Math 6170 C, Lecture on May 11, 2020

Yongchang Zhu

Plan

(1) IX (Knapp). Modular Forms for Hecke Subgroups (continued).
(2) X (Knapp). L Function of an Elliptic Curve
(3) XI (Knapp). Eichler-Shimura Theory

IX. Modular Forms For Hecke Subgroups (continued).

The principal congruence subgroup $\Gamma(N)(N$ is a positive integer $)$ is defined by

$$
\Gamma(N)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L(2, \mathbb{Z}) \left\lvert\,\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \equiv\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \bmod N\right.\right\}
$$

A subgroup H in $S L(2, \mathbb{Z})$ is called a congruence subgroup if $H \supset \Gamma(N)$ for some N.

$$
\Gamma_{0}(N)=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L(2, \mathbb{Z}) \right\rvert\, c \equiv 0 \bmod N\right\}
$$

is a congruence subgroup. The groups $\Gamma_{0}(N)$ are called the Hecke subgroups.

Definition. Let H be a congruence subgroup, an unrestricted modular form of weight $k \in \mathbb{Z}$ for H is an analytic function f on \mathcal{H} with

$$
f\left(\frac{a \tau+b}{c \tau+d}\right)=(c \tau+d)^{k} f(\tau)
$$

for all $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in H$.

An unrestricted modular form f of weight k for congruence subgroup H is called a modular form (cusp form) of weight k for H if for every $g \in S L(2, \mathbb{Z})$,

$$
f \circ[g]_{k}
$$

is holomorphic at ∞ (vanishes at ∞).
Equivalently the function
$|f(\tau)|(\operatorname{Im}(\tau))^{\frac{k}{2}}$ is bounded (vanishes) at every cusp $r \in \mathbb{Q} \sqcup\{\infty\}$.

We denote the space of modular forms (cusp forms) of weight k for a congruence subgroup Γ by $M_{k}(\Gamma)\left(S_{k}(\Gamma)\right)$.

Let

$$
S_{k}=\bigcup_{\Gamma: \text { congruence subgroups }} S_{k}(\Gamma)
$$

$G L(2, \mathbb{Q})_{+}$acts on S_{k} from the right, $f \mapsto f \circ[g]_{k}$.

For

$$
f, g \in S_{k},
$$

we can find Γ so that $f, g \in S_{k}(\Gamma)$, we define

$$
(f, g)=[S L(2, \mathbb{Z}): \Gamma]^{-1} \int_{R_{\Gamma}} f(\tau) \overline{g(\tau)} y^{k} \frac{1}{y^{2}} d x d y
$$

This is called the Petersson inner product. (this is equal to the inner product on a single $S_{k}(\Gamma)$ in the text book up to a scalar).

It is easy to prove that

$$
(f, g)=\left(f \circ[h]_{k}, g \circ[h]_{k}\right)
$$

for any $h \in G L(2, \mathbb{Q})_{+}$.

Recall that $M(n)$ is the set of 2×2 matrices over \mathbb{Z} with determinant n. Let

$$
M(n, N)=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in M(n) \right\rvert\, c \equiv 0 \bmod N \text { and } \operatorname{gcd}(a, N)=1\right\}
$$

$M(n, N)$ is closed under left and right multiplication by elements in $\Gamma_{0}(N)$.

Theorem 9.12. Let $M(n, N)=\sqcup_{i=1}^{m} \Gamma_{0}(N) \alpha_{i}$, If $f \in M_{k}\left(\Gamma_{0}(N)\right)$, then $T_{k}(n) f$ given by

$$
T_{k}(n) f=n^{\frac{k}{2}-1} \sum_{i=1}^{m} f \circ\left[\alpha_{i}\right]_{k}
$$

is a modular form of weight k and level N. If f is a cusp form, so is $T_{k}(n) f$.

If $\operatorname{gcd}(n, N)=1$, then $T_{k}(n)$ is a self-adjoint operator on $\mathcal{S}\left(\Gamma_{0}(N)\right)$ with respect to the Petersson inner product:

$$
\left(T_{k}(n) f, g\right)=\left(f, T_{k}(n) g\right)
$$

Theorem 9.17. On the space $M_{k}\left(\Gamma_{0}(N)\right)$, the Hecke operators satisfy
(a) For m and n with $\operatorname{gcd}(m, n)=1$, we have

$$
T_{k}(m) T_{k}(n)=T_{k}(m n)
$$

(b) For a prime power $p^{r}, r \geq 1$ such that $p \nmid N$,

$$
T_{k}\left(p^{r}\right) T_{k}(p)=T_{k}\left(p^{r+1}\right)+p^{k-1} T_{k}\left(p^{r-1}\right)
$$

Hence $T_{k}\left(p^{r}\right)$ is a polynomial of $T_{k}(p)$ with integer coefficients.
(c) For a prime power $p^{r}, r \geq 1$ such that $p \mid N$,

$$
T_{k}\left(p^{r}\right)=T_{k}(p)^{r} .
$$

Because operators $T_{k}(n)$ with $\operatorname{gcd}(n, N)=1$ are self-adjoint and commutes each other, the space $S_{k}\left(\Gamma_{0}(N)\right)$ is an orthogonal direct sum of simultaneous eigenspaces for $T_{k}(n)$ with $\operatorname{gcd}(n, N)=1$.

Two forms in the same simultaneous eigenspace are called to be equivalent. That is, $f, g \in S_{k}\left(\Gamma_{0}(N)\right)$ are equivalent if both are eigenforms for $T_{k}(n)$ with $\operatorname{gcd}(n, N)=1$:
$T_{k}(n) f=\lambda_{n} f, \quad T_{k}(n) g=\lambda_{n}^{\prime} g, \quad \lambda_{n}=\lambda_{n}^{\prime}$, for all n with $\operatorname{gcd}(n, N)=1$.

Proposition 9.20. Theorem 9.21. Suppose $f \in S_{k}\left(\Gamma_{0}(N)\right)$ is an eigenvector of all $T_{k}(n)$: $T_{k}(n) f=\lambda(n) f$. If the q-expansion of f is

$$
f(\tau)=\sum_{n=1}^{\infty} c_{n} q^{n}
$$

then

$$
c_{n}=\lambda(n) c_{1} .
$$

So $f \neq 0$ implies $c_{1} \neq 0$.
Suppose $c_{1}=1$, we have

$$
L(s, f)=\Pi_{p: \text { prime }, p \mid N}\left(\frac{1}{1-c_{p} p^{-s}}\right) \Pi_{p: \text { prime }, p \nmid N}\left(\frac{1}{1-c_{p} p^{-s}+p^{k-1-2 s}}\right)
$$

If $\operatorname{gcd}(n, N)>1$, the Hecke operator $T_{k}(n)$ on $M_{k}\left(\Gamma_{0}(N)\right)$ or $S_{k}\left(\Gamma_{0}(N)\right)$ may not be diagonalizable.

Lemma. (1) If $r \mid N, f(\tau) \in S_{k}\left(\Gamma_{0}(N / r)\right)$, then $f(\tau) \in S_{k}\left(\Gamma_{0}(N)\right)$
(2) If $r \mid N, f(\tau) \in S_{k}\left(\Gamma_{0}(N / r)\right)$, then $f(r \tau) \in S_{k}\left(\Gamma_{0}(N)\right)$.

Proof. (1) Because $\Gamma_{0}(N) \subset \Gamma_{0}(N / r)$.

Proof of (2).

Set $h=\left(\begin{array}{ll}r & 0 \\ 0 & 1\end{array}\right)$,

$$
f(r \tau)=r^{-\frac{1}{2}} f \circ[h]_{k}
$$

The result follows from

$$
h \Gamma_{0}(N) h^{-1} \subset \Gamma_{0}(N / r)
$$

$$
\left(\begin{array}{ll}
r & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{cc}
r^{-1} & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
a & r b \\
r^{-1} c & d
\end{array}\right)
$$

We combine the above two constructions: if $r_{1} r_{2} \mid N$ and if $f(\tau)$ is an eigenform for $\Gamma_{0}\left(N /\left(r_{1} r_{2}\right)\right)$, then $f\left(r_{2} \tau\right)$ is an eigenform for $\Gamma_{0}(N)$. Such an eigenform is called an oldform.

The linear span of the oldforms is denoted $S_{k}^{\text {old }}\left(\Gamma_{0}(N)\right)$, and its orthogonal complement is denoted by $S_{k}^{\text {new }}\left(\Gamma_{0}(N)\right)$. The eigenforms in $S_{k}^{\text {new }}\left(\Gamma_{0}(N)\right)$ are called new forms

Theorem 9.27 (Atkin-Lehner).

The space $S_{k}^{\text {new }}\left(\Gamma_{0}(N)\right)$ is the orthogonal sum of one-dimensional equivalence classes of eigenforms. If f is such a form, then f can be normalized so that its q expansion $f(\tau)=\sum_{n=1}^{\infty} c_{n} q^{n}$ has $c_{1}=1$. Then (1) $T_{k}(n) f=c_{n} f$ for all n.
(2) $\omega_{N} f= \pm f$. The L fucntion $L(s, f)$ has an Euler product
$L(s, f)=\Pi_{p \text { prime }, p \mid N, p^{2} \nmid N}\left(\frac{1}{1-c_{p} p^{-s}}\right) \Pi_{p \text { prime }, p \nmid N}\left(\frac{1}{1-c_{p} p^{-s}+p^{k-1-2 s}}\right)$

X. L Function of an Elliptic Curve.

Recall that for an elliptic curve (E, O) over a field K, there exists

$$
x, y \in K(E), \quad \operatorname{ord}_{O}(x)=-2, \operatorname{ord}_{O}(y)=-3
$$

x, y gives an embedding

$$
\phi: E \rightarrow \mathbb{P}^{2}, \quad \phi(p)=[x(p), y(p), 1]
$$

The image of E is the curve in \mathbb{P}^{2} given by the Weierstrass equation

$$
y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

The discriminant Δ of

$$
y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

is a polynomial of $a_{1}, a_{2}, a_{3}, a_{4}, a_{6}$ with \mathbb{Z}-coefficient. (See [S] page 46 or $[K]$ page 58 for the formula for Δ.)
$\Delta \neq 0$ iff the curve given by the above equation is non-singular.

An admissible change of variable is

$$
x=u^{2} x^{\prime}+r, \quad y=u^{3} y^{\prime}+s u^{2} x^{\prime}+t
$$

Then the equation for x^{\prime}, y^{\prime} is

$$
y^{\prime 2}+a_{1}^{\prime} x^{\prime} y^{\prime}+a_{3}^{\prime} y^{\prime}=x^{\prime 3}+a_{2}^{\prime} x^{\prime 2}+a_{4}^{\prime} x^{\prime}+a_{6}^{\prime}
$$

See [K] page 291 for the formulas for $a_{i}^{\prime} s$

$$
u^{12} \Delta^{\prime}=\Delta
$$

From now on, we consider elliptic curves over \mathbb{Q}.

An equation

$$
y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

is called minimal for the prime p if all the coefficients a_{i} are p-integral and $\operatorname{ord}_{p}(\Delta)$ cannot be decreased by making an admissible change of variables over \mathbb{Q} with the property that the new coefficients are p-integral.

A rational number r is p-integral if $r=0$ or $r \neq 0, \operatorname{ord}_{p}(r) \geq 0$.

Example. $\frac{12}{91}, 101,-\frac{35}{100}$ are 3 -integral, but $\frac{10}{99}$ is not 3 -integral.
If the coefficients of an equation over \mathbb{Q} are all p-integral, then it makes sense to reduce the equation modulo p.

For example, we can modulo 3 of the equation

$$
\frac{12}{91} y^{2}=x^{3}+101 x-\frac{35}{100}
$$

An equation

$$
y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

is called a global minimal Weierstrass equation if all the coefficients are in \mathbb{Z} and it is minimal for all primes.

Theorem 10.3 (Neron).

If E is an elliptic curve over \mathbb{Q}, then there exists an admissible change of variable over \mathbb{Q} such that the resulting equation is a global minimal Weierstrass equation. Two such resulting global minimal equations are related by an admissible change of variables with $u= \pm 1$ and with $r, s, t \in \mathbb{Z}$.

Let E be an elliptic curve over \mathbb{Q} with a global minimal Weierstrass equation.

For each prime p, we consider the reduction E_{p} of E modulo p (using the global minimal Weierstrass equation).
If $p \nmid \Delta, E_{p}$ is an elliptic curve over $\mathbb{Z} /(p)$; if $p \mid \Delta, E_{p}$ is singular.
Let

$$
a_{p}=p+1-\left|E_{p}(\mathbb{Z} /(p))\right| .
$$

The L-function of E is defined as

$$
L(s, E)=\Pi_{p \mid \Delta}\left(\frac{1}{1-a_{p} p^{-s}}\right) \Pi_{p \nmid \Delta}\left(\frac{1}{1-a_{p} p^{-s}+p^{1-2 s}}\right) .
$$

Recall for an elliptic curve E_{p} over finite field $\mathbb{Z} /(p)$, the zeta function is

$$
Z\left(E_{p}, T\right)=\frac{1-a_{p} T+p T^{2}}{(1-T)(1-p T)}
$$

where $a_{p}=p+1-\left|E_{p}(\mathbb{Z} /(p))\right|$ (same as before).

$$
1-a_{p} T+p T^{2}=\left(1-\alpha_{p} T\right)\left(1-\beta_{p} T\right)
$$

with $\left|\alpha_{p}\right|=\left|\beta_{p}\right|=p^{\frac{1}{2}}$ (Riemann hyptheosis for elliptic curve over finite fields).
(see [S] Theorem V 2.4)

SO

$$
1-a_{p} p^{-s}+p^{1-2 s}=\left(1-\alpha_{p} p^{-s}\right)\left(1-\beta_{p} p^{-s}\right)
$$

The infinite product for $L(s, E)$ converges iff

$$
\sum_{p \nmid \Delta}\left|\alpha_{p} p^{-s}\right|+\left|\beta_{p} p^{-s}\right|=2 \sum_{p \nmid \Delta} p^{-\mathrm{res}+\frac{1}{2}}
$$

converges.
The later converges on re $s>\frac{3}{2}$.

Proposition 10.4.

The Euler product defining $L(E, s)$ converges for re $s>\frac{3}{2}$ and given there by absolutely convergent Dirichlet series.

XI. Eichler-Shimura Theory.

The theory gives for each new form $f \in S_{2}\left(\Gamma_{0}(N)\right)$ with q-expansion

$$
f=\sum_{n=1}^{\infty} c_{n} q^{n}, \quad c_{1}=1, \quad c_{n} \in \mathbb{Z}
$$

an elliptic curve E over \mathbb{Q}. The L function of E and f coincide as Euler products except possibly at finitely many primes.

Definition. An element $\gamma \in \Gamma_{0}(N)$ is called an elliptic element if $|\operatorname{Tr} \gamma|<2$. An element $\gamma \in \Gamma_{0}(N)$ is called a parabolic element if $|\operatorname{Tr} \gamma|=2$.

Lemma (1) $\gamma \in \Gamma_{0}(N)$ is an elliptic element iff $\gamma \neq \pm 1$ and is of finite order .
(2) If $\gamma \in \Gamma_{0}(N)$ is a parabolic element, then γ fixes an element in $\mathbb{P}^{1}(\mathbb{Q}) \mathbb{Q} \sqcup\{\infty\}$.

Fix a base point $\tau_{0} \in \mathcal{H}$. For $f \in S_{2}\left(\Gamma_{0}(N)\right)$, we define the contour integral

$$
F(\tau)=\int_{\tau_{0}}^{\tau} f(z) d z
$$

where we take any contour from τ_{0} to τ.

We let, for $\gamma \in \Gamma_{0}(N)$,

$$
\Phi_{f}(\gamma)=\int_{\tau_{0}}^{\gamma\left(\tau_{0}\right)} f(z) d z
$$

Lemma. $\boldsymbol{\Phi}_{f}(\gamma)$ is independent of the choice of the base point τ_{0}. Proof. We need to prove

$$
\int_{\tau_{0}}^{\gamma\left(\tau_{0}\right)} f(z) d z-\int_{\tau_{1}}^{\gamma\left(\tau_{1}\right)} f(z) d z=0
$$

it is equivalent to prove

$$
\int_{\tau_{0}}^{\tau_{1}} f(z) d z=\int_{\gamma\left(\tau_{0}\right)}^{\gamma\left(\tau_{1}\right)} f(z) d z
$$

which is true by a change of variable and the invariance of $f(z) d z$ under γ.

Proposition 11.1

For $f \in S_{2}\left(\Gamma_{0}(N)\right), \Phi_{f}$ is a homomorphism of $\Gamma_{0}(N)$ into the additive group of \mathbb{C}. If γ is elliptic or parabolic, then $\Phi_{f}(\gamma)=0$.

End

