is principal iff $\sum_{i=1}^{n}\left[N_{i}\right] P_{i}=O . m(T)-m(O)$ is principal, because $[m] T-[m] O=O$.
There exists $f \in \bar{K}(E)^{*}$ such that

$$
\operatorname{div}(f)=m(T)-m(O)
$$

$[m]^{*} f(X)=f([m] X)$,

Proof (continued).

$$
\begin{aligned}
& \operatorname{div}\left([m]^{*} f\right)=[m]^{*} \operatorname{div}(f) \\
& =[m]^{*}(m(T)-m(O))=m[m]^{*}((T)-(O)) \\
& =m\left(\sum_{P \in[m]^{-1}(T)}(P)-\sum_{R \in[m]^{-1}(O)}(R)\right) \\
& \text { (we used the fact that }[m] \text { is unramified) } \\
& =m \sum_{R \in E[m]}\left(\left(R+T^{\prime}\right)-(R)\right)
\end{aligned}
$$

where $T^{\prime} \in[m]^{-1}(T)$.

Proof (continued).

The addition map $\operatorname{Div}^{0}(E) \rightarrow E$ sends

$$
\sum_{R \in E[m]}\left(\left(R+T^{\prime}\right)-(R)\right)
$$

to 0 . So there is $g \in \bar{K}(E)^{*}$ such that

$$
\operatorname{div}(g)=\sum_{R \in E[m]}\left(\left(R+T^{\prime}\right)-(R)\right)
$$

$[m]^{*} f=f \circ[m]$ and g^{m} have the same divisor. So

$$
f \circ[m]=C g^{m}
$$

for some $C \in \bar{K}^{*}$. Replace f by $C^{-1} f, C^{-1} f$ satisfies the properties in Lemma.

Now we define a pairing

$$
e_{m}: E[m] \times E[m] \rightarrow \mu_{m}(\bar{K})=\left\{u \in \bar{K} \mid u^{m}=1\right\} .
$$

by

$$
\begin{gathered}
e_{m}(S, T)=\frac{g(X+S)}{g(X)} \\
e_{m}(S, T)^{m}=\frac{g(X+S)^{m}}{g(X)^{m}}=\frac{f([m](X+S))}{f([m] X)}=\frac{f([m] X)}{f([m] X)}=1
\end{gathered}
$$

So $e_{m}(S, T) \in \mu_{m}(\bar{K})$.
g depends on S, a different choices g are related by a scalar: $g_{1}=C g_{2}$. It is easy to see e_{m} is independent of the choices of g.

Proposition III 8.1.

The m-th Weil pairing e_{m} satisfies the following properties:
(a) Bilinear:

$$
\begin{aligned}
& e_{m}\left(S_{1}+S_{2}, T\right)=e_{m}\left(S_{1}, T\right) e_{m}\left(S_{2}, T\right) \\
& e_{m}\left(S, T_{1}+T_{2}\right)=e_{m}\left(S, T_{1}\right) e_{m}\left(S, T_{2}\right)
\end{aligned}
$$

(b) Skew Symmetric:

$$
e_{m}(S, T)=e_{m}(T, S)^{-1}
$$

(c) Non-degeneracy: If $e_{m}(S, T)$ for all $S \in E[m]$, then $T=O$.

Proposition III 8.1. (continued)

(d) Galois invariance: For all $\sigma \in G_{\bar{K} / K}$,

$$
e_{m}(S, T)^{\sigma}=e_{m}\left(S^{\sigma}, T^{\sigma}\right)
$$

(e) If $S \in E\left[\mathrm{~mm}^{\prime}\right]$ and $T \in E[m]$, then

$$
e_{m m^{\prime}}(S, T)=e_{m}\left(\left[m^{\prime}\right] S, T\right)
$$

Proof of (a).

$$
\begin{aligned}
& e_{m}\left(S_{1}+S_{2}, T\right) \\
& =\frac{g\left(X+S_{1}+S_{2}\right)}{g(X)} \\
& =\frac{g\left(X+S_{1}+S_{2}\right)}{g\left(X+S_{1}\right)} \frac{g\left(X+S_{1}\right)}{g(X)} \\
& =e_{m}\left(S_{2}, T\right) e_{m}\left(S_{1}, T\right)
\end{aligned}
$$

Proof of (a) (continued).

Let $T_{1}, T_{2} \in E[m], T_{3} \stackrel{\text { def }}{=} T_{1}+T_{2}$. Choose $f_{1}, f_{2}, f_{3} \in \bar{K}(E)^{*}$ such that

$$
\operatorname{div}\left(f_{i}\right)=m\left(T_{i}\right)-m(O), \quad f_{i} \circ[m]=g_{i}^{m}
$$

Because $\left(T_{3}\right)-\left(T_{1}\right)-\left(T_{2}\right)+(O)$ is a principal divisor, there is $h \in \bar{K}(E)^{*}$ such that

$$
\begin{gathered}
\operatorname{div}(h)=\left(T_{3}\right)-\left(T_{1}\right)-\left(T_{2}\right)+(O) \\
\operatorname{div}\left(\frac{f_{3}}{f_{1} f_{2}}\right)=m \operatorname{div}(h) \\
f_{3}=c f_{1} f_{2} h^{m}
\end{gathered}
$$

Proof of (a) (continued).

$$
\begin{aligned}
& g_{3}=c^{\prime} g_{1} g_{2}(h \circ[m]) \\
& e_{m}\left(S, T_{1}+T_{2}\right)=\frac{g_{3}(X+S)}{g_{3}(X)} \\
&=\frac{g_{1}(X+S)}{g_{1}(X)} \frac{g_{2}(X+S)}{g_{2}(X)} \frac{h([m](X+S))}{h([m] X)} \\
&=e_{m}\left(S, T_{1}\right) e_{m}\left(S, T_{2}\right)
\end{aligned}
$$

Proposition III 8.2.

