Math 6170 C, Lecture on March 4, 2020

Yongchang Zhu

Image: Image:

э

- (1) Computation of ramification index: an example
- (2). Review of Chapter II, \S 4. Differentials
- (3). Chapter II, \S 5. The Riemann-Roch Theorem

э

• • = • • = •

$$\mathcal{C}_1 = \mathbb{P}^1(ar{\mathcal{K}})$$
 with the function field $ar{\mathcal{K}}(\mathcal{C}_1) = ar{\mathcal{K}}(X)$;

$$\mathcal{C}_2 = \mathbb{P}^1(ar{K})$$
 with the function field $ar{K}(\mathcal{C}_2) = ar{K}(Y)$

A morphism

$$\phi: C_1 \to C_2, \quad Y = \phi(X) = f(X)$$

where $f(X) = \frac{M(X)}{N(X)} \in \mathbb{C}(X)$,
where $M(X), N(X) \in \overline{K}[x]$ are relatively prime polynomials

æ

If $a \in \overline{K}$ satisfies $N(a) \neq 0$, then $\phi(a) = \frac{M(a)}{N(a)}$.

If $a \in \overline{K}$ satisfies N(a) = 0, then $\phi(a) = \infty$.

If $a = \infty$, $\deg M > \deg N$, then $\phi(a) = \infty$

If
$$a=\infty$$
, $\deg M < \deg N$, then $\phi(a)=0$

If $a = \infty$, deg $M = \deg N$, then $\phi(a) = \frac{c}{d}$, where c is the leading coefficient of M and d is the leading coefficient of N.

So formally we have

$$\phi(\infty) = \lim_{a \to \infty} \frac{M(a)}{N(a)}.$$

The corresponding field embedding ϕ^* : $\bar{K}(C_2) = \bar{K}(Y) \rightarrow \bar{K}(C_1) = \bar{K}(X)$ is

$$Y \mapsto rac{M(X)}{N(X)}.$$

 $h(Y) \mapsto h\left(rac{M(X)}{N(X)}
ight)$

æ

イロト 不得 トイヨト イヨト

How do we compute ramification indices $e_{\phi}(a)$?

Assume
$$a\inar{K}$$
 and $\phi(a)\inar{K}.$
Take a uniformizer at $\phi(a)$, say $Y-\phi(a)=Y-rac{M(a)}{N(a)}$,

By the definition of $e_{\phi}(a)$, we have

$$e_{\phi}(a) = \operatorname{ord}_{a}(\phi^{*}(Y - \phi(a)))$$

æ

$$\phi^*(Y - \phi(a)) = \frac{M(X)}{N(X)} - \frac{M(a)}{N(a)}$$
$$= \frac{N(a)M(X) - M(a)N(X)}{N(a)N(X)}$$

$$\begin{split} e_{\phi}(a) &= \operatorname{ord}_{a}\left(\phi^{*}(Y - \phi(a))\right) \\ &= \operatorname{ord}_{a}\left(N(a)M(X) - M(a)N(X)\right) - \operatorname{ord}_{a}(N(a)N(X)) \\ &= \operatorname{ord}_{a}\left(N(a)M(X) - M(a)N(X)\right) \end{split}$$

・ロト・西ト・モート モー シタク

How to compute $e_{\phi}(\infty)$?

Case 1. $\phi(\infty) \in b \in \overline{K}$ Case 2. $\phi(\infty) = \infty \in \overline{K}$

Case 1. A uniformizer of *b* is Y - b, compute $\operatorname{ord}_{\infty}(\frac{M(X)}{N(X)} - b)$ Case 2. A uniformizer of ∞ is Y^{-1} , compute $\operatorname{ord}_{\infty}(\frac{N(X)}{M(X)})$ **Definition.** Let *C* be a curve. The space of meromorphic differential forms on *C*, denoted by Ω_C , is the $\overline{K}(C)$ -vector space generated by symbols of the form *df* for $f \in \overline{K}(C)$, subject to the following three relations:

(1).
$$d(f + g) = df + dg$$

(2) $d(fg) = gdf + fdg$
(3) $da = 0$ for $a \in \overline{K}$.

The following formula is useful: suppose $X, Y \in \overline{K}(C)$,

$$d(X^mY^n) = mX^{m-1}Y^n dX + nX^mY^{n-1}dY$$

More generally, for a polynomial P(X, Y) of X, Y, we have

$$dP(X,Y) = \partial_X P(X,Y) dX + \partial_Y P(X,Y) dy.$$

4 B K 4 B K

The same formula holds for P(X, Y) a rational expression of X and Y.

