Math 6170 C, Lecture on March 4, 2020

Yongchang Zhu

Plan.

(1) Computation of ramification index: an example
(2). Review of Chapter II, § 4. Differentials
(3). Chapter II, § 5. The Riemann-Roch Theorem

Computation of ramification index: an example

$C_{1}=\mathbb{P}^{1}(\bar{K})$ with the function field $\bar{K}\left(C_{1}\right)=\bar{K}(X) ;$
$C_{2}=\mathbb{P}^{1}(\bar{K})$ with the function field $\bar{K}\left(C_{2}\right)=\bar{K}(Y)$
A morphism

$$
\phi: C_{1} \rightarrow C_{2}, \quad Y=\phi(X)=f(X)
$$

where $f(X)=\frac{M(X)}{N(X)} \in \mathbb{C}(X)$,
where $M(X), N(X) \in \bar{K}[x]$ are relatively prime polynomials.

If $a \in \bar{K}$ satisfies $N(a) \neq 0$, then $\phi(a)=\frac{M(a)}{N(a)}$.
If $a \in \bar{K}$ satisfies $N(a)=0$, then $\phi(a)=\infty$.
If $a=\infty, \operatorname{deg} M>\operatorname{deg} N$, then $\phi(a)=\infty$
If $a=\infty, \operatorname{deg} M<\operatorname{deg} N$, then $\phi(a)=0$
If $a=\infty, \operatorname{deg} M=\operatorname{deg} N$, then $\phi(a)=\frac{c}{d}$,
where c is the leading coefficient of M and d is the leading coefficient of N.

So formally we have

$$
\phi(\infty)=\lim _{a \rightarrow \infty} \frac{M(a)}{N(a)}
$$

The corresponding field embedding $\phi^{*}: \bar{K}\left(C_{2}\right)=\bar{K}(Y) \rightarrow \bar{K}\left(C_{1}\right)=\bar{K}(X)$ is

$$
\begin{gathered}
Y \mapsto \frac{M(X)}{N(X)} \\
h(Y) \mapsto h\left(\frac{M(X)}{N(X)}\right)
\end{gathered}
$$

How do we compute ramification indices $e_{\phi}(a)$?
Assume $a \in \bar{K}$ and $\phi(a) \in \bar{K}$.
Take a uniformizer at $\phi(a)$, say $Y-\phi(a)=Y-\frac{M(a)}{N(a)}$,
By the definition of $e_{\phi}(a)$, we have

$$
e_{\phi}(a)=\operatorname{ord}_{a}\left(\phi^{*}(Y-\phi(a))\right)
$$

$$
\begin{aligned}
\phi^{*}(Y-\phi(a)) & =\frac{M(X)}{N(X)}-\frac{M(a)}{N(a)} \\
& =\frac{N(a) M(X)-M(a) N(X)}{N(a) N(X)}
\end{aligned}
$$

$$
\begin{aligned}
e_{\phi}(a) \quad & =\operatorname{ord}_{a}\left(\phi^{*}(Y-\phi(a))\right) \\
& =\operatorname{ord}_{a}(N(a) M(X)-M(a) N(X))-\operatorname{ord}_{a}(N(a) N(X)) \\
& =\operatorname{ord}_{a}(N(a) M(X)-M(a) N(X))
\end{aligned}
$$

How to compute $e_{\phi}(\infty)$?
Case 1. $\phi(\infty) \in b \in \bar{K}$
Case 2. $\phi(\infty)=\infty \in \bar{K}$
Case 1. A uniformizer of b is $Y-b$, compute $\operatorname{ord}_{\infty}\left(\frac{M(X)}{N(X)}-b\right)$
Case 2. A uniformizer of ∞ is Y^{-1}, compute $\operatorname{ord}_{\infty}\left(\frac{N(X)}{M(X)}\right)$

Review of Chapter II. § 4. Differentials

Definition. Let C be a curve. The space of meromorphic differential forms on C, denoted by Ω_{C}, is the $\bar{K}(C)$-vector space generated by symbols of the form $d f$ for $f \in \bar{K}(C)$, subject to the following three relations:
(1). $d(f+g)=d f+d g$
(2) $d(f g)=g d f+f d g$
(3) $d a=0$ for $a \in \bar{K}$.

The following formula is useful: suppose $X, Y \in \bar{K}(C)$,

$$
d\left(X^{m} Y^{n}\right)=m X^{m-1} Y^{n} d X+n X^{m} Y^{n-1} d Y
$$

More generally, for a polynomial $P(X, Y)$ of X, Y, we have

$$
d P(X, Y)=\partial_{X} P(X, Y) d X+\partial_{Y} P(X, Y) d y
$$

The same formula holds for $P(X, Y)$ a rational expression of X and Y.

Proposition 4.2.

Let C be a curve.
(a) Ω_{C} is a 1-dimensional $\bar{K}(C)$-vector space.

Proposition 4.2 (continued).

(b) Let $x \in \bar{K}(C)$. Then $d x$ is a $\bar{K}(C)$ basis for Ω_{C} iff $\bar{K}(C) / \bar{K}(x)$ is a finite separable extension.

Proposition 4.2 (continued).

(c) Let $\phi: C_{1} \rightarrow C_{2}$ be a non-constant morphism. Then ϕ is separable (equivalently $\bar{K}\left(C_{1}\right) / \bar{K}\left(C_{2}\right)$ is a separable extension) iff

$$
\phi^{*}: \Omega_{C_{2}} \rightarrow \Omega_{C_{1}}
$$

is injective.

Proposition 4.3.

Let $P \in C, t$ be a uniformizer at P.
(a) For any $\omega \in \Omega_{C}$, there exists a unique $g \in \bar{K}(C)$ such that

$$
\omega=g d t
$$

We denote g by $\frac{\omega}{d t}$.

Proposition 4.3 (continued).

(b) If $f \in \bar{K}(C)$ is regular at P, then $\frac{d f}{d t}$ is regular at P.

Proposition 4.3 (continued).

(c) The quantity $\operatorname{ord}_{p}(\omega / d t)$ is independent of t. We call it the order of ω at P and denote it by $\operatorname{ord}_{P}(\omega)$.

Proposition 4.3 (continued).

(d) Let $x \in \bar{K}(C)$ such that $\bar{K}(C) / \bar{K}(x)$ is separable and $x(P)=0$. Then for all $f \in \bar{K}(C)$,

$$
\operatorname{ord}_{P}(f d x)=\operatorname{ord}_{P}(f)+\operatorname{ord}_{P}(x)-1
$$

(e) For all but finitely many $P \in C$,

$$
\operatorname{ord}_{P}(\omega)=0
$$

Definition.

Let $\omega \in \Omega_{C}, \omega \neq 0$. The divisor associated to ω is

$$
\operatorname{div}(\omega)=\sum_{P \in C} \operatorname{ord}_{P}(\omega)(P) \in \operatorname{Div}(C)
$$

Definition.

A differential $\omega \in \Omega_{C}$ is regular (or holomorphic) if

$$
\operatorname{ord}_{P} \omega \geq 0 \quad \text { for all } P \in C
$$

It is clear that

$$
\operatorname{div}(f \omega)=\operatorname{div}(f)+\operatorname{div}(\omega)
$$

If ω_{1}, ω_{2} are nonzero elements in Ω_{C}, then

$$
\operatorname{div}\left(\omega_{1}\right)-\operatorname{div}\left(\omega_{2}\right)
$$

is a principal divisor. The image of $\operatorname{div}(\omega)$ in $\operatorname{Pic}(C)$ is independent of the choice of nonzer0 $\omega \in \Omega_{C}$, we call the canonical divisor class on C. Any divisor in this divisor class is called a canonical divisor.

Example: $C=\mathbb{P}^{1}(\bar{K}), \bar{K}(C)=\bar{K}(X)$.

$$
d X \in \Omega_{C}
$$

For $a \in \bar{K} \subset \mathbb{P}^{1}(\bar{K}), X-a$ is a uniformizer at a,

$$
\begin{gathered}
d(X-a)=d X-d a=d X \\
\operatorname{ord}_{a}(d X)=0
\end{gathered}
$$

$t \stackrel{\text { def }}{=} \frac{1}{X}$ is a uniformizer at ∞, so

$$
d t=d\left(\frac{1}{X}\right)=-\frac{1}{X^{2}} d X, \quad d X=-X^{2} d t
$$

$$
\operatorname{ord}_{\infty}(d X)=\operatorname{ord}_{\infty}\left(-X^{2}\right)=\operatorname{ord}_{\infty}\left(X^{2}\right)=-2
$$

$-2(\infty)$ is a canonical divisor of $\mathbb{P}^{1}(\bar{K})$.

Chapter II. § 5. Riemann-Roch Theorem

Let C be a curve. We define a partial order on $\operatorname{Div}(C)$:

$$
D=\sum n_{P}(P) \geq 0 \quad \text { iff all } n_{P} \geq 0
$$

$$
D_{1} \geq D_{2} \quad \text { iff } D_{1}-D_{2} \geq 0
$$

Example. $D_{1}=2\left(P_{1}\right)-3\left(P_{2}\right)+10\left(P_{3}\right)$
$D_{2}=\left(P_{1}\right)-5\left(P_{2}\right)+9\left(P_{3}\right)$
$D_{3}=3\left(P_{1}\right)+9\left(P_{3}\right)$

$$
D_{1} \geq D_{2}, \quad D_{3} \geq D_{2}
$$

D_{1} and D_{3} are not comparable.

Definition.

For $D \in \operatorname{Div}(C)$, we associate to D the space of functions

$$
\mathcal{L}(D) \stackrel{\text { def }}{=}\left\{f \in \bar{K}(C)^{*} \mid \operatorname{div}(f) \geq D\right\} \cup\{0\}
$$

equivalently

$$
\mathcal{L}(D) \stackrel{\text { def }}{=}\{f \in \bar{K}(C) \mid \operatorname{div}(f) \geq D\}
$$

here we use the convention that $\operatorname{div}(0)=\sum_{P} \infty(p)>D$ for any $D \in \operatorname{Div}(C)$.
$\mathcal{L}(D)$ is a vector space over \bar{K},
because $\operatorname{div}(c f)=\operatorname{div}(f)$ for $c \in \bar{K}^{*}$.

$$
\operatorname{ord}_{P}(f+g) \geq \min \left(\operatorname{ord}_{P}(f), \operatorname{ord}_{P}(g)\right)
$$

implies that $\mathcal{L}(D)$ is closed under + .

Example. $C=\mathbb{P}^{1}(\bar{K}), \quad D=3(1)-(2)$
$\mathcal{L}(D)=\left\{f \in \bar{K}(X) \mid \operatorname{ord}_{1}(f) \geq-3, \operatorname{ord}_{2}(f) \geq 1, \operatorname{ord}_{P}(f) \geq 0\right.$ for $\left.P \neq 1,2\right\}$

$$
\mathcal{L}(D)=\left\{\left.\frac{(X-2)\left(a X^{2}+b X+c\right)}{(X-1)^{3}} \right\rvert\, a, b, c \in \bar{K}\right\}
$$

Proposition 5.2.

Let $D \in \operatorname{Div}(C) . I(D)=\operatorname{dim}_{\bar{K}} \mathcal{L}(D)$
(a) If $\operatorname{deg} D<0$, then $\mathcal{L}(D)=\{0\}, I(D)=0$.

Proof. If not, there is $f \in \bar{K}(C)^{*}, \operatorname{div}(f) \geq-D$, this implies

$$
0=\operatorname{deg}(\operatorname{div}(f)) \geq \operatorname{deg}(-D)=-\operatorname{deg}(D)>0
$$

Contradiction.

Proposition 5.2 (continued).

(b) $\operatorname{dim}_{\bar{K}} \mathcal{L}(D)<\infty$

Proposition 5.2 (continued).

(c) D_{1} and D_{2} are linearly equivalent, i.e., $D_{1}=D_{2}+\operatorname{div}(g)$ for some $f \in \bar{K}(C)^{*}$, then

$$
\mathcal{L}\left(D_{1}\right) \sim \mathcal{L}\left(D_{2}\right), \quad I\left(D_{1}\right)=I\left(D_{2}\right)
$$

Proof. The linear map

$$
\mathcal{L}\left(D_{1}\right) \rightarrow \mathcal{L}\left(D_{2}\right), ; f \mapsto f g
$$

is an isomorphism.

Let $\omega \in \Omega_{C}, \omega \neq 0$, so $K=\operatorname{div}(\omega)$ is a canonical divisor.

$$
\begin{aligned}
\mathcal{L}(K) & =\{f \in \bar{K}(C) \mid \operatorname{div}(f) \geq-\operatorname{div}(\omega)\} \\
& =\{f \in \bar{K}(C) \mid \operatorname{div}(f \omega) \geq 0\}
\end{aligned}
$$

So $\mathcal{L}(K) \omega$ is the space of holomorphic differentials on C.

Definition

Let C be a smooth curve, the genus of C, denoted by g, is defined to be

$$
g \stackrel{\text { def }}{=} I(K)
$$

The genus is equal to the dimension of the space of holomorphic differentials on C.

Theorem 5.4. Riemann-Roch Theorem.

Let C be a smooth curve and K be a canonical divisor on C. Then for every divisor D,

$$
I(D)-I(K-D)=\operatorname{deg} D+1-g
$$

Corollary 5.5.

Let K be a canonical divisor of C, then

$$
\operatorname{deg} K=2 g-2
$$

If $\operatorname{deg} D>2 g-2$, then

$$
I(D)=\operatorname{deg} D+1-g
$$

Proof.

$\ln I(D)-I(K-D)=\operatorname{deg} D+1-g$
we take $D=K$, we get

$$
g-1=\operatorname{deg} K+1-g, \quad \operatorname{deg} K=2 g-2
$$

For $C=\mathbb{P}^{1}, K=-2(\infty)$ is a canonical divisor, so

$$
\operatorname{deg} K=-2
$$

The formula $\operatorname{deg} K=2 g-2$ implies that $g=0$.
The genus of \mathbb{P}^{1} is 0 .

Proposition 5.8.

If the smooth curve C is defined over $K, D \in \operatorname{Div}_{K}(C)$, then $\mathcal{L}(D)$ has a basis consisting of functions on $K(C)$.

End