Let $S \in E_{1}[m], T \in E_{2}[m]$, and $\phi: E_{1} \rightarrow E_{2}$ an isogeny. Then

$$
e_{m}(\phi(S), T)=e_{m}(S, \hat{\phi}(T))
$$

Note that $\phi: E_{1}[m] \rightarrow E_{2}[m]$ because ϕ is a group homomorphism. Similarly $\hat{\phi}: E_{2}[m] \rightarrow E_{1}[m]$.

The proof uses

Claim.

$$
\phi^{*}(T)-\phi^{*}(O)-(\hat{\phi} T)+(O)
$$

is a principal divisor on E_{1}.

Proof of Claim.
Because ϕ is an isogeny, so all $e_{\phi}(P)$ are equal for all P, we denote it by e.

$$
\begin{aligned}
\phi^{*}(T)-\phi^{*}(O) & =e\left(\sum_{P \in \phi^{-1}(T)}(P)-\sum_{R \in \phi^{-1}(O)}(R)\right) \\
& =e\left(\sum_{R \in \phi^{-1}(O)}\left(R+T^{\prime}\right)-\sum_{R \in \phi^{-1}(O)}(R)\right)
\end{aligned}
$$

where T^{\prime} is a point in $\phi^{-1}(T)$. Under the map $\operatorname{Div}^{0}\left(E_{1}\right) \rightarrow E_{1}$, the above element goes to

$$
[\operatorname{deg} \phi] T^{\prime}=\hat{\phi}\left(\phi\left(T^{\prime}\right)\right)=\hat{\phi}(T)
$$

Proof of Claim (continued).

So

$$
\phi^{*}(T)-\phi^{*}(O)-(\hat{\phi} T)+(O)
$$

goes to O under the map $\operatorname{Div}^{0}\left(E_{1}\right) \rightarrow E_{1}$. This proves Claim.

Proof of $\widehat{\phi+\psi}=\hat{\phi}+\hat{\psi}$:

$$
\begin{aligned}
& e_{m}(S,(\hat{\phi}+\hat{\psi})(T)) \\
& =e_{m}(S, \hat{\phi}(T)) e_{m}(S, \hat{\psi}(T)) \\
& =e_{m}(\phi(S), T) e_{m}(\psi(S), T) \\
& =e_{m}((\phi+\psi)(S), T) \\
& =e_{m}(S, \widehat{\phi+\psi}(T))
\end{aligned}
$$

By the non-degeneracy of e_{m}, we have

$$
\widehat{\phi+\psi}(T)=(\hat{\phi}+\hat{\psi})(T)
$$

This holds for all $T \in E_{2}[m]$.

Proof of $\widehat{\phi+\psi}=\hat{\phi}+\hat{\psi}$ (continued):

So the two maps $\widehat{\phi+\psi}$ and $\hat{\phi}+\hat{\psi}$ are equal on $\cup_{m} E_{2}[m]$. The union $\cup_{m} E_{2}[m]$ is an infinite set. Any infinite set in a curve is dense. So

$$
\widehat{\phi+\psi}=\hat{\phi}+\hat{\psi}
$$

Let / be a prime number different from char K. The pairings

$$
e_{I^{n}}: E\left[I^{n}\right] \times E\left[I^{n}\right] \rightarrow \mu_{I^{n}}
$$

are compatible for different n 's in the sense that

$$
\begin{array}{rlrl}
E\left[I^{n+1}\right] & \times E\left[I^{n+1}\right] & & \xrightarrow{e_{I^{n+1}}} \mu_{I^{n+1}} \\
\downarrow[I] \times[I] & & \downarrow[I] \\
E\left[I^{n}\right] \times E\left[I^{n}\right] & & \xrightarrow{e_{l}^{n}} & \mu_{I^{n}}
\end{array}
$$

is commutative

We take the inverse limit to get the Weil pairing

$$
e: T_{l}(E) \times T_{l}(E) \rightarrow T_{l}(\mu)
$$

which is a $\mathbb{Z}_{\text {l }}$-bilinear pairing of $\mathbb{Z}_{\text {l }}$-modules.

Proposition III 8.3.

The Weil pairing

$$
e: T_{l}(E) \times T_{l}(E) \rightarrow T_{l}(\mu)
$$

is \mathbb{Z}_{l}-bilinear, alternating (=skew symmetric), non-degenerated, Galois invariant. If $\phi: E_{1} \rightarrow E_{2}$ is an isogeny, $\hat{\phi}: E_{2} \rightarrow E_{1}$ is the dual isogeny, then

$$
e(\phi(u), v)=e(u, \hat{\phi}(v))
$$

III. § 9. The Endomorphism Ring.

Let E / K be an elliptic curve. The $\operatorname{End}(E)$ has the following properties:
(1) $\operatorname{End}(E)$ is a characteristic 0 integral domain, and $\operatorname{rank}_{\mathbb{Z}} \operatorname{End}(E) \leq 4$.
(2) There is an anti-involution on $\operatorname{End}(E), \phi \mapsto \hat{\phi}$.
(3) $\phi \hat{\phi} \in \mathbb{Z}_{\geq 0}, \phi \hat{\phi}=0$ iff $\phi=0$.

The above properties implies that $\operatorname{End}(E)$ is isomorphic to one of the following rings:
(1) \mathbb{Z}.
(2) An order in a quadratic imaginary field $\mathbb{Q}(\sqrt{-d})$.
(3) An order in a quaternion algebra over \mathbb{Q}.

End

