Math 6170 C, Lecture on May 13 , 2020

Yongchang Zhu

Yongchang Zh	

(1) Brief Review of Concept of New Forms

(1) XI (Knapp). Eichler-Shimura Theory (continued)

æ

イロト イ理ト イヨト イヨト

A cusp form f in $S_k(\Gamma_0(N))$ is called an eigenform if $T(n)f = \lambda_n f$ for all positive integers n with gcd(n, N) = 1.

A new form $f \in S_k(\Gamma_0(N))$ is an eigenform that is orthogonal to every eigenform constructed from $S_k(\Gamma_0(N/r))$, where r > 1 is a divisor of N.

Theorem. A new form f is also an eigenvector for all T(n). If f has q-expansion

$$f=\sum_{n=1}^{\infty}c_nq^n$$

 $c_1 = 1$, then $T(n)f = c_n f$.

The theory gives for each new form $f \in S_2(\Gamma_0(N))$ with q-expansion

$$f=\sum_{n=1}^{\infty}c_nq^n, \ c_1=1, \ c_n\in\mathbb{Z}$$

an elliptic curve E over \mathbb{Q} . The L function of E and f coincide as Euler products.

Definition. An element $\gamma \in \Gamma_0(N)$ is called an **elliptic element** if $|\operatorname{Tr} \gamma| < 2$. An element $\gamma \in \Gamma_0(N)$ is called a **parabolic element** if $|\operatorname{Tr} \gamma| = 2$.

э

A (1) < A (2) < A (2) </p>

Lemma (1) $\gamma \in \Gamma_0(N)$ is an elliptic element iff $\gamma \neq \pm 1$ and is of finite order .

(2) If $\gamma \in \Gamma_0(N)$ is a parabolic element, then γ fixes an element in $\mathbb{P}^1(\mathbb{Q}) = \mathbb{Q} \sqcup \{\infty\}.$

3

イロト イヨト イヨト イヨト

Fix a base point $\tau_0 \in \mathcal{H}$. For $f \in S_2(\Gamma_0(N))$, we define the contour integral

$$F(\tau) = \int_{\tau_0}^{\tau} f(z) dz$$

where we take any contour from τ_0 to τ .

We let, for $\gamma \in \Gamma_0(N)$,

$$\Phi_f(\gamma) = \int_{\tau_0}^{\gamma(\tau_0)} f(z) dz$$

æ

イロト 不得 トイヨト イヨト

Recall the formula for a change of variable for contour integrals:

$$\int_C f(z)dz = \int_{C'} f(\phi(w))\phi'(w)dw$$

where $z = \phi(w)$ is a bi-holomorphic map that transform the contour C' to C.

æ

▶ ★ 문 ► ★ 문 ► ...

Lemma. $\Phi_f(\gamma)$ is independent of the choice of the base point τ_0 .

Proof. We need to prove

$$\int_{\tau_0}^{\gamma(\tau_0)} f(z) dz - \int_{\tau_1}^{\gamma(\tau_1)} f(z) dz = 0$$

it is equivalent to prove

$$\int_{\tau_0}^{\tau_1} f(z) dz = \int_{\gamma(\tau_0)}^{\gamma(\tau_1)} f(z) dz$$

which is true by a change of variable and the invariance of f(z)dz under γ .

э

• • = • • = •

Proposition 11.1

For $f \in S_2(\Gamma_0(N))$, Φ_f is a homomorphism of $\Gamma_0(N)$ into the additive group of \mathbb{C} . If γ is elliptic or parabolic, then $\Phi_f(\gamma) = 0$.

Proof.

$$\begin{split} \Phi_{f}(\gamma_{1}\gamma_{2}) &= \int_{\tau_{0}}^{\gamma_{1}\gamma_{2}(\tau_{0})} f(z)dz \\ &= \int_{\tau_{0}}^{\gamma_{1}(\tau_{0})} f(z)dz + \int_{\gamma_{1}(\tau_{0})}^{\gamma_{1}\gamma_{2}(\tau_{0})} f(z)dz \\ &= \int_{\tau_{0}}^{\gamma_{1}(\tau_{0})} f(z)dz + \int_{\tau_{0}}^{\gamma_{2}(\tau_{0})} f(z)dz \\ &= \Phi_{f}(\gamma_{1}) + \Phi_{f}(\gamma_{2}) \end{split}$$

э

Let Λ be the image of Φ_f , when $\dim S_2(\Gamma_0(N))$, Λ is a lattice in \mathbb{C} .

The map $F:\mathcal{H}
ightarrow\mathbb{C}$ $F(au)=\int_{ au_{o}}^{ au}f(z)dz$

induce a map

$$\Gamma_0(N) \setminus \mathcal{H} \to \mathbb{C}/\Lambda.$$

By adding cusps to $\Gamma_0(N) \setminus \mathcal{H}$, we obtain a compact Riemann surface $X_0(N)$.

We first construct $X_0(N)$ as a topological space.

Put

$$\mathcal{H}^*=\mathcal{H}\sqcup\mathbb{Q}\sqcup\{\infty\}$$

and topologize \mathcal{H}^* as follows: A basic open neighborhood about $\tau \in \mathcal{H}$ is an open set wholly within \mathcal{H} , A basic open neighborhood about ∞ is

$$\{\tau \in \mathcal{H} \,|\, \mathrm{Im}\, \tau > r\} \sqcup \{\infty\}.$$

If $r \in \mathbb{Q}$, a basic open neighborhood about r is $D \sqcup \{r\}$ where D is an open disc of center r + iy and radius y > 0.

A subset $U \subset \mathcal{H}^*$ is an open set iff for every $P \in U$, a basic open neighborhood defined above about P lies in U.

Exercise. Prove that if $g \in GL(2, \mathbb{Q})_+$, $r \in \mathbb{Q} \sqcup \{\infty\}$, then g send a basic open neighborhood of r to a basic open neighborhood of g(r).

 $GL(2,\mathbb{Q})_+$ acts on \mathcal{H}^* as homeomorphisms.

 $\Gamma_0(N)$ acts on \mathcal{H}^* as homeomorphisms. We consider the orbit space

$$X_0(N) = \Gamma_0(N) \setminus \mathcal{H}^*$$

We given $X_0(N)$ the quotient topology: a set $U \subset X_0(N)$ is open iff $\pi^{-1}(U)$ is an open set in \mathcal{H}^* , where

$$\pi:\mathcal{H}^*\to \Gamma_0(N)\backslash\mathcal{H}^*=X_0(N)$$

is the quotient map.

4 3 4 3 4 3 4

Definition. A Riemann surface is a Hausdorff topological space X with an open cover $X = \bigcup_{i \in I} U_i$ and each open set U_i has a coordinate map

$$z_i: U_i \to V_i$$

where V_i is an open set in \mathbb{C} such that

(1) z_i is a homeomorphism, i.e., an isomorphism of topological spaces;
(2) for every *i*, *j*,

$$z_j \circ z_i^{-1} : z_i(U_i \cap U_j) \to z_j(U_i \cap U_j)$$

is bi-holomorphic.

A B M A B M

If X is a Riemann surface, $U \subset X$ is an open subset, a function $f : U \to \mathbb{C}$ is called an analytic function (a holomorphic function) if for every *i*, the composition map

$$z_i(U_i\cap U)\xrightarrow{z_i^{-1}}U_i\cap U\xrightarrow{f}\mathbb{C}$$

is analytic.

A map $f : X \to \mathbb{C} \cup \{\infty\}$ is called a meromorphic function if it is locally quotient of two analytic functions.

A B M A B M

The space of meromorphic functions on a connected Riemann surface is a field.

If the Riemann surface X is compact, the field of meromorphic functions on X has transcendental degree one over \mathbb{C} .

 $X_0(N) = \Gamma_0(N) \setminus \mathcal{H}^*$ has a Riemann surface structure.

It is compact.

æ

イロト イヨト イヨト イヨト

Every non-singular projective curve over \mathbb{C} is a compact Riemann surface. Conversely every compact Riemann surface X has a unique structure of non-singular projective curve over \mathbb{C} .

The concepts analytic maps between Riemann surfaces and morphisms between algebraic curves coincide.

The field of meromorphic functions on X is the same as the field of rational functions on the corresponding curve.

Proposition 11.6 The space of holomorphic differentials on $X_0(N)$ is isomorphic to $S_2(\Gamma_0(N))$.

æ

イロト イヨト イヨト イヨト

Let X be a compact Riemann surface, let $\Omega_{hol}(X)$ be the space of holomorphic differentials on X. $\dim_{\mathbb{C}}\Omega_{hol}(X) = g$ is called the **genus of** X.

Then the fist homology group $H_1(X, \mathbb{Z})$ is a free \mathbb{Z} -module of rank 2g.

Suppose the genus of $X \ g \ge 1$. let c_1, \ldots, c_{2g} be a basis of $H_1(X, \mathbb{Z})$, and $\omega_1, \ldots, \omega_g$ be a basis of $\Omega_{\text{hol}}(X)$.

Then 2g vectors in \mathbb{C}^g given by

$$(\int_{c_i} \omega_1, \int_{c_i} \omega_2, \ldots, \int_{c_i} \omega_g)$$

i = 1, 2, ..., 2g are linearly independent over \mathbb{R} . Let $\Lambda(X)$ be the lattice spanned the above vectors.

The **Jacobi variety** of X is defined as $J(X) = \mathbb{C}^g / \Lambda(X)$ (as a complex manifold, but it is a variety)

イロト イヨト イヨト ・

We fix a base point $x_0 \in X$, then we have a map

$$\Phi: X \to J(X)$$

given by

$$\Phi(x) = \left(\int_{x_0}^x \omega_1, \ldots, \int_{x_0}^x \omega_g\right)$$

æ

글▶ ∢ 글▶

Because J(X) is a group, we extend Φ to a map

 $\Phi:\mathrm{Div}(X)\to J(X)$

$$\Phi(\sum_{i=1}^m k_i[x_i]) = \sum_{i=1}^m k_i \Phi(x_i)$$

Theorem. Φ induces a group isomorphism from $\operatorname{Pic}^{0}(X)$ to J(X). Recall that $\operatorname{Pic}^{0}(X)$ is the quotient group of degree 0 divisors by the principal divisors.

