Math 6170 C, Lecture on March 4, 2020

Yongchang Zhu
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(1) Computation of ramification index: an example
(2). Review of Chapter Il, § 4. Differentials

(3). Chapter Il, § 5. The Riemann-Roch Theorem
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Computation of ramification index: an example

C1 = PY(K) with the function field K(C;) = K(X);
G, = PY(K) with the function field K(G) = K(Y)

A morphism
p: G — G, Y=¢X)=~f(X)

where f(X) = ’X,’(())f)) e C(X),
where M(X), N(X) € K|[x] are relatively prime polynomials.
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If a € K satisfies N(a) # 0, then ¢(a) = M(3)

N(a)

If a € K satisfies N(a) = 0, then ¢(a) = occ.
If a = o0, deg M > deg N, then ¢(a) = oo
If a =00, deg M < deg N, then ¢(a) =0

If a =00, degM = deg N, then ¢(a) = §,

where c is the leading coefficient of M and d is the leading coefficient of

N.
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So formally we have

= lim M(a)
¢(OO) B a|—><>o N(a)

The corresponding field embedding ¢* : K(G) = K(Y) = K(C1) = K(X)
is
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How do we compute ramification indices e4(a)?

Assume a € K and ¢(a) € K.
Take a uniformizer at ¢(a), say Y —¢(a) =Y — %

By the definition of e4(a), we have

es(a) = orda (¢*(Y — ¢(a)))
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How to compute ey(o0) ?

Case 1. ¢p(c0) ebe K
Case 2. ¢(00) =00 € K

Case 1. A uniformizer of bis Y — b, compute orde(Frss N(X X) —b)

N(X)

Case 2. A uniformizer of co is Y™, compute ordoo(m)
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Review of Chapter Il. § 4. Differentials

Definition. Let C be a curve. The space of meromorphic differential forms
on C, denoted by ¢, is the K(C)-vector space generated by symbols of
the form df for f € K(C), subject to the following three relations:

(1). d(f +g) =df +dg

(2) d(fg) = gdf + fdg

(3) da=0for a € K.
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The following formula is useful:
suppose X, Y € K(C),

d(X™Y") = mX™ LY dX + nX™Y " ldy

More generally, for a polynomial P(X,Y) of X, Y, we have

dP(X,Y) = 0xP(X, Y)dX + 8y P(X, Y)dy.
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The same formula holds for P(X, Y') a rational expression of X and Y.
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Proposition 4.2.

Let C be a curve.

(a) Qc is a 1-dimensional K(C)-vector space.
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Proposition 4.2 (continued).

(b) Let x € K(C). Then dx is a K(C) basis for Q¢ iff K(C)/K(x) is a
finite separable extension.
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Proposition 4.2 (continued).

(c) Let ¢ : (i — G be a non-constant morphism. Then ¢ is separable (
equivalently K(C;)/K((,) is a separable extension) iff

gf)* : QC2 — QC1

is injective.
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Proposition 4.3.

Let P € C, t be a uniformizer at P.

(a) For any w € Qc, there exists a unique g € K(C) such that

w = gdt

We denote g by .
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Proposition 4.3 (continued).

(b) If f € K(C) is regular at P, then % is regular at P.
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Proposition 4.3 (continued).

(c) The quantity ordp(w/dt) is independent of t. We call it the order of w
at P and denote it by ordp(w).
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Proposition 4.3 (continued).

(d) Let x G_R(C) such that K(C)/K(x) is separable and x(P) = 0. Then
for all f € K(C),

ordp(fdx) = ordp(f) + ordp(x) — 1.

(e) For all but finitely many P € C,

ordp(w) = 0.
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Let w € Q¢, w # 0. The divisor associated to w is

div(w) = ) _ ordp(w)(P) € Div(C)
pPeC
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A differential w € Q¢ is regular (or holomorphic) if

ordpw >0 forall P € C.
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It is clear that
div(fw) = div(f) + div(w).

If wi,wy are nonzero elements in ¢, then
div(wi) — div(wo)

is a principal divisor. The image of div(w) in Pic(C) is independent of the
choice of nonzer0 w € Q¢, we call the canonical divisor class on C. Any
divisor in this divisor class is called a canonical divisor.
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Example: C = PY(K), K(C) = K(X).

dX € Q¢

Forae K C IP’l(R), X — ais a uniformizer at a,

d(X — a) = dX — da = dX

orda,(dX) =0
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o

ef . . .
t = % is a uniformizer at oo, so

1, 1

dt =d(<) X2

dX, dX = —X?dt
X b)

ordeo (dX) = ordeg (—X2) = ordy (X2) -2

—2(00) is a canonical divisor of P1(K).
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Chapter Il. § 5. Riemann-Roch Theorem

Let C be a curve. We define a partial order on Div(C):

D=> np(P)>0 iffallnp>0

Dy > Dy ifft Dy — Dy > 0.
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Example. D1 = 2(P1) — 3(P2) + 10(P3)
D> = (P1) — 5(P2) + 9(Ps3)

D3 = 3(P1) +9(P3)

D1 > Dy, D3> D,

D; and D3 are not comparable.
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For D € Div(C), we associate to D the space of functions

£(D) ¥ {f € K(C)* |div(f) > D} U {0}
equivalently

def

L(D) = {f € K(C)|div(f) > D}

here we use the convention that div(0) = > oo(p) > D for any
D € Div(C).
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L(D) is a vector space over K,

because div(cf) = div(f) for c € K*.

ordp(f + g) > min(ordp(f),ordp(g))
implies that £(D) is closed under +.
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Example. C =PY{(K), D =3(1)—(2)

L(D) = {f € K(X) |ordy(f) > =3, orda(f) > 1, ordp(f) > Ofor P # 1,2}

(X —2)(aX? + bX + ¢)

L(D)={ (X—1)3

| a,b,c € K}
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Proposition 5.2.

Let D € Div(C). /(D) = dimgL(D)
(a) If deg D < 0, then L(D) = {0}, /(D) = 0.
Proof. If not, there is f € K(C)*, div(f) > —D, this implies

0 = deg(div(f)) > deg(—D) = —deg(D) > 0

Contradiction.
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Proposition 5.2 (continued).

(b) dimzL(D) < o0
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Proposition 5.2 (continued).

(c) D_1 and D, are linearly equivalent, i.e., D; = D, + div(g) for some
f € K(C)*, then

L(Dy) ~ L(D,), I(D1) = 1(Dy)
Proof. The linear map

,C(Dl) — ,C(Dz), ; f— fg

is an isomorphism.
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Let w € Qc¢, w # 0,
so K = div(w) is a canonical divisor.

LK) = {f € K(C)|div(f) > —div(w)}
= {f € K(C) | div(fw) > 0}

So L(K)w is the space of holomorphic differentials on C.
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Let C be a smooth curve, the genus of C, denoted by g, is defined to be

The genus is equal to the dimension of the space of holomorphic
differentials on C.
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Theorem 5.4. Riemann-Roch Theorem.

Let C be a smooth curve and K be a canonical divisor on C.Then for
every divisor D,

I(D)—I(K—D)=degD+1—g
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Corollary 5.5.

Let K be a canonical divisor of C, then

deg K =2g -2
If deg D > 2g — 2, then

/(D) =degD+1—g.
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In /(D) —I(K—D)=degD+1—g
we take D = K, we get

g—1=degK+1—g, degK=2g-2
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For C = P!, K = —2(c0) is a canonical divisor, so

degK = -2
The formula deg K = 2g — 2 implies that g = 0.

The genus of P! is 0.
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Proposition 5.8.

If the smooth curve C is defined over K, D € Divk(C), then £L(D) has a
basis consisting of functions on K(C).
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End
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