Math 6170 C, Lecture on March 30, 2020

Yongchang Zhu

Plan

(1) III. § 9. The Endomorphism Ring
(2) IV. A Brief Summary
(3) V. §1. The Number of Rational Points over Finite Fields

III. § 9. The Endomorphism Ring.

Recall that an anti-involution of a ring R is a map

$$
\tau: R \rightarrow R
$$

such that

$$
\begin{gathered}
\tau(a+b)=\tau(a)+\tau(b), \quad \tau(a b)=\tau(b) \tau(a), \quad \tau(1)=1 \\
\tau^{2}=\tau \circ \tau=\mathrm{Id}
\end{gathered}
$$

Example 1. $R=\mathbb{C}, \tau(z)=\bar{z}$ is an anti-involution.
Example 2. $R=M_{n}(k), n \times n$ matrices over a field k,

$$
\tau(a)=a^{T}
$$

is an anti-involution.

Let E / K be an elliptic curve. The ring $\operatorname{End}(E)$ has the following properties:
(1) $\operatorname{End}(E)$ is a characteristic 0 integral domain, and $\operatorname{rank}_{\mathbb{Z}} \operatorname{End}(E) \leq 4$.
(2) There is an anti-involution on $\operatorname{End}(E), \phi \mapsto \hat{\phi}$.
(3) $\phi \hat{\phi} \in \mathbb{Z}_{\geq 0}, \phi \hat{\phi}=0$ iff $\phi=0$.

The above properties implies that $\operatorname{End}(E)$ is isomorphic to one of the following rings:
(1) \mathbb{Z}.
(2) An order in a quadratic imaginary field $\mathbb{Q}(\sqrt{-d})$.
(3) An order in a quaternion algebra over \mathbb{Q}.

Definition. Let A be a finite dimensional \mathbb{Q}-algebra (not necessarily commutative). An order in A is a subring R (be definition, any subring contains 1) satisfying the following properties:
(1). R is a finitely generated \mathbb{Z}-module.
(2). $\operatorname{rank}_{\mathbb{Z}} R=\operatorname{dim}_{\mathbb{Q}} A$.

Example. $A=\mathbb{Q}, \mathbb{Z}$ is the unique order in \mathbb{Q}.

Example. $A=\mathbb{Q}(\sqrt{-d})$, where $d \in \mathbb{Z}_{>0}$ is a square free. $\operatorname{dim}_{\mathbb{Q}} A=2$.

For any positive integer $N, R_{N}=\mathbb{Z}+\mathbb{Z} N \sqrt{-d}$ is an order.

Example. $A=M_{2}(\mathbb{Q}), \operatorname{dim}_{\mathbb{Q}} A=4$.
$M_{2}(\mathbb{Z})$ is an order.

$$
L \stackrel{\text { def }}{=}\left\{\left.\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right) \right\rvert\, a, b, d \in \mathbb{Z}\right\}
$$

is a subring, and finitely generated as \mathbb{Z}-module, but $\operatorname{rank}_{\mathbb{Z}} L=3 \neq 4$, so it is not an order.

Definition. A definite quaternion algebra is a 4-dimensional algebra over \mathbb{Q} of the form

$$
A=\mathbb{Q}+\mathbb{Q} \alpha+\mathbb{Q} \beta+\mathbb{Q} \alpha \beta
$$

with the multiplication rules:

$$
\alpha^{2}, \beta^{2} \in \mathbb{Q}, \alpha^{2}<0, \beta^{2}<0, \alpha \beta=-\beta \alpha
$$

The above A is a division algebra over \mathbb{Q}.

Recall Hamilton's quaternion algebra is the algebra \mathbb{H} over \mathbb{R} :

$$
\mathbb{H}=\mathbb{R}+\mathbb{R} i+\mathbb{R} j+\mathbb{R} k
$$

with multiplication rules

$$
i^{2}=-1, j^{2}=-1, i j=-j i=k
$$

A realization of \mathbb{H} as a subalgebra of $M_{2}(\mathbb{C})$:

$$
\mathbb{H}=\left\{\left.\left(\begin{array}{cc}
z & w \\
-\bar{w} & \bar{z}
\end{array}\right) \right\rvert\, z, w \in \mathbb{C}\right\}
$$

$$
\begin{aligned}
1 & \mapsto\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right) \\
i & \mapsto\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right) \\
j & \mapsto\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \\
k & \mapsto\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right)
\end{aligned}
$$

Realization of A as a subring of \mathbb{H} :
Assume $\alpha^{2}=-a, \beta^{2}=-b, a \in \mathbb{Q}_{>0}, b \in \mathbb{Q}_{>0}$,

$$
\begin{aligned}
1 & \mapsto\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right) \\
\alpha & \mapsto\left(\begin{array}{cc}
\sqrt{a} i & 0 \\
0 & -\sqrt{a} i
\end{array}\right) \\
\beta & \mapsto\left(\begin{array}{cc}
0 & \sqrt{b} \\
-\sqrt{b} & 0
\end{array}\right)
\end{aligned}
$$

gives an embedding of A in $\mathbb{H} \subset M_{2}(\mathbb{C})$.

IV. The Formal Group of an Elliptic Curve. A Very Brief Summary.

Let R be a commutative ring. $R[[X]]$ be the ring of formal power series over R.
An element $c_{0}+c_{1} X+\cdots+c_{n} X^{n}+\ldots$ is a unit in $R[[X]]$ iff c_{0} is a unit in R.

If $R=k$ is a field, then (X) is the unique maximal ideal of $k[[X]]$. Frac $k[[X]]=k((X))$, the field of formal Laurent power series over k.
$R[[X, Y]]$ be the ring of formal power series of two variables over R. $R[[X, Y, Z]]$ be the ring of formal power series of three variables over R.

For k a field, $k[[X]], k[[X, Y]], k[[X, Y, Z]]$ are local rings.

Definition.

An one parameter formal group over R is a power series $F(X, Y) \in R[[X, Y]]$ satisfying
(a) $\quad F(X, Y)=X+Y+$ higher terms.
(b) (associativity) $\quad F(X, F(Y, Z))=F(F(X, Y), Z)$.
(c) (commutativity) $\quad F(X, Y)=F(Y, X)$.
(to be continued)
(d) (existence of inverse) There is a unique power series $i(X) \in R[[X]]$ such that

$$
F(X, i(X))=0
$$

(e) $F(X, 0)=X$ and $F(0, Y)=Y$.

Example. Let R be any commutative ring,

$$
F(X, Y)=X+Y
$$

is a formal group.
Example. Let R be any commutative ring,

$$
F(X, Y)=X+Y+X Y
$$

is a formal group.

The behavior of an elliptic curve near O gives a formal group.
Let E be an elliptic curve over K given by the Weierstrass equation

$$
y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

To study the solution near O, we change coordinate:

$$
z=-\frac{x}{y}, \quad w=-\frac{1}{y}
$$

z is a local uniformizer at $O . \operatorname{ord}_{O} w=3$.

The equation for E becomes

$$
\begin{equation*}
w=z^{3}+a_{1} z w+a_{2} z^{2} w+a_{3} w^{2}+a_{4} z w^{2}+a_{6} w^{3} \tag{1}
\end{equation*}
$$

We consider the solution of (1) of the form

$$
z=z_{1}, \quad w=z_{1}^{3}+A_{4} z_{1}^{4}+A_{5} z_{1}^{5}+\ldots
$$

There are unique A_{4}, A_{5}, \ldots (depending on $a_{1}, a_{2}, a_{3}, a_{4}, a_{6}$) such that

$$
\left(z_{1}, w_{1}\right)=\left(z_{1}, z_{1}^{3}+A_{4} z_{1}^{4}+A_{5} z_{1}^{5}+\ldots\right)
$$

is a solution of (1).
This is a solution in ring $K\left[\left[z_{1}\right]\right]$.

Similarly we have a unique solution in $K\left[\left[z_{2}\right]\right]$ of the form

$$
\left(z_{2}, w_{2}\right)=\left(z_{2}, z_{2}^{3}+A_{4} z_{2}^{4}+A_{5} z_{1}^{5}+\ldots\right)
$$

Given solutions $\left(z_{1}, w_{1}\right)$ and (z_{2}, w_{2}) as above, use the standard method, we get a solution $\left(z_{1}, w_{1}\right)+\left(z_{2}, w_{2}\right)$ of the form

$$
(z, w)=\left(F\left(z_{1}, z_{2}\right), w\right)
$$

$$
F\left(z_{1}, z_{2}\right)=z_{1}+z_{2}+\cdots \in K\left[\left[z_{1}, z_{2}\right]\right]
$$

This formal power series $F\left[z_{1}, z_{2}\right]$ is a formal group.

Chapter V. Elliptic Curves over Finite Fields

V. § 1. Number of Rational Points

Let K be a finite field with $|K|=q, E$ be an elliptic curve given by the Weierstrass equation

$$
y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

For each $x=a \in K$, we have a quadratic equation of y, which has at most 2-solutions. So

$$
|E(K)| \leq 2 q+1
$$

The better estimate is

$$
|E(K)| \sim q+1 .
$$

because the quadratic equation for y has $1 / 2$-chances of being solvable.

Theorem V 1.1.

Let E / K be an elliptic curves over a finite field F of q elements. Then

$$
||E(K)|-q-1| \leq 2 \sqrt{q} .
$$

Proof. The q-th power Frobenius morphism

$$
\phi: E \rightarrow E, \quad(x, y) \mapsto\left(x^{q}, y^{q}\right)
$$

$P \in E$ is in $E(K)$ iff $\phi(P)=P$ iff $(1-\phi)(P)=0$. Thus

$$
E(K)=\operatorname{ker}(1-\phi)
$$

Claim. The isogeny $1-\phi$ is separable.
Because

$$
(1-\phi)^{*} \omega=1^{*} \omega-\phi^{*} \omega=\omega \neq 0
$$

Proof (continued).

Since $1-\phi$ is separable,

$$
|E(K)|=|\operatorname{ker}(1-\phi)|=\operatorname{deg}(1-\phi)
$$

Recall deg $: \operatorname{End}(E) \rightarrow \mathbb{R}$ is a positive definite quadratic form (Corollary III 6.3), so by the following lemma

$$
|\operatorname{deg}(1-\phi)-\operatorname{deg}(1)-\operatorname{deg}(\phi)| \leq 2 \sqrt{\operatorname{deg}(1) \operatorname{deg}(\phi)}
$$

that is

$$
||E(K)|-1-q| \leq 2 \sqrt{q} .
$$

Lemma V 1.2.

Let A be an abelian group and

$$
\operatorname{deg}: A \rightarrow \mathbb{R}
$$

is a positive definite quadratic form, then for all $a, b \in A$,

$$
|\operatorname{deg}(a-b)-\operatorname{deg}(a)-\operatorname{deg}(b)| \leq 2 \sqrt{\operatorname{deg}(a) \operatorname{deg}(b)}
$$

We restrict deg to $L \stackrel{\text { def }}{=} \mathbb{Z} a+\mathbb{Z} b$, which is a positive definite quadratic form on a free abelian group of rank 1 or 2 . deg extends to an inner product on vector space $L_{\mathbb{R}}=L \otimes_{\mathbb{Z}} \mathbb{R}$. The result follows from the Cauchy-Schwartz inequality on the inner product space $L_{\mathbb{R}}$.

V. § 2. The Weil Conjectures.

Let K be a finite field with $|K|=q$. Let V be a projective variety. Let K_{n} be the degree n extension of K, so $\left|K_{n}\right|=q^{n}$.

Definition. The zeta function of V / K is the power series

$$
Z(V / K, T)=\exp \left(\sum_{n=1}^{\infty}\left|V\left(K_{n}\right)\right| \frac{T^{n}}{n}\right)
$$

$$
\begin{gathered}
\left|\mathbb{P}^{N}\left(K_{n}\right)\right|=\frac{q^{n(N+1)}-1}{q^{n}-1}=\sum_{i=0}^{N} q^{n i} \\
Z\left(\mathbb{P}^{N} / K, T\right)=\frac{1}{(1-T)(1-q T) \cdots\left(1-q^{N} T\right)} .
\end{gathered}
$$

End

