Math 6170 C, Lecture on May 11 , 2020

Yongchang Zhu

Yongchang Zhu	× /		
I OHECHAILE LIN	Yon	σcha	ng /hu
	1011	guna	11g Z110

- (1) IX (Knapp). Modular Forms for Hecke Subgroups (continued).
- (2) X (Knapp). L Function of an Elliptic Curve
- (3) XI (Knapp). Eichler-Shimura Theory

э

A (10) × (10)

The **principal congruence subgroup** $\Gamma(N)$ (*N* is a positive integer) is defined by

$$\Gamma(N) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, \mathbb{Z}) \mid \begin{pmatrix} a & b \\ c & d \end{pmatrix} \equiv \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \mod N \}$$

3 1 4 3 1

A subgroup *H* in $SL(2,\mathbb{Z})$ is called a **congruence subgroup** if $H \supset \Gamma(N)$ for some *N*.

$$\Gamma_0(N) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2,\mathbb{Z}) \mid c \equiv 0 \bmod N \}$$

is a congruence subgroup. The groups $\Gamma_0(N)$ are called the **Hecke** subgroups.

A B M A B M

Definition. Let *H* be a congruence subgroup, an **unrestricted modular** form of weight $k \in \mathbb{Z}$ for *H* is an analytic function *f* on \mathcal{H} with

$$f(\frac{a\tau+b}{c\tau+d})=(c\tau+d)^kf(\tau)$$

for all
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in H$$
.

э

An unrestricted modular form f of weight k for congruence subgroup H is called a **modular form (cusp form)** of weight k for H if for every $g \in SL(2,\mathbb{Z})$,

 $f\circ [g]_k$

is holomorphic at ∞ (vanishes at ∞).

Equivalently the function $|f(\tau)| \ (\operatorname{Im}(\tau))^{\frac{k}{2}}$ is bounded (vanishes) at every cusp $r \in \mathbb{Q} \sqcup \{\infty\}$.

We denote the space of modular forms (cusp forms) of weight k for a congruence subgroup Γ by $M_k(\Gamma)$ ($S_k(\Gamma)$).

Let

$$S_k = igcup_{\Gamma: ext{congruence subgroups}} S_k(\Gamma)$$

 $GL(2,\mathbb{Q})_+$ acts on S_k from the right, $f \mapsto f \circ [g]_k$.

For

$$f,g \in S_k,$$

we can find Γ so that $f, g \in S_k(\Gamma)$, we define

$$(f,g) = [SL(2,\mathbb{Z}):\Gamma]^{-1} \int_{R_{\Gamma}} f(\tau)\overline{g(\tau)} y^k \frac{1}{y^2} dx dy$$

This is called the **Petersson inner product**.

(this is equal to the inner product on a single $S_k(\Gamma)$ in the text book up to a scalar).

4 B K 4 B K

It is easy to prove that

$$(f,g) = (f \circ [h]_k, g \circ [h]_k)$$

for any $h \in GL(2, \mathbb{Q})_+$.

2

イロト イヨト イヨト イヨト

Recall that M(n) is the set of 2×2 matrices over \mathbb{Z} with determinant n. Let

$$M(n,N) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M(n) \mid c \equiv 0 \mod N \text{ and } gcd(a,N) = 1 \}$$

M(n, N) is closed under left and right multiplication by elements in $\Gamma_0(N)$.

- E - - E -

Theorem 9.12. Let $M(n, N) = \bigsqcup_{i=1}^{m} \Gamma_0(N) \alpha_i$, If $f \in M_k(\Gamma_0(N))$, then $T_k(n)f$ given by

$$T_k(n)f = n^{\frac{k}{2}-1}\sum_{i=1}^m f \circ [\alpha_i]_k$$

is a modular form of weight k and level N. If f is a cusp form, so is $T_k(n)f$.

э

・ 同 ト ・ ヨ ト ・ ヨ ト ・

If gcd(n, N) = 1, then $T_k(n)$ is a self-adjoint operator on $S(\Gamma_0(N))$ with respect to the Petersson inner product:

$$(T_k(n)f,g)=(f,T_k(n)g).$$

э

Theorem 9.17. On the space $M_k(\Gamma_0(N))$, the Hecke operators satisfy

(a) For m and n with gcd(m, n) = 1, we have

 $T_k(m)T_k(n)=T_k(mn)$

(b) For a prime power p^r , $r \ge 1$ such that $p \nmid N$,

$$T_k(p^r)T_k(p) = T_k(p^{r+1}) + p^{k-1}T_k(p^{r-1})$$

Hence $T_k(p^r)$ is a polynomial of $T_k(p)$ with integer coefficients.

(c) For a prime power p^r , $r \ge 1$ such that p|N,

$$T_k(p^r)=T_k(p)^r.$$

イロト 不得 トイラト イラト 一日

Because operators $T_k(n)$ with gcd(n, N) = 1 are self-adjoint and commutes each other, the space $S_k(\Gamma_0(N))$ is an orthogonal direct sum of simultaneous eigenspaces for $T_k(n)$ with gcd(n, N) = 1.

Two forms in the same simultaneous eigenspace are called to be equivalent. That is, $f, g \in S_k(\Gamma_0(N))$ are equivalent if both are eigenforms for $T_k(n)$ with gcd(n, N) = 1:

 $T_k(n)f = \lambda_n f$, $T_k(n)g = \lambda'_n g$, $\lambda_n = \lambda'_n$, for all n with gcd(n, N) = 1.

イロト イポト イヨト イヨト 二日

Proposition 9.20. Theorem 9.21. Suppose $f \in S_k(\Gamma_0(N))$ is an eigenvector of all $T_k(n)$: $T_k(n)f = \lambda(n)f$. If the *q*-expansion of *f* is

$$f(\tau)=\sum_{n=1}^{\infty}c_nq^n,$$

then

$$c_n = \lambda(n)c_1.$$

So $f \neq 0$ implies $c_1 \neq 0$.

Suppose $c_1 = 1$, we have

$$L(s,f) = \prod_{p:\text{prime},p|N} \left(\frac{1}{1-c_p p^{-s}}\right) \prod_{p:\text{prime},p|N} \left(\frac{1}{1-c_p p^{-s}+p^{k-1-2s}}\right)$$

э

イロト 不得 トイヨト イヨト

If gcd(n, N) > 1, the Hecke operator $T_k(n)$ on $M_k(\Gamma_0(N))$ or $S_k(\Gamma_0(N))$ may **not** be diagonalizable.

э

- 4 個 ト 4 ヨ ト 4 ヨ ト

Lemma. (1) If r|N, $f(\tau) \in S_k(\Gamma_0(N/r))$, then $f(\tau) \in S_k(\Gamma_0(N))$ (2) If r|N, $f(\tau) \in S_k(\Gamma_0(N/r))$, then $f(r\tau) \in S_k(\Gamma_0(N))$.

Proof. (1) Because $\Gamma_0(N) \subset \Gamma_0(N/r)$.

э

イロト イヨト イヨト イヨト

Proof of (2).

Set
$$h = \begin{pmatrix} r & 0 \\ 0 & 1 \end{pmatrix}$$
,

$$f(r\tau)=r^{-\frac{1}{2}}f\circ[h]_k$$

The result follows from

$$h\Gamma_0(N)h^{-1}\subset \Gamma_0(N/r).$$

$$\begin{pmatrix} r & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} r^{-1} & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} a & rb \\ r^{-1}c & d \end{pmatrix}$$

3

メロト メポト メヨト メヨト

We combine the above two constructions: if $r_1r_2|N$ and if $f(\tau)$ is an eigenform for $\Gamma_0(N/(r_1r_2))$, then $f(r_2\tau)$ is an eigenform for $\Gamma_0(N)$. Such an eigenform is called an **oldform**.

The linear span of the oldforms is denoted $S_k^{\text{old}}(\Gamma_0(N))$, and its orthogonal complement is denoted by $S_k^{\text{new}}(\Gamma_0(N))$. The eigenforms in $S_k^{\text{new}}(\Gamma_0(N))$ are called **new forms**

The space $S_k^{\text{new}}(\Gamma_0(N))$ is the orthogonal sum of one-dimensional equivalence classes of eigenforms. If f is such a form, then f can be normalized so that its q expansion $f(\tau) = \sum_{n=1}^{\infty} c_n q^n$ has $c_1 = 1$. Then (1) $T_k(n)f = c_n f$ for all n. (2) $\omega_N f = \pm f$. The L function L(s, f) has an Euler product

$$L(s,f) = \prod_{p \text{ prime}, p \mid N, p^2 \nmid N} \left(\frac{1}{1 - c_p p^{-s}} \right) \prod_{p \text{ prime}, p \nmid N} \left(\frac{1}{1 - c_p p^{-s} + p^{k-1-2s}} \right)$$

X. L Function of an Elliptic Curve.

æ

< □ > < 同 > < 回 > < 回 > < 回 >

Recall that for an elliptic curve (E, O) over a field K, there exists

$$x, y \in K(E), \operatorname{ord}_O(x) = -2, \operatorname{ord}_O(y) = -3$$

x, y gives an embedding

$$\phi: E \to \mathbb{P}^2, \ \phi(p) = [x(p), y(p), 1]$$

The image of *E* is the curve in \mathbb{P}^2 given by the Weierstrass equation

$$y^2 + a_1 x y + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6.$$

The discriminant Δ of

$$y^2 + a_1 x y + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6.$$

is a polynomial of a_1, a_2, a_3, a_4, a_6 with \mathbb{Z} -coefficient. (See [S] page 46 or [K] page 58 for the formula for Δ .)

 $\Delta \neq 0$ iff the curve given by the above equation is non-singular.

An admissible change of variable is

$$x = u^2 x' + r$$
, $y = u^3 y' + su^2 x' + t$

Then the equation for x', y' is

$$y'^{2} + a'_{1}x'y' + a'_{3}y' = x'^{3} + a'_{2}x'^{2} + a'_{4}x' + a'_{6}.$$

See [K] page 291 for the formulas for a'_i s

$$u^{12}\Delta' = \Delta.$$

э

From now on, we consider elliptic curves over \mathbb{Q} .

An equation

$$y^2 + a_1 x y + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6$$

is called **minimal for the prime** p if all the coefficients a_i are p-integral and $\operatorname{ord}_p(\Delta)$ cannot be decreased by making an admissible change of variables over \mathbb{Q} with the property that the new coefficients are p-integral.

A rational number r is p-integral if r = 0 or $r \neq 0$, $\operatorname{ord}_p(r) \ge 0$.

Example. $\frac{12}{91}$, 101, $-\frac{35}{100}$ are 3-integral, but $\frac{10}{99}$ is not 3-integral.

If the coefficients of an equation over \mathbb{Q} are all *p*-integral, then it makes sense to reduce the equation modulo *p*.

For example, we can modulo 3 of the equation

$$\frac{12}{91}y^2 = x^3 + 101x - \frac{35}{100}$$

・ 回 ト ・ ヨ ト ・ ヨ ト ・

An equation

$$y^2 + a_1 x y + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6$$

is called a **global minimal Weierstrass equation** if all the coefficients are in \mathbb{Z} and it is minimal for all primes.

If *E* is an elliptic curve over \mathbb{Q} , then there exists an admissible change of variable over \mathbb{Q} such that the resulting equation is a global minimal Weierstrass equation. Two such resulting global minimal equations are related by an admissible change of variables with $u = \pm 1$ and with $r, s, t \in \mathbb{Z}$.

Let E be an elliptic curve over \mathbb{Q} with a global minimal Weierstrass equation.

For each prime p, we consider the reduction E_p of E modulo p (using the global minimal Weierstrass equation). If $p \nmid \Delta$, E_p is an elliptic curve over $\mathbb{Z}/(p)$; if $p \mid \Delta$, E_p is singular.

Let

$$a_p = p + 1 - |E_p(\mathbb{Z}/(p))|.$$

4 B K 4 B K

The L-function of E is defined as

$$L(s,E) = \prod_{p|\Delta} \left(\frac{1}{1-a_p p^{-s}}\right) \prod_{p \nmid \Delta} \left(\frac{1}{1-a_p p^{-s} + p^{1-2s}}\right).$$

3

イロト イヨト イヨト イヨト

Recall for an elliptic curve E_p over finite field $\mathbb{Z}/(p)$, the zeta function is

$$Z(E_p, T) = \frac{1 - a_p T + p T^2}{(1 - T)(1 - pT)}$$

where $a_p = p + 1 - |E_p(\mathbb{Z}/(p))|$ (same as before).

$$1 - a_p T + p T^2 = (1 - \alpha_p T)(1 - \beta_p T)$$

with $|\alpha_p| = |\beta_p| = p^{\frac{1}{2}}$ (Riemann hyptheosis for elliptic curve over finite fields). (see [S] Theorem V 2.4)

イロト イヨト イヨト イヨト 二日

SO

$$1 - a_{\rho} p^{-s} + p^{1-2s} = (1 - \alpha_{\rho} p^{-s})(1 - \beta_{\rho} p^{-s})$$

The infinite product for L(s, E) converges iff

$$\sum_{\boldsymbol{p}\nmid\Delta} |\alpha_{\boldsymbol{p}}\boldsymbol{p}^{-\boldsymbol{s}}| + |\beta_{\boldsymbol{p}}\boldsymbol{p}^{-\boldsymbol{s}}| = 2\sum_{\boldsymbol{p}\nmid\Delta} \boldsymbol{p}^{-\operatorname{re}\boldsymbol{s}+\frac{1}{2}}$$

converges.

The later converges on $re s > \frac{3}{2}$.

э

▶ ★ 陸 ▶ ★ 臣 ▶ ...

Image: Image:

The Euler product defining L(E, s) converges for $re s > \frac{3}{2}$ and given there by absolutely convergent Dirichlet series.

.

The theory gives for each new form $f \in S_2(\Gamma_0(N))$ with q-expansion

$$f=\sum_{n=1}^{\infty}c_nq^n, \ c_1=1, \ c_n\in\mathbb{Z}$$

an elliptic curve E over \mathbb{Q} . The L function of E and f coincide as Euler products except possibly at finitely many primes.

4 3 4 3 4 3 4

Definition. An element $\gamma \in \Gamma_0(N)$ is called an **elliptic element** if $|\operatorname{Tr} \gamma| < 2$. An element $\gamma \in \Gamma_0(N)$ is called a **parabolic element** if $|\operatorname{Tr} \gamma| = 2$.

э

(1) マン・ション・

Lemma (1) $\gamma \in \Gamma_0(N)$ is an elliptic element iff $\gamma \neq \pm 1$ and is of finite order .

(2) If $\gamma \in \Gamma_0(N)$ is a parabolic element, then γ fixes an element in $\mathbb{P}^1(\mathbb{Q})\mathbb{Q} \sqcup \{\infty\}$.

3

イロン イヨン イヨン

Fix a base point $\tau_0 \in \mathcal{H}$. For $f \in S_2(\Gamma_0(N))$, we define the contour integral

$$F(\tau) = \int_{\tau_0}^{\tau} f(z) dz$$

where we take any contour from τ_0 to τ .

We let, for $\gamma \in \Gamma_0(N)$,

$$\Phi_f(\gamma) = \int_{\tau_0}^{\gamma(\tau_0)} f(z) dz$$

3

イロト 不得 トイヨト イヨト

Lemma. $\Phi_f(\gamma)$ is independent of the choice of the base point τ_0 . *Proof.* We need to prove

$$\int_{\tau_0}^{\gamma(\tau_0)} f(z)dz - \int_{\tau_1}^{\gamma(\tau_1)} f(z)dz = 0$$

it is equivalent to prove

$$\int_{\tau_0}^{\tau_1} f(z) dz = \int_{\gamma(\tau_0)}^{\gamma(\tau_1)} f(z) dz$$

which is true by a change of variable and the invariance of f(z)dz under γ .

A B < A B </p>

For $f \in S_2(\Gamma_0(N))$, Φ_f is a homomorphism of $\Gamma_0(N)$ into the additive group of \mathbb{C} . If γ is elliptic or parabolic, then $\Phi_f(\gamma) = 0$.

イロト イポト イヨト イヨト

End

æ

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ -