Math 6170 C, Lecture on March 9, 2020

Yongchang Zhu

Plan.

(1) Computations about curve $y^{2}=\left(x-e_{1}\right)\left(x-e_{2}\right)\left(x-e_{3}\right)$
(2). Chapter III, § 1. Weierstrass Equations
(3). Chapter III, § 2. The Group Law

Computations about Curve

$C: y^{2}=\left(x-e_{1}\right)\left(x-e_{2}\right)\left(x-e_{3}\right)$

Assume Char $K \neq 2, e_{1}, e_{2}, e_{3}$ are distinct.

$$
P_{1}=\left(e_{1}, 0\right), \quad P_{2}=\left(e_{2}, 0\right), \quad P_{3}=\left(e_{3}, 0\right)
$$

Finite points but not P_{1}, P_{2}, P_{3} :

$$
(a, b), \quad a \neq e_{1}, e_{2}, e_{3}, \quad b^{2}=\left(a-e_{1}\right)\left(a-e_{2}\right)\left(a-e_{3}\right)
$$

Points at infinite: $[0,1,0]$

$$
y^{2} z=\left(x-e_{1} z\right)\left(x-e_{2} z\right)\left(x-e_{3} z\right)
$$

Set $z=0,0=x^{3}, x=0$. We get $[0,1,0]$.
C is a smooth curve.

The function field of C is

$$
\operatorname{Frac} \bar{K}[x, y] /\left(y^{2}-\left(x-e_{1}\right)\left(x-e_{2}\right)\left(x-e_{3}\right)\right)
$$

It is a quadratic extension of $\bar{K}(x)$ by the equation:

$$
y^{2}=\left(x-e_{1}\right)\left(x-e_{2}\right)\left(x-e_{3}\right)
$$

Uniformizers:

At $P_{i}, i=1,2,3, y$ is a uniformizer.
At a finite point $(a, b) \neq P_{1}, P_{2}, P_{3}$,

$$
x-a
$$

is a uniformizer.

At $\infty=[0,1,0], x / y$ is a unifomizer.
Set $y=1$ in $y^{2} z=\left(x-e_{1} z\right)\left(x-e_{2} z\right)\left(x-e_{3} z\right)$, we get

$$
z=\left(x-e_{1} z\right)\left(x-e_{2} z\right)\left(x-e_{3} z\right)
$$

$x=0, z=0$ corresponds to ∞.

The function field is

$$
\operatorname{Frac} \bar{K}[x, z] /\left(z-\left(x-e_{1} z\right)\left(x-e_{2} z\right)\left(x-e_{3} z\right)\right)
$$

x is a uniformizer. This x corresponds to x / y in

$$
\operatorname{Frac} \bar{K}[x, y] /\left(y^{2}-\left(x-e_{1}\right)\left(x-e_{2}\right)\left(x-e_{3}\right)\right)
$$

Another proof that x / y is uniformizer at ∞ :
Using deg $\operatorname{div}(x)=0$, we get $\operatorname{ord}_{\infty} x=-2$,
Using $\operatorname{deg} \operatorname{div}(y)=0$, we get $\operatorname{ord}_{\infty} y=-3$,
so

$$
\operatorname{ord}_{\infty}(x / y)=\operatorname{ord}_{\infty} x-\operatorname{ord}_{\infty} y=1
$$

Computation of $\operatorname{div}(d x / y)$

By definition,

$$
\operatorname{div}(d x / y)=\sum_{P \in C} \operatorname{ord}_{P}(d x / y)(P)
$$

To compute

$$
\operatorname{ord}_{P}(\omega)
$$

we find a uniformizer t at P, and write

$$
\omega=f d t
$$

Then

$$
\operatorname{ord}_{P}(\omega) \stackrel{\text { def }}{=} \operatorname{ord}_{P}(f)
$$

For $P=(a, b), a \neq e_{1}, e_{2}, e_{3}, b \neq 0$.
$x-a$ is a uniformizer at $P, d(x-a)=d x$,

$$
\begin{gathered}
d x / y=\frac{1}{y} d(x-a) \\
1 /\left.y\right|_{P}=1 / b
\end{gathered}
$$

so $\operatorname{ord}_{P}(d x / y)=0$.

For $P=\left(e_{1}, 0\right), y$ is a uniformizer at P.

$$
y^{2}=\left(x-e_{1}\right)\left(x-e_{2}\right)\left(x-e_{3}\right)
$$

implies that

$$
\begin{aligned}
2 y d y & =\left(\left(x-e_{1}\right)\left(x-e_{2}\right)\left(x-e_{3}\right)\right)^{\prime} d x \\
d x / y & =\frac{2 d y}{\left(\left(x-e_{1}\right)\left(x-e_{2}\right)\left(x-e_{3}\right)\right)^{\prime}}
\end{aligned}
$$

So we see that

$$
\operatorname{ord}_{P}(d x / y)=0
$$

Similarly for $P=\left(e_{2}, 0\right),\left(e_{3}, 0\right)$,

$$
\operatorname{ord}_{P}(d x / y)=0
$$

For $P=\infty, x / y$ is a uniformizer.

$$
\begin{gathered}
d(x / y)=y^{-1} d x-y^{-2} d y=\left(1-\frac{1}{2} y^{-2}\left(\left(x-e_{1}\right)\left(x-e_{2}\right)\left(x-e_{3}\right)\right)^{\prime}\right) d x / y \\
d x / y=\left(1-\frac{1}{2} y^{-2}\left(\left(x-e_{1}\right)\left(x-e_{2}\right)\left(x-e_{3}\right)\right)^{\prime}\right)^{-1} d(x / y) \\
\left.\left(1-\frac{1}{2} y^{-2}\left(\left(x-e_{1}\right)\left(x-e_{2}\right)\left(x-e_{3}\right)\right)^{\prime}\right)\right|_{\infty}=1 \\
\operatorname{ord}_{\infty}(d x / y)=0
\end{gathered}
$$

This proves $\operatorname{ord}_{P}(d x / y)=0$ for all $P \in C$.

So $\operatorname{div}(d x / y)=0$.

Recall that $\operatorname{div}(f \omega)=\operatorname{div}(f)+\operatorname{div}(\omega)$

$$
\operatorname{div}(f d x / y)=\operatorname{div}(f)
$$

Recall that $\omega \in \Omega_{C}$ is called a holomorphic differential if $\operatorname{div}(\omega) \geq 0$.
The space of holomorphic differentials on C is a vector space over \bar{K}.
The space of holomorphic differentials on C is $\{f d x / y\}$ with $\operatorname{div}(f) \geq 0$.
It is $\bar{K} d x / y$, one dimensional. So the genus of C is $g=1$.

The curve C : the projective closure of $y^{2}=\left(x-e_{1}\right)\left(x-e_{2}\right)\left(x-e_{3}\right)$ (e_{1}, e_{2}, e_{3} are distinct, char $\bar{K} \neq 2$) is an example elliptic curve over \bar{K}.

The Geometry of Elliptic Curves.

Definition. An elliptic curve over \bar{K} is a pair (E, O), where E is a smooth curve with genus one and $O \in E$.

The elliptic curve (E, O) is defined over K if E is defined over K and $O \in E(K)$.

Proposition III 3.1.

Let (E, O) be an elliptic curve over K. Then E is isomorphic to the curve in \mathbb{P}^{2} defined by an equation

$$
E: Y^{2}+a_{1} X Y+a_{3} Y=X^{3}+a_{2} X^{2}+a_{4} X+a_{6}
$$

with coefficients $a_{1}, \ldots, a_{6} \in K$ and $O=[0,1,0]$.
The above equation is called Weierstrass equation.

Chapter III. § 1. Weierstrass equation

$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

If $\operatorname{char}(\bar{K}) \neq 2$, we complete the square of

$$
\begin{aligned}
y^{2}+a_{1} x y+a_{3} y & =y^{2}+2 y\left(\frac{1}{2} x+\frac{1}{2} a_{3}\right) \\
& =\left(y+\frac{1}{2} x+\frac{1}{2} a_{3}\right)^{2}-\left(\frac{1}{2} x+\frac{1}{2} a_{3}\right)^{2}
\end{aligned}
$$

We replace y by $y-\frac{1}{2} x-\frac{1}{2} a_{3}$, and the equation is simplified to

$$
E: y^{2}=x^{3}+b_{2} x^{2}+2 b_{4} x+b_{6}
$$

b_{i} 's are polynomials of a_{i} 's
For example: $b_{6}=a_{3}^{2}+4 a_{6}$.

If further $\operatorname{Char}(\bar{K}) \neq 2,3$,
We replace x by $x-\frac{1}{3} b_{2}$, the equation is simplified to

$$
E: y^{2}=x^{3}-27 c_{4} x-54 c_{6}
$$

Recall for a cubic equation

$$
x^{3}+p x+q=0
$$

has multiple roots iff

$$
-4 p^{3}-27 q^{2}=0
$$

which is a multiple of $c_{4}^{3}-c_{6}^{2}$ up to a product of powers of 2 and 3 .

For

$$
E: y^{2}=x^{3}-27 c_{4} x-54 c_{6} .
$$

$\operatorname{char}(\bar{E}) \neq 2,3$.
We define $\Delta=\Delta(E)$ as

$$
1728 \Delta=c_{4}^{3}-c_{6}^{2}
$$

$$
1728=3^{2} 2^{6}
$$

E is smooth iff $\Delta(E) \neq 0$. And (E, O) is an elliptic curve, where $O=\infty$.

Theorem If $\operatorname{Char}(K) \neq 2,3$, then every elliptic curve over K can be expressed in the form (E, O), where E is given by the equation

$$
E: y^{2}=x^{3}-27 c_{4} x-54 c_{6}
$$

with

$$
\Delta=1728^{-1}\left(c_{4}^{3}-c_{6}^{2}\right) \neq 0
$$

and $O=\infty$.

The j-invariant of above E is defined as

$$
j=j(E)=\frac{c_{4}^{3}}{\Delta} .
$$

Proposition.

Two elliptic curves are isomorphic over \bar{K} iff their j-invariant are equal.

Chapter III. § 2. The Group Law

A line in \mathbb{P}^{2} is the variety defined by a homogeneous linear equation

$$
A X+B Y+C Z=0
$$

A, B, C are not all 0 .

Two equations

$$
A X+B Y+C Z=0, \quad A^{\prime} X+B^{\prime} Y+C^{\prime} Z=0
$$

gives the same line iff

$$
(A, B, C)=\lambda\left(A^{\prime}, B^{\prime}, C^{\prime}\right)
$$

Example:

$$
2 X+Y-Z=0
$$

defines a line in $\mathbb{P}^{2}(\mathbb{C})$.
Its points are affine line $2 X+Y-1=0$ together with the extra point

$$
[1,-2,0]
$$

at infinity.

Theorem. Two different lines in \mathbb{P}^{2} intersects at a unique point.

Theorem.

Suppose $C: F(X, Y, Z)=0$ (in \mathbb{P}^{2}, F is irreducible) is a smooth curve over \bar{K} defined by a homogeneous equation of degree $d>1$, then any line intersect with C at exactly d points (counting multiplicity).

It follows from

Theorem.

$$
x^{d}+a_{n-1} x^{d-1}+\cdots+a_{0}=0
$$

has exactly d solutions (counting multiplicity).

Homogeneous version of the above theorem:
Theorem. If $G(X, Y)$ is a homogeneous polynomial of degree d, then

$$
G(X, Y)=0
$$

has exactly d solutions in \bar{K} (counting multiplicity).
Proof. We have factorization $G(X, Y)=\Pi_{i=1}^{d}\left(A_{i} X+B_{i} Y\right)$.

A line can be expressed as

$$
(X, Y, Z)=s\left(a_{1}, a_{2}, a_{3}\right)+t\left(b_{1}, b_{2}, b_{3}\right)
$$

substitute it to $F(X, Y, Z)=0$, we get

$$
F\left(a_{1} s+b_{1} t, a_{2} s+b_{2} t, a_{3} s+b_{3} t\right)=0
$$

Because F is irreducible, $F\left(a_{1} s+b_{1} t, a_{2} s+b_{2} t, a_{3} s+b_{3} t\right) \neq 0$ and is a homogeneous polynomial of s, t with degree d, so it has d solutions.

If $\operatorname{deg} F=2, C: F(X, Y, Z)=0$,
and we know one solutions $\left(a_{1}, a_{2}, a_{3}\right)$, then we know all the solutions.
Take a line $L\left(b_{1}, b_{2}, b_{3}\right):(X, Y, Z)=s\left(a_{1}, a_{2}, a_{3}\right)+t\left(b_{1}, b_{2}, b_{3}\right)$,

$$
\begin{gathered}
L\left(b_{1}, b_{2}, b_{3}\right) \cap C \\
F\left(a_{1} s+b_{1} t, a_{2} s+b_{2} t, a_{3} s+b_{3} t\right)=0
\end{gathered}
$$

We already know one solution $s=1, t=0$, we can find the other solution.

If $\operatorname{deg} F=3, C: F(X, Y, Z)=0$,
and we know twos solutions $\left[a_{1}, a_{2}, a_{3}\right],\left[b_{1}, b_{2}, b_{3}\right]$, then we can find new solutions using the intersection.

Take a line $L:(X, Y, Z)=s\left(a_{1}, a_{2}, a_{3}\right)+t\left(b_{1}, b_{2}, b_{3}\right)$,

$$
\begin{gathered}
L \cap C \\
F\left(a_{1} s+b_{1} t, a_{2} s+b_{2} t, a_{3} s+b_{3} t\right)=0
\end{gathered}
$$

We already know one solution $(s, t)=(1,0)$ and $(s, t)=(0,1)$, we can find the other solution.

Definition.

Let (E, O) be an elliptic curve over K given by a Weierstrass equation. $P \in E(K)$, let L be the line connect O and P,

$$
L \cap E=(O, P, Q)
$$

We define $Q=-P$.

Definition.

Let (E, O) be an elliptic curve over K given by a Weierstrass equation. $P, Q \in E(K)$, let L be the line connect P and Q,

$$
L \cap E=(P, Q, R)
$$

We define $P+Q=-R$.

Theorem

. $E(K)$ is an abelian group under + and O is the identity element.
When $P, Q \in E$, and $P=Q$, " the line connecting P and Q means the tangent line at P.

End