æ

メロト メポト メヨト メヨト

Let C be a curve.

(a) Ω_C is a 1-dimensional $\overline{K}(C)$ -vector space.

æ

A B M A B M

(b) Let $x \in \overline{K}(C)$. Then dx is a $\overline{K}(C)$ basis for Ω_C iff $\overline{K}(C)/\overline{K}(x)$ is a finite separable extension.

- E > - E >

(c) Let $\phi: C_1 \to C_2$ be a non-constant morphism. Then ϕ is separable (equivalently $\bar{K}(C_1)/\bar{K}(C_2)$ is a separable extension) iff

$$\phi^*: \Omega_{C_2} \to \Omega_{C_1}$$

is injective.

• • = • • = •

Let $P \in C$, t be a uniformizer at P.

(a) For any $\omega \in \Omega_C$, there exists a unique $g \in \bar{K}(C)$ such that

 $\omega = gdt$

We denote g by $\frac{\omega}{dt}$.

э

• = • • = •

(b) If $f \in \overline{K}(C)$ is regular at P, then $\frac{df}{dt}$ is regular at P.

・ 同 ト ・ ヨ ト ・ ヨ ト

(c) The quantity $\operatorname{ord}_P(\omega/dt)$ is independent of t. We call it the order of ω at P and denote it by $\operatorname{ord}_P(\omega)$.

4 3 4 3 4 3 4

(d) Let $x \in \overline{K}(C)$ such that $\overline{K}(C)/\overline{K}(x)$ is separable and x(P) = 0. Then for all $f \in \overline{K}(C)$,

$$\operatorname{ord}_P(\operatorname{fd} x) = \operatorname{ord}_P(f) + \operatorname{ord}_P(x) - 1.$$

(e) For all but finitely many $P \in C$,

 $\operatorname{ord}_{P}(\omega) = 0.$

A B M A B M

Let $\omega \in \Omega_C$, $\omega \neq 0$. The divisor associated to ω is

$$\operatorname{div}(\omega) = \sum_{P \in \mathcal{C}} \operatorname{ord}_P(\omega)(P) \in \operatorname{Div}(\mathcal{C})$$

2

A differential $\omega \in \Omega_C$ is regular (or holomorphic) if

 $\operatorname{ord}_{P}\omega \geq 0$ for all $P \in C$.

2

It is clear that

$$\operatorname{div}(f\omega) = \operatorname{div}(f) + \operatorname{div}(\omega).$$

If ω_1, ω_2 are nonzero elements in Ω_C , then

 $\operatorname{div}(\omega_1) - \operatorname{div}(\omega_2)$

is a principal divisor. The image of $\operatorname{div}(\omega)$ in $\operatorname{Pic}(\mathcal{C})$ is independent of the choice of nonzer0 $\omega \in \Omega_{\mathcal{C}}$, we call the **canonical divisor class** on \mathcal{C} . Any divisor in this divisor class is called a **canonical divisor**.

Example:
$$C = \mathbb{P}^1(\overline{K}), \ \overline{K}(C) = \overline{K}(X).$$

$$dX \in \Omega_C$$

For $a \in \bar{K} \subset \mathbb{P}^1(\bar{K})$, X - a is a uniformizer at a,

$$d(X-a) = dX - da = dX$$

$$\operatorname{ord}_a(dX) = 0$$

		ng	

æ

| ◆ 臣 ▶ | ◆ 臣 ▶

$$t \stackrel{\text{def}}{=} \frac{1}{X}$$
 is a uniformizer at ∞ , so

$$dt = d(\frac{1}{X}) = -\frac{1}{X^2}dX, \quad dX = -X^2dt$$

$$\operatorname{ord}_{\infty}(dX) = \operatorname{ord}_{\infty}(-X^2) = \operatorname{ord}_{\infty}(X^2) = -2.$$

 $-2(\infty)$ is a canonical divisor of $\mathbb{P}^1(\bar{K})$.

2

Let *C* be a curve. We define a partial order on Div(C):

$$D = \sum n_P(P) \ge 0$$
 iff all $n_P \ge 0$

 $D_1 \geq D_2 \quad \text{iff } D_1 - D_2 \geq 0.$

- 4 四 ト - 4 回 ト

Example.
$$D_1 = 2(P_1) - 3(P_2) + 10(P_3)$$

 $D_2 = (P_1) - 5(P_2) + 9(P_3)$
 $D_3 = 3(P_1) + 9(P_3)$

$D_1\geq D_2, \quad D_3\geq D_2,$

 D_1 and D_3 are not comparable.

3

For $D \in Div(C)$, we associate to D the space of functions

$$\mathcal{L}(D) \stackrel{\mathrm{def}}{=} \{ f \in \bar{K}(C)^* \, | \operatorname{div}(f) \geq D \} \cup \{ 0 \}$$

equivalently

$$\mathcal{L}(D) \stackrel{\mathrm{def}}{=} \{ f \in \bar{K}(C) \, | \, \mathrm{div}(f) \geq D \}$$

here we use the convention that $\operatorname{div}(0) = \sum_{P} \infty(p) > D$ for any $D \in \operatorname{Div}(C)$.

æ

イロト 不得 トイヨト イヨト

 $\mathcal{L}(D)$ is a vector space over \bar{K} ,

because $\operatorname{div}(cf) = \operatorname{div}(f)$ for $c \in \overline{K}^*$.

 $\operatorname{ord}_P(f+g) \ge \min(\operatorname{ord}_P(f), \operatorname{ord}_P(g))$

implies that $\mathcal{L}(D)$ is closed under +.

э

▶ ▲ 臣 ▶ ▲ 臣 ▶ …

Example.
$$C = \mathbb{P}^1(\bar{K}), \quad D = 3(1) - (2)$$

$$\mathcal{L}(D) = \{f \in \overline{K}(X) \,|\, \mathrm{ord}_1(f) \geq -3, \,\, \mathrm{ord}_2(f) \geq 1, \,\, \mathrm{ord}_P(f) \geq 0 \mathrm{for} \,\, P \neq 1, 2\}$$

$$\mathcal{L}(D) = \{rac{(X-2)(aX^2+bX+c)}{(X-1)^3} \mid a,b,c \in ar{K}\}$$

・ロト・西ト・モート モー シタク

Let $D \in \text{Div}(C)$. $I(D) = \dim_{\tilde{K}} \mathcal{L}(D)$

(a) If deg D < 0, then $\mathcal{L}(D) = \{0\}$, I(D) = 0.

Proof. If not, there is $f \in \overline{K}(C)^*$, $\operatorname{div}(f) \geq -D$, this implies

$$0 = \deg(\operatorname{div}(f)) \ge \deg(-D) = -\deg(D) > 0$$

Contradiction.

(b) $\dim_{\bar{K}} \mathcal{L}(D) < \infty$

æ

(c) D_1 and D_2 are linearly equivalent, i.e., $D_1 = D_2 + \operatorname{div}(g)$ for some $f \in \overline{K}(C)^*$, then

$$\mathcal{L}(D_1)\sim\mathcal{L}(D_2), \quad l(D_1)=l(D_2)$$

Proof. The linear map

$$\mathcal{L}(D_1) o \mathcal{L}(D_2), \; ; f \mapsto fg$$

is an isomorphism.

Let $\omega \in \Omega_C$, $\omega \neq 0$, so $K = \operatorname{div}(\omega)$ is a canonical divisor.

$$egin{aligned} \mathcal{L}(\mathcal{K}) &= \{f \in ar{\mathcal{K}}(\mathcal{C}) \mid \operatorname{div}(f) \geq -\operatorname{div}(\omega) \} \ &= \{f \in ar{\mathcal{K}}(\mathcal{C}) \mid \operatorname{div}(f\omega) \geq 0 \} \end{aligned}$$

So $\mathcal{L}(\mathcal{K})\omega$ is the space of holomorphic differentials on C.

æ

Let C be a smooth curve, the **genus of** C, denoted by g, is defined to be

 $g \stackrel{\mathrm{def}}{=} I(K)$

The genus is equal to the dimension of the space of holomorphic differentials on C.

- E - - E -

Let C be a smooth curve and K be a canonical divisor on C. Then for every divisor D,

$$l(D) - l(K - D) = \deg D + 1 - g$$

∃ ► < ∃ ►

Let K be a canonical divisor of C, then

$$\deg K = 2g - 2$$

If deg D > 2g - 2, then

$$I(D) = \deg D + 1 - g.$$

æ

In
$$I(D) - I(K - D) = \deg D + 1 - g$$

we take $D = K$, we get

$$g - 1 = \deg K + 1 - g, \quad \deg K = 2g - 2$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - の々で

For $C = \mathbb{P}^1$, $K = -2(\infty)$ is a canonical divisor, so

$$\deg K = -2$$

The formula $\deg K = 2g - 2$ implies that g = 0.

The genus of \mathbb{P}^1 is 0.

3

イロン イヨン イヨン

If the smooth curve C is defined over K, $D \in Div_{K}(C)$, then $\mathcal{L}(D)$ has a basis consisting of functions on K(C).

- E > - E >

End

æ

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ -