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Plan.

(1) Computation of ramification index: an example

(2). Review of Chapter II, § 4. Differentials

(3). Chapter II, § 5. The Riemann-Roch Theorem
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Computation of ramification index: an example

C1 = P1(K̄ ) with the function field K̄ (C1) = K̄ (X );

C2 = P1(K̄ ) with the function field K̄ (C2) = K̄ (Y )

A morphism

φ : C1 → C2, Y = φ(X ) = f (X )

where f (X ) = M(X )
N(X ) ∈ C(X ),

where M(X ),N(X ) ∈ K̄ [x ] are relatively prime polynomials.
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If a ∈ K̄ satisfies N(a) 6= 0, then φ(a) = M(a)
N(a) .

If a ∈ K̄ satisfies N(a) = 0, then φ(a) =∞.

If a =∞, degM > degN, then φ(a) =∞

If a =∞, degM < degN, then φ(a) = 0

If a =∞, degM = degN, then φ(a) = c
d ,

where c is the leading coefficient of M and d is the leading coefficient of
N.

Yongchang Zhu Short title 4 / 39



So formally we have

φ(∞) = lim
a→∞

M(a)

N(a)
.

The corresponding field embedding φ∗ : K̄ (C2) = K̄ (Y )→ K̄ (C1) = K̄ (X )
is

Y 7→ M(X )

N(X )
.

h(Y ) 7→ h

(
M(X )

N(X )

)
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How do we compute ramification indices eφ(a)?

Assume a ∈ K̄ and φ(a) ∈ K̄ .

Take a uniformizer at φ(a), say Y − φ(a) = Y − M(a)
N(a) ,

By the definition of eφ(a), we have

eφ(a) = orda (φ∗(Y − φ(a)))
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φ∗(Y − φ(a)) =
M(X )

N(X )
− M(a)

N(a)

=
N(a)M(X )−M(a)N(X )

N(a)N(X )

eφ(a) = orda (φ∗(Y − φ(a)))

= orda (N(a)M(X )−M(a)N(X ))− orda(N(a)N(X ))

= orda (N(a)M(X )−M(a)N(X ))
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How to compute eφ(∞) ?

Case 1. φ(∞) ∈ b ∈ K̄
Case 2. φ(∞) =∞ ∈ K̄

Case 1. A uniformizer of b is Y − b, compute ord∞(M(X )
N(X ) − b)

Case 2. A uniformizer of ∞ is Y−1, compute ord∞( N(X )
M(X ) )
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Review of Chapter II. § 4. Differentials

Definition. Let C be a curve. The space of meromorphic differential forms
on C , denoted by ΩC , is the K̄ (C )-vector space generated by symbols of
the form df for f ∈ K̄ (C ), subject to the following three relations:

(1). d(f + g) = df + dg

(2) d(fg) = gdf + fdg

(3) da = 0 for a ∈ K̄ .
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The following formula is useful:
suppose X ,Y ∈ K̄ (C ),

d(XmY n) = mXm−1Y ndX + nXmY n−1dY

More generally, for a polynomial P(X ,Y ) of X ,Y , we have

dP(X ,Y ) = ∂XP(X ,Y )dX + ∂YP(X ,Y )dy .
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The same formula holds for P(X ,Y ) a rational expression of X and Y .
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Proposition 4.2.

Let C be a curve.

(a) ΩC is a 1-dimensional K̄ (C )-vector space.
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Proposition 4.2 (continued).

(b) Let x ∈ K̄ (C ). Then dx is a K̄ (C ) basis for ΩC iff K̄ (C )/K̄ (x) is a
finite separable extension.
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Proposition 4.2 (continued).

(c) Let φ : C1 → C2 be a non-constant morphism. Then φ is separable (
equivalently K̄ (C1)/K̄ (C2) is a separable extension) iff

φ∗ : ΩC2 → ΩC1

is injective.
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Proposition 4.3.

Let P ∈ C , t be a uniformizer at P.

(a) For any ω ∈ ΩC , there exists a unique g ∈ K̄ (C ) such that

ω = gdt

We denote g by ω
dt .
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Proposition 4.3 (continued).

(b) If f ∈ K̄ (C ) is regular at P, then df
dt is regular at P.
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Proposition 4.3 (continued).

(c) The quantity ordP(ω/dt) is independent of t. We call it the order of ω
at P and denote it by ordP(ω).
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Proposition 4.3 (continued).

(d) Let x ∈ K̄ (C ) such that K̄ (C )/K̄ (x) is separable and x(P) = 0. Then
for all f ∈ K̄ (C ),

ordP(fdx) = ordP(f ) + ordP(x)− 1.

(e) For all but finitely many P ∈ C ,

ordP(ω) = 0.
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Definition.

Let ω ∈ ΩC , ω 6= 0. The divisor associated to ω is

div(ω) =
∑
P∈C

ordP(ω)(P) ∈ Div(C )
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Definition.

A differential ω ∈ ΩC is regular (or holomorphic) if

ordPω ≥ 0 for all P ∈ C .
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It is clear that
div(f ω) = div(f ) + div(ω).

If ω1, ω2 are nonzero elements in ΩC , then

div(ω1)− div(ω2)

is a principal divisor. The image of div(ω) in Pic(C ) is independent of the
choice of nonzer0 ω ∈ ΩC , we call the canonical divisor class on C . Any
divisor in this divisor class is called a canonical divisor.
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Example: C = P1(K̄ ), K̄ (C ) = K̄ (X ).

dX ∈ ΩC

For a ∈ K̄ ⊂ P1(K̄ ), X − a is a uniformizer at a,

d(X − a) = dX − da = dX

orda(dX ) = 0
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t
def
= 1

X is a uniformizer at ∞, so

dt = d(
1

X
) = − 1

X 2
dX , dX = −X 2dt

ord∞(dX ) = ord∞ (−X 2) = ord∞ (X 2) = −2.

−2(∞) is a canonical divisor of P1(K̄ ).
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Chapter II. § 5. Riemann-Roch Theorem

Let C be a curve. We define a partial order on Div(C ):

D =
∑

nP(P) ≥ 0 iff all nP ≥ 0

D1 ≥ D2 iff D1 − D2 ≥ 0.
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Example. D1 = 2(P1)− 3(P2) + 10(P3)

D2 = (P1)− 5(P2) + 9(P3)

D3 = 3(P1) + 9(P3)

D1 ≥ D2, D3 ≥ D2,

D1 and D3 are not comparable.
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Definition.

For D ∈ Div(C ), we associate to D the space of functions

L(D)
def
= {f ∈ K̄ (C )∗ | div(f ) ≥ D} ∪ {0}

equivalently

L(D)
def
= {f ∈ K̄ (C ) |div(f ) ≥ D}

here we use the convention that div(0) =
∑

P∞(p) > D for any
D ∈ Div(C ).
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L(D) is a vector space over K̄ ,

because div(cf ) = div(f ) for c ∈ K̄ ∗.

ordP(f + g) ≥ min(ordP(f ), ordP(g))

implies that L(D) is closed under +.
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Example. C = P1(K̄ ), D = 3(1)− (2)

L(D) = {f ∈ K̄ (X ) | ord1(f ) ≥ −3, ord2(f ) ≥ 1, ordP(f ) ≥ 0for P 6= 1, 2}

L(D) = {(X − 2)(aX 2 + bX + c)

(X − 1)3
| a, b, c ∈ K̄}
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Proposition 5.2.

Let D ∈ Div(C ). l(D) = dimK̄L(D)

(a) If degD < 0, then L(D) = {0}, l(D) = 0.

Proof. If not, there is f ∈ K̄ (C )∗, div(f ) ≥ −D, this implies

0 = deg(div(f )) ≥ deg(−D) = −deg(D) > 0

Contradiction.
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Proposition 5.2 (continued).

(b) dimK̄L(D) <∞
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Proposition 5.2 (continued).

(c) D1 and D2 are linearly equivalent, i.e., D1 = D2 + div(g) for some
f ∈ K̄ (C )∗, then

L(D1) ∼ L(D2), l(D1) = l(D2)

Proof. The linear map

L(D1)→ L(D2), ; f 7→ fg

is an isomorphism.
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Let ω ∈ ΩC , ω 6= 0,
so K = div(ω) is a canonical divisor.

L(K ) = {f ∈ K̄ (C ) | div(f ) ≥ −div(ω)}
= {f ∈ K̄ (C ) | div(f ω) ≥ 0}

So L(K )ω is the space of holomorphic differentials on C .
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Definition

Let C be a smooth curve, the genus of C , denoted by g , is defined to be

g
def
= l(K )

The genus is equal to the dimension of the space of holomorphic
differentials on C .
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Theorem 5.4. Riemann-Roch Theorem.

Let C be a smooth curve and K be a canonical divisor on C .Then for
every divisor D,

l(D)− l(K − D) = degD + 1− g
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Corollary 5.5.

Let K be a canonical divisor of C , then

deg K = 2g − 2

If degD > 2g − 2, then

l(D) = degD + 1− g .
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Proof.

In l(D)− l(K − D) = degD + 1− g
we take D = K , we get

g − 1 = degK + 1− g , degK = 2g − 2
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For C = P1, K = −2(∞) is a canonical divisor, so

degK = −2

The formula degK = 2g − 2 implies that g = 0.

The genus of P1 is 0.
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Proposition 5.8.

If the smooth curve C is defined over K , D ∈ DivK (C ), then L(D) has a
basis consisting of functions on K (C ).
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End
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