Math 6170 C, Lecture on March 25, 2020
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(1) Review of Il § 6. Isogeny and Dual Isogeny
(2) Review of Chapter Ill § 7. The Tate Module

(3) Chapter Il § 8. The Weil Pairing
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Review of Chapter Ill, §6. Isogeny and Dual Isogeny.

Let Ey, Es be elliptic curves over K. A morphism ¢ : E; — E, with
»(01) = O, is called an isogeny.

An isogeny is a group homomorphism. The set Hom(E;, E) is a

Z-module. End(E) def Hom(E, E) is a ring.

For an non-constant isogeny ¢ : E; — Ej, the dual isogeny is the unique
isogeny ¢ : Ep — Ej such that

¢ o= [degg).

The dual isogeny of [0] is defined to be [0].
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The properties of dual isogeny:

Let ¢ : E; — E> and A : E; — E3 be isogenies. Then

— A

Aop=qol
Let ¢,% : By — E, be isogenies. Then
o+v =06+
o=0
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Corollary 111 6.3.

Let E;, E; be elliptic curves. The degree map
deg . Hom(El, E2) — 7

is a positive definite quadratic form.
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Corollary 111 6.4.

Let E be an elliptic curve and m € Z, m # 0. Let E[m] = ker [m].
(a) deg[m] = m?.

(b) If char(K) = 0 or if m is relatively prime to char K, then
E[m| ~Z/mZ x Z]mZ.

C char K = p, then
(c) If char K h

E[p¢] ={O} foralle=1,2,... or
E[p¢] =Z/p°Z for all e=1,2,....
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Review of Chapter Ill. § 7. The Tate Module.

If E is defined over K, then Gg  acts on E(K) as automorphisms of
abelian groups. So GR/K acts on the group of m-torsion points E[m] for
each positive integer m.

Assume char K = 0 or m is relatively prime to char K, so we have a group
homomorphism

Gk — Aut(E[m]) ~ GLo(Z/mZ).

We take the inverse limit of E[/"] (I is a prime) to get a /-adic
representation of GR/K-
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Let E be an elliptic curve, | be a prime, we have map
E[I"] = E[I"Y, P~—[]P
The inverse limit T;(E) et |im E[/"] is an abelian group, and moreover the
<_

inverse is a Z;-module, because of the commutative diagram
Z/)I"7 x E[I"] = Z/)I"'Z x E[I"Y]

i \
E[I" —  E[™Y
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Proposition 11l 7.1.

As a Z;-module, the Tate module has the following structure.

(a)
T(E)~7Z;xZ; ifl+# char(K)

(b)
TI(E)~Z; or {0} ifl= char(K)
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Assume E is defined over K. The action of Gg x on E[/"] commutes with
the maps [m], so Gg  acts on the Tate module T;(E).

Definition. The /-adic representation of GR/K on E is the map
pi: Gg e — Aut(Ti(E))

given above.
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A similar but simpler construction is the following:
Let U(I") € K* be the subgroup given by

U("y = {ac K* | a" =1}.

We have group homomorphism

u(m — U@, aw—a
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The inverse limit T)(U) % lim E[1"] is a 7 module and a I-adic

representation of GR/K- So we have 1-dimensional representation

Gk — Aut(T)(V)) = Zj
(Assume [ # char K)
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11 § 8. The Weil Pairing.

Recall a non-constant morphism ¢ : ¢; — C, induces

¢* : Div(G) — Div(G)

Pep—1(Q)
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¢ also induces an embedding of fields

(b* . R(CQ) — R(Cl)
(¢*F)(P) = f(&(P))-

The two ¢*'s are compatible:

div(¢*f) = ¢* (div(F)).
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Let m be a positive integer, assume char K = 0 or m is relatively prime to
char K > 0. E be an elliptic curve over K. The Weil pairing is a
skew-symmetric non-degenerate bilinear map

E[m] x E[m] = pm(K)
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Lemma

For every T € E[m], there is f € K(E)* such that
div(f) = m(T) — m(0O)
and [m]*f = f o [m] = g™ for some g € K(E).
Proof. Recall that a divisor >°7_; N;(P;) € Div®(E) is principal iff
> oiz1[Ni]P; = O. m(T) — m(0) is principal, because[m] T — [m]O = O.
There exists f € K(E)* such that

div(f) = m(T) — m(O)

[m]*f(X) = f([m]X),
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Proof (continued).

div([m]*f) = [m]*div(f)
= [m]*(m(T) — m(0)) = m[m]*((T) — (0))
m( PR SEEEDS (R))

(0)

pPe[m]—1(T) Re[m]~1(O
(we used the fact that [m] is unramified)

=m > (R+T)-(R)

ReE[m]

where T' € [m]71(T).
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Proof (continued).