・ 同 ト ・ ヨ ト ・ ヨ ト

For every $\tau_0 \in \mathcal{H}^*$, $\gamma \in \Gamma_0(N)$, for any path $[\tau_0, \gamma \tau_0]$ in \mathcal{H}^* that starts at τ_0 and ends at $\gamma \tau_0$,

The image of $[\tau_0, \gamma \tau_0]$ under $\pi : \mathcal{H}^* \to X_0(N) = \Gamma_0(N) \setminus \mathcal{H}^*$ is a 1-cycle in $X_0(N)$. Its class in $H_1(X_0(N), \mathbb{Z})$ depends only on γ .

It is easy to see that the map $\Gamma_0(N) \to H_1(X_0(N),\mathbb{Z})$ given by

 $\gamma \mapsto \pi[\tau_0, \gamma \tau_0]$

is a group homomorphism. This map induces

Proposition 11.22.

$$H_1(X_0(N),\mathbb{Z})\cong \Gamma_0(N)^{ab}/\Gamma^{ab}_{ep}$$

where Γ_{ep} denotes the subgroup generated by elliptic and parabolic subgroups.

く 同 ト く ヨ ト く ヨ ト

Recall that

$$M(n,N) = \{ egin{pmatrix} a & b \ c & d \end{pmatrix} \in M_2(\mathbb{Z}) \, | \, ad-bc = n, c \equiv 0 egin{pmatrix} mod \ N, \ gcd(a,N) = 1 \} \end{cases}$$

$$M(n,N) = \sqcup_{i=1}^{K} \Gamma_0(N) \alpha_i$$

æ

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

For $[\gamma] \in \Gamma_0(N)^{ab} / \Gamma_{ep}^{ab}$ represented by $\gamma \in \Gamma_0(N)$,

 $\alpha_i \gamma = \gamma_i \alpha_{\sigma(i)}$

where σ is the permutation $\{\alpha_1,\ldots,\alpha_K\}$ corresponding the action of γ on the cosets

 $\Gamma_0 \alpha_1, \ldots, \Gamma_o \alpha_K.$

We define

$$T(n)[\gamma] = \sum_{i=1}^{K} [\gamma_i]$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

This defines an action of Hecke operator on $H_1(X_0(N), \mathbb{Z})$. This action is compatible with the T(n)-action on $S_2(\Gamma_0(N)) = \Omega_{hol}(X_0(N))$:

Proposition 11.23

$$\int_{T(n)c}\omega=\int_{c}T(n)\omega.$$

э

The eigenvalues of T(n) on $S_2(\Gamma_0(N))$ are algebraic integers.

æ

(本部) * 종 * * 종 *

Definition. A meromorphic function f on \mathcal{H} is said to be automorphic of weight 0 and level N if

$$f \circ [g]_0 = f(\frac{a\tau + b}{c\tau + d}) = f(\tau)$$

for all

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(N)$$

and for every $r \in SL(2, \mathbb{Z})$, the *q*-expansion of $f \circ [r]$ has only finitely many negative terms.

We denote by $A_0(\Gamma_0(N))$ the space of all automorphic functions of weight 0 and level N. Then $A_0(\Gamma_0(N))$ is a field, and

 $A_0(\Gamma_0(N)) = K(X_0(N))$

here $K(X_0(N))$ is the field of rational functions on $X_0(N)$.

 $\mathcal{K}(X_0(1)) = \mathbb{C}(j)$, where *j* is the unique automorphic function for $\Gamma_0(1) = SL(2, \mathbb{Z})$ with *q*-expansion

$$j = q^{-1} + 744 + \sum_{n=1}^{\infty} c_n q^n.$$

Recall $j(\tau) = 1728g_2(\tau)/\Delta(\tau)$.

æ

イロト イヨト イヨト イヨト

Theorem 11.33 $A_0(\Gamma_0(N)) = K(X_0(N)) = \mathbb{C}(j, j_N)$, where $j_N(\tau) = j(N\tau)$.

3

イロト イヨト イヨト イヨト

Corollary 11.49. There is a non-singular projective curve C/\mathbb{Q} which has functions field (over \mathbb{Q}) as

 $\mathbb{Q}(j, j_N).$

 $C(\mathbb{C})$ is $X_0(N)$.

æ

• • = • • = •

For every new form $f \in S_2(\Gamma_0(N))$ with *q*-expansion

$$f = q + \sum_{n=2}^{\infty} c_n q^n$$

with $c_n \in \mathbb{Z}$, there exists an elliptic curve E over \mathbb{Q} with L-function same as L(f, s).

E is a quotient of $J(X_0(N))$ by a codimension 1 sub-abelian variety.

End

æ

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ -