Math 6170 C, Lecture on May 18 , 2020

Yongchang Zhu

Plan

(1) XI (Knapp). Eichler-Shimura Theory (continued)
(2) Famous Conjectures about Elliptic Curves
(3) Final Exam

XI. Eichler-Shimura Theory (continued).

Let $\mathcal{H}^{*}=\mathcal{H} \sqcup \mathbb{Q} \sqcup\{\infty\}$.

$$
X_{0}(N)=\Gamma_{0}(N) \backslash \mathcal{H}^{*}
$$

is a compact Riemann surface therefore a projective algebraic curve over \mathbb{C}.

Proposition 11.6 The space of holomorphic differentials on $X_{0}(N)$ is canonically isomorphic to $S_{2}\left(\Gamma_{0}(N)\right)$.

Since $X_{0}(1) \cong \mathbb{P}^{1}$, the function field of $X_{0}(1)$ is isomorphic to $\mathbb{C}(t)$. The function field of $X_{0}(1)$ is $\mathbb{C}(j)$
where

$$
j(\tau)=1728 g_{2}(\tau)^{3} / \Delta(\tau)
$$

It has q-expansion

$$
j=q^{-1}+744+\sum_{n=1}^{\infty} c_{n} q^{n}
$$

All the coefficients are in $\mathbb{Z}_{>0}$.

Theorem 11.33. The function field of $X_{0}(N)$ is $\mathbb{C}\left(j, j_{N}\right)$.
Where $j_{N}(\tau)=j(N \tau)$. The minimal polynomial of j_{N} over $\mathbb{C}(j(\tau))$ is

$$
\Phi_{N}(X)=\Pi_{i=1}^{k_{N}}\left(X-j \circ \alpha_{i}\right)
$$

where $\alpha_{i}\left(i=1, \ldots, k_{N}\right)$ are given by

$$
S L(2, \mathbb{Z})\left(\begin{array}{cc}
N & 0 \\
0 & 1
\end{array}\right) S L(2, \mathbb{Z})=\sqcup_{i=1}^{k_{N}} S L(2, \mathbb{Z}) \alpha_{i}
$$

Because $\mathbb{Q}\left(j, j_{N}\right) \cap \overline{\mathbb{Q}}=\mathbb{Q}$, so $X_{0}(N)$ has a model over \mathbb{Q}.

Theorem. Let $f(\tau)=\sum_{n=1}^{\infty} c_{n} e^{2 \pi i n \tau}$ be a new form in $S_{2}\left(\Gamma_{0}(N)\right)$ with $c_{1}=1$ and $c_{n} \in \mathbb{Z}$, then there exists an elliptic curve E such that

$$
L(E, s)=L(f, s)=\sum_{n=1}^{\infty} \frac{c_{n}}{n^{s}}
$$

E is a quotient of the Jacobian variety $J\left(X_{0}(N)\right)$ by a codimension one subvariety.

The Hecke algebra of $\Gamma_{0}(N)$ acts on $J\left(X_{0}(N)\right)$ as endomorphisms of abelian variety and this action plays a key role in the construction.

The function j also appears in finite group theory and conformal field theory in a surprising way.

A finite group G is called a simple group if it has only two normal subgroups $\{e\}$ and G itself.

Classification of finite simple groups:
(1). Cyclic groups of prime order.
(2). Alternating groups $A_{n}(n \geq 5)$.
(3) (generic type) Lie type.

Examples: $S L\left(n, F_{q}\right) / Z$, where F_{q} is a finite field of order q, Z is the center. In general $G\left(F_{q}\right) / Z$, where G is a simple algebraic group over F_{q}, Z is the center.
(4) 26 exceptional finite simple groups: sporadic groups.

The largest (in terms of order) sporadic group is the so called the Monster M. The order of M is

$$
2^{46} \cdot 3^{20} \cdot 5^{9} \cdot 7^{6} \cdot 11^{2} \cdot 13^{3} \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 41 \cdot 47 \cdot 59 \cdot 71
$$

which has more than 50 decimal digits.

The Monster group can be characterized as the symmetry group of a very special vertex operator algebras (some structure appeared first in mathematical physics) so called the Moonshine module V.

$$
V=V_{0} \oplus V_{1} \oplus V_{2} \oplus \ldots
$$

The graded dimension

$$
\text { Ch } V=q^{-1} \sum_{n=0}^{\infty} \operatorname{dim} V_{n} q^{n}
$$

is equal to $j(\tau)-744$.

Its relation with the theory of elliptic curves is not explored.

Some Famous Conjectures.

Taniyama-Shimura-Weil Conjecture.
Every elliptic curves over \mathbb{Q} can be constructed from a normalized new form in $S_{2}\left(\Gamma_{0}(N)\right)$ with \mathbb{Z}-coefficients.

Wiles proved the conjecture in 1995 for semi-stable elliptic curves.
Diamond, Conrad, Taylor and Breuil proved the remaining cases based on Wiles' work.

To state $A B C$ Conjecture, we need to define the radical of a positive integer.
Let n be a positive integer, the radical of n is defined as

$$
\operatorname{rad}(n)=\Pi_{p: \text { primes } p \mid n} p
$$

Examples. $\operatorname{rad}(100)=2 \cdot 5=10$
$\operatorname{rad}(2020)=2 \cdot 5 \cdot 101=1010$
Because $2020=2^{2} \cdot 5 \cdot 101$.

ABC Conjecture. For every $r>1$, and positive integers A, B, C such that

$$
A+B=C, \operatorname{gcd}(A, B, C)=1
$$

Then

$$
C \leq \delta \operatorname{rac}(A B C)^{r}
$$

for some scalar δ depending only on r.

Szpiro conjecture. Given $\epsilon>0$, there exists a constant $C(\epsilon)$ such that for any elliptic curve E defined over \mathbb{Q} with minimal discriminant Δ and conductor N, we have

$$
|\Delta| \leq C(\epsilon) N^{6+\epsilon}
$$

A quick way to define the conductor is to use modularity result: assume E corresponds to a new form $f \in S_{2}\left(\Gamma_{0}(N)\right)$, its conductor is N.

Modified Szpiro conjecture. Given $\epsilon>0$, there exists a constant $C(\epsilon)$ such that for any elliptic curve E over \mathbb{Q} with invariants c_{4}, c_{6} (in the minimal model) and conductor N, we have

$$
\max \left(\left|c_{4}\right|^{3},\left|c_{6}\right|^{2}\right) \leq C(\epsilon) N^{6+\epsilon}
$$

It is knows that the modified Szpiro conjecture implies $A B C$ conjecture.
In 2012, Shinichi Mochizuki claimed a proof of Szpiro's conjecture. But the proof has not been accepted by number theory community.

Birch and Swinnerton-Dyer conjecture. The rank of $E(\mathbb{Q})$ is equal to the order of vanishing of $L(s, E)$ at $s=1$.

Final Exam.

Problem 1. Let p be an odd prime with $p \equiv 2 \bmod 3$. Let $B \in \mathbb{Z}$ is relatively prime to p.
(1). Prove that E given by the equation

$$
y^{2}=x^{3}+B
$$

is an elliptic curve over finite field $\mathbb{Z} / p \mathbb{Z}$.
(2). Prove that $|E(\mathbb{Z} / p \mathbb{Z})|=p+1$.
(3). Find the zeta function of E.
(4). Find $\left|E\left(k_{p^{n}}\right)\right|$, where $k_{p^{n}}$ is the finite finite field with p^{n} elements.

Hint: (1) An equation $y^{2}=x^{3}+A x+B$ over a field K defines an elliptic curve iff $x^{3}+A x+B=0$ has no multiple roots in \bar{K} iff $4 A^{3}+27 B^{2} \neq 0$.
(2) Give $y \in \mathbb{Z} / p \mathbb{Z}$, prove that there is unique $x \in \mathbb{Z} / p \mathbb{Z}$ such that (x, y) is a solution.
(3) (4) Use results in [S] Chapter $V, Z(E, T)=\frac{1-a T+p T^{2}}{(1-T)(1-p T)}$ Factorize

$$
1-a T+p T^{2}=(1-\alpha T)(1-\beta T)
$$

Then

$$
\left|E\left(k_{p^{n}}\right)\right|=1-\alpha^{n}-\beta^{n}+p^{n}
$$

Problem 2.

Let $\Lambda=\mathbb{Z}+\mathbb{Z} \tau, \mathcal{M}(\Lambda)$ be the space of elliptic functions $f(z)$ with period lattice Λ. For each positive integer $n, f \in \mathcal{M}(\Lambda)$, we define

$$
\left(T_{n} f\right)(z)=\sum_{j, k=0}^{n-1} f\left(\frac{z}{n}+\frac{j}{n} \tau+\frac{k}{n}\right)
$$

(1) Prove that $T_{n} f$ is an elliptic functions with period lattice Λ. So we have a linear operator $T_{n}: \mathcal{M}(\Lambda) \rightarrow \mathcal{M}(\Lambda)$.
(2) Prove that $T_{m} T_{n}=T_{m n}$.
(3). Let $\wp(z, \tau)$ be the Weierstrass function for Λ, i.e.,

$$
\wp(z, \tau)=\frac{1}{z^{2}}+\sum_{\omega \in \Lambda-\{0\}}\left(\frac{1}{(z-\omega)^{2}}-\frac{1}{\omega^{2}}\right) .
$$

Prove that

$$
T_{n} \wp(z, \tau)-n^{2} \wp(z, \tau)=\sum_{0 \leq j, k \leq n-1, \text { not both } 0} \wp\left(\frac{j}{n} \tau+\frac{k}{n}, \tau\right)
$$

Hint: Prove that

$$
\sum_{0 \leq j, k \leq n-1, \text { not both } 0} \wp\left(\frac{j}{n} \tau+\frac{k}{n}, \tau\right)=0
$$

is a modular form of weight 2 for $S L(2, \mathbb{Z})$. Then apply Corollary 8.7 in $[\mathrm{K}]$.

Problem 3. The height of a point $P \in \mathbb{P}^{1}(\mathbb{Q})$ is defined as follows: write $P=[m, n]$ so that $\operatorname{gcd}(m, n)=1$,

$$
H_{\mathbb{Q}}(P)=\max (|m|,|n|) .
$$

The height zeta function of $\mathbb{P}^{1}(\mathbb{Q})$ is defined as

$$
Z_{H}(s)=\sum_{P \in \mathbb{P}^{1}(\mathbb{Q})} \frac{1}{H_{\mathbb{Q}}(P)^{s}}
$$

Prove that $Z_{H}(s)$ converges on re $s>2$ and is equal to

$$
4 \frac{\zeta(s-1)}{\zeta(s)}
$$

where $\zeta(s)$ is the Riemann zeta function.
hint: To a Dirichlet series $\sum_{n=1}^{\infty} c_{n} n^{s}$ converges on re $s>r$, try to prove $\sum_{n=1}^{\infty}\left|c_{n}\right| n^{\text {res }}<\infty$ for re $s>r$, compare it with Riemann zeta function.

If a Dirichlet series $\sum_{n=1}^{\infty} c_{n} n^{s}$ is multiplicative, i.e., $c_{m n}=c_{m} c_{n}$ for $\operatorname{gcd}(m, n)=1$, then it has an Euler product

$$
\Pi_{p: \text { primes }}\left(1+\frac{c_{p}}{p^{s}}+\frac{c_{p^{2}}}{p^{2 s}}+\ldots\right)
$$

Problem 4. Let E be a unique elliptic curve E over \mathbb{C} such that $\operatorname{End}(E) \neq \mathbb{Z}$, prove that $j(E)$ is an algebraic number.
hint: use $E=\mathbb{C} / \Lambda$ for some lattice $\Lambda=\mathbb{Z}+\mathbb{Z} \tau$. then every $f \in \operatorname{End}(E)$ is given by a complex number α such that $\alpha \Lambda \subset \Lambda$.

Two elliptic curves are isomorphic iff $j\left(E_{1}\right)=j\left(E_{2}\right)$. For $E=\mathbb{C} / \mathbb{Z}+\mathbb{Z} \tau$, $j(E)=j(\tau)$.

End