The addition map Div®(E) — E sends

> (R+T)—(R)

ReE[m]

to 0. So there is g € K(E)* such that

dive)= Y ((R+T)~(R)

ReE[m]
[m]*f = f o [m] and g™ have the same divisor. So

folm=Cg"

for some C € K*. Replace f by C~1f, C~f satisfies the properties in
Lemma. U
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Now we define a pairing

em: E[m] x E[m] = um(K) ={ue K| u™=1}.

by
_ g(X+9)
en(3, T) = g(X)
o XS A(mI(X £ S)  A([mX)
m(S "= g oam (mX)  F(mx) -

So em(S, T) € um(K).
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g depends on S, a different choices g are related by a scalar: g3 = Cg». It
is easy to see e, is independent of the choices of g.
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Proposition 11l 8.1.

The m-th Weil pairing e, satisfies the following properties:
(a) Bilinear:

em(51 + 52, T) = em(Sl, T)em(Sz, T)
em(S, Ti+ T2) = em(S, T1)em(S, T2)

(b) Skew Symmetric:

em(S, T)=en(T,S)7 1

(c) Non-degeneracy: If ey,(S, T) for all S € E[m], then T = O.
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Proposition 11l 8.1. (continued)

(d) Galois invariance: For all o € Gg k.

em(S, T)? =em(S7,T7)

(e) If S € E[mm’] and T € E[m], then

emm’(Sv T) = em([ml]sv T)'
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Proof of (a).

em(51 + S, T)

B g X+5+5)

- g(X)

B g(X + 5 + 52) g(X + 51)
- g(X+5) g(X)
= em(SQ, T)em(Sl, T)
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Proof of (a) (continued).

Let T1, To € E[m], T3 & T1 + T». Choose fi, s, f; € K(E)* such that
div(f;) = m(T;) = m(0), fio[m]=g/"

Because (T3) — (T1) — (T2) + (O) is a principal divisor, there is
h € K(E)* such that

div(h) = (T3) = (T1) = (T2) + (O)

div(ffz) = mdiv(h)

fy =chfhh™
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Proof of (a) (continued).

g3 = c' gigo(ho[m])

_ s(X+9)
83(X)
_ &a(X+5) &(X +5) h(Im](X + 5))
g(X)  &(X) h([m]X)
=em(S, T1)em(S, T2)

em(S, T1+ T2)
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Proposition 11l 8.2.

Let S € E;[m], T € Ex[m], and ¢ : E; — E; an isogeny. Then

en(#(5), T) = em(S, &(T))-

Note that ¢ : E;[m] — Ex[m] because ¢ is a group homomorphism.
Similarly ¢ : Ex[m] — Ei[m].
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The proof uses
Claim.

¢"(T) = ¢*(0) = (4T) +(0)

is a principal divisor on Ej.

Proof of Claim.
Because ¢ is an isogeny, so all e,(P) are equal for all P, we denote it by e.

¢(T)=¢"(0)  =e( > (P)= > (R)

Pco~1(T) Re$=1(0)
=e( > (R+T)— > (R)
Re¢—1(0) Regp~1(0)

where T’ is a point in ¢~1(T). Under the map Div®(E;) — Ej, the above
element goes to

[deg ] T" = $(¢(T')) = &(T)
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Proof of Claim (continued).

So
¢*(T) = ¢"(0) = (T) + (0)

goes to O under the map DivO(El) — E;1. This proves Claim.
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em(S. (6 +9)(T))

= em(S, &(T))em(S, (T))
= em(¢(5), T)em(v(5), T)
—em((¢+¢)(5, )

&+ u(T) = (6+0)(T)
This holds for all T € Ex[m].
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+ 1 (continued):

So the two maps m and ¢ + v are equal on UmEz[m]. The union
UmEz[m] is an infinite set. Any infinite set in a curve is dense. So

—

¢+ =+
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Let / be a prime number different from char K. The pairings
e E[I"] x E[I"] — pyn

are compatible for different n's in the sense that

E[ln+1] % E[/n+1] m L1

UESl U

E[M < E[I"] =% o

is commutative
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We take the inverse limit to get the Weil pairing

e T/(E) X T/(E) — T/(,u)

which is a Z-bilinear pairing of Z;-modules.
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Proposition 11l 8.3.

The Weil pairing

e: T/(E) X T/(E) — T/(,u)

is Zy-bilinear, alternating (=skew symmetric), non-degenerated, Galois

invariant. If ¢ : E; — E is an isogeny, ¢ : Ep — E; is the dual isogeny,
then

A

e(¢(u), v) = e(u, o(v)).
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l1. § 9. The Endomorphism Ring.

Let E/K be an elliptic curve. The End(E) has the following properties:
(1) End(E) is a characteristic 0 integral domain, and rankz End(E) < 4.

(2) There is an anti-involution on End(E), ¢ — ¢.

(3) ¢ € Zso, ¢d = 0 iff ¢ = 0.
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The above properties implies that End(E) is isomorphic to one of the
following rings:

(1) Z.

(2) An order in a quadratic imaginary field Q(v/—d).
(3) An order in a quaternion algebra over Q.
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End
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