Math 6170 C, Lecture on May 4, 2020

Yongchang Zhu

Plan

(1) VIII (Knapp). Modular Forms for $S L(2, \mathbb{Z})$.
(2) IX (Knapp). Modular Forms for Hecke Subgroups.

VIII Modular Forms For SL(2, Z $)$.

Equivalence classes of lattices in $\mathbb{C} \Leftrightarrow$ Elliptic Curves over \mathbb{C}.

$$
\begin{aligned}
\Lambda & =\mathbb{Z} \omega_{1}+\mathbb{Z} \omega_{2} \mapsto \mathbb{C} / \Lambda \\
\mathbb{C} / \Lambda & \simeq \mathbb{C} / c \Lambda, \quad z+\Lambda \mapsto c z+c \Lambda
\end{aligned}
$$

Every lattice is equivalent to $\mathbb{Z}+\mathbb{Z} \tau$ for $\operatorname{Im} \tau>0$.

Two lattices $\mathbb{Z}+\mathbb{Z} \tau$ and $\mathbb{Z}+\mathbb{Z} \tau^{\prime}$ are equivalent iff

$$
\tau^{\prime}=\frac{a \tau+b}{c \tau+d}
$$

for some

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L(2, \mathbb{Z})
$$

Set the upper half space to be

$$
\mathcal{H}=\{\tau \in \mathbb{C} \mid \operatorname{Im} \tau>0\}
$$

The group $S L(2, \mathbb{R})$ acts on \mathcal{H} by

$$
\gamma \tau=\frac{a \tau+b}{c \tau+d}
$$

The set of isomorphisms classes of elliptic curves over \mathbb{C} can be identified with

$$
\mathcal{H} / S L(2, \mathbb{Z})
$$

the set of orbits.

Definition.

A unrestricted modular form of weight k for $S L(2, \mathbb{Z})$ is an analytic function on \mathcal{H} that satisfies

$$
\begin{equation*}
f\left(\frac{a \tau+b}{c \tau+d}\right)=(c \tau+d)^{k} f(\tau) \tag{1}
\end{equation*}
$$

for all $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S L(2, \mathbb{Z})$.
It is enough to check (1) for

$$
S=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \quad T=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

For reasons that
(1) S, T generates $S L(2, \mathbb{Z})$.
(2) For each k, the group

$$
G L(2, \mathbb{R})_{+}=\{g \in G L(2, \mathbb{R}) \mid \operatorname{det} g>0\}
$$

acts from the right on the space of analytic functions on \mathcal{H} by

$$
\left(f \circ[g]_{k}\right)(\tau)=\operatorname{det}(g)^{\frac{k}{2}}(c \tau+d)^{-k} f\left(\frac{a \tau+b}{c \tau+d}\right)
$$

The modular from condition (1) is equivalent to

$$
f \circ[g]_{k}=f
$$

for all $g \in S L(2, \mathbb{Z})$.

Examples. $k \geq 2$,

$$
G_{2 k}(\tau)=\sum_{(m, n) \in \mathbb{Z}^{2},(m, n) \neq(0,0)} \frac{1}{(m \tau+n)^{2 k}}
$$

is a unrestricted modular form of weight $2 k$ for $S L(2, \mathbb{Z})$.

If f is a unrestricted modular form of weight k, take $\gamma=T$, we have

$$
f(\tau+1)=f(\tau)
$$

So f has a series expansion

$$
f(\tau)=\sum_{n \in \mathbb{Z}} c_{n} q^{n}
$$

with $q=e^{2 \pi i \tau}$. This is called the q expansion of f.

We say an unrestricted modular form f is holomorphic at ∞ and is a modular form if its q-expansion has $c_{n}=0$ for $n<0$. If also $c_{0}=0$, we call f a cusp form.

If f is a modular form of weight k,

$$
f(\tau)=c_{0}+c_{1} e^{2 \pi i \tau}+\ldots
$$

For each $n>0$,

$$
\lim _{\tau \rightarrow i \infty} e^{2 \pi i n \tau}=\lim _{\tau \rightarrow i \infty} e^{2 \pi i n x} e^{-2 \pi n y}=0
$$

So

$$
\lim _{\tau \rightarrow i \infty} f(\tau)=c_{0}
$$

Let $M_{k}\left(S_{k}\right)$ be the space of modular forms (cusp forms) of weight k for $S L(2, \mathbb{Z})$.

Then $M_{k}=0$ for k odd.
Apply the condition

$$
f\left(\frac{a \tau+b}{c \tau+d}\right)=(c \tau+d)^{k} f(\tau)
$$

to

$$
g=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)
$$

we get

$$
f(\tau)=-f(\tau)
$$

So $f(\tau)=0$.
$M_{k}=0$ for $k=-I<0$.
Proof. If $f \in M_{k}$, and $f \neq 0$
$f(\tau)=c_{0}+c_{1} e^{2 \pi i \tau}+\ldots, \lim _{\tau \rightarrow i \infty} f(\tau)=c_{0}$.
The function $g(q)=c_{0}+c_{1} q+\ldots$ is analytic on $|q|<1$, if $f(\tau)$ is not constant, then $|g(0)|=|f(i \infty)|$ is not a maximum.

$$
f\left(-\frac{1}{\tau}\right)=(-\tau)^{-I} f(\tau)
$$

Take $\lim _{\tau \rightarrow i \infty}$, we get $\lim _{\tau \rightarrow i 0} f(\tau)=0$.
This implies that $|f(\tau)|$ takes a maximum at some point in \mathcal{H}, so $f(\tau)$ is a constant by the maximum principle.

$$
M_{0}=\mathbb{C}
$$

$$
M_{0}+M_{2}+\cdots+M_{2 k}+\ldots
$$

is a graded ring,

$$
S_{2}+S_{4}+\ldots
$$

is an ideal of $\oplus_{k=0}^{\infty} M_{2 k}$.

Example. For $k \geq 2$,

$$
G_{2 k}(\tau)=2 \zeta(2 k)+\frac{2(2 \pi i)^{2 k}}{(2 k-1)!} \sum_{n=1}^{\infty} \sigma_{2 k-1}(n) q^{n}
$$

where
$\sigma_{l}(n)=\sum_{d \mid n} d^{\prime}$.
So $G_{2 k}$ is a modular form of weight $2 k$ for $S L(2, \mathbb{Z})$.

Theorem

The commutative algebra $M=\oplus_{k=0}^{\infty} M_{2 k}$ is generated by G_{4} and G_{6} over \mathbb{C}, and G_{4} and G_{6} are algebraically independent over \mathbb{C}, so the monomials

$$
\left\{G_{4}^{m} G_{6}^{n} \mid 4 m+6 n=N\right\}
$$

is a basis for M_{N}.

$$
M_{2 k}=\mathbb{C} G_{2 k} \oplus S_{2 k}
$$

Let $g_{2}=60 G_{4}, g_{3}=140 G_{6}$,

$$
\Delta(\tau)=g_{2}(\tau)^{3}-27 g_{3}(\tau)^{2}
$$

is a cusp modular form of weight $12, \Delta(\tau) \neq 0$ for all $\tau \in \mathcal{H}$.

$$
j(\tau)=1728 g_{2}(\tau)^{3} / \Delta(\tau)
$$

has weight 0 .

$$
j(\tau)=\frac{1}{q}+744+\sum_{n=1}^{\infty} c_{n} q^{n}
$$

All $c_{n} \in \mathbb{Z}_{>0}$.

A fundamental domain for $S L(2, \mathbb{Z})$-action on \mathcal{H} is

$$
R=\left\{\tau \in \mathcal{H}\left|-\frac{1}{2} \leq \operatorname{Re} \tau \leq \frac{1}{2},|\tau| \geq 1\right\}\right.
$$

Every point in \mathcal{H} is $S L(2, \mathbb{Z})$-equivalent to some point in R, An interior point in R is not equivalent to any other point in R. Any boundary point except $\tau=i$ has exactly another boundary point that is $S L(2, \mathbb{Z})$-equivalent to it.

Another proof of that fact that $\Delta(\tau)$ never vanishes.

$$
\begin{gathered}
\Delta(\tau)=(2 \pi)^{12} q \Pi_{n=1}^{\infty}\left(1-q^{n}\right)^{24} . \\
\eta(\tau)=e^{\frac{\pi i \tau}{12}} \Pi_{n=1}^{\infty}\left(1-q^{n}\right)
\end{gathered}
$$

Then

$$
\eta(\tau+1)=e^{\frac{\pi i}{1} 2} \eta(\tau), \eta\left(-\frac{1}{\tau}\right)=(-i \tau)^{\frac{1}{2}} \eta(\tau)
$$

where $(-i \tau)^{\frac{1}{2}}$ satisfies re $(-i \tau)^{\frac{1}{2}}>0$.

Hecke Operators.

For every positive integer $n \geq 2$, let

$$
M(n)=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a, b, c, d \in \mathbb{Z}, a d-b c=n\right\} .
$$

$M(n)$ are closed by left multiplication and right multiplication by elements in $S L(2, \mathbb{Z})$.
$M(n)$ is equal to a disjoint union of finitely many right cosets of $S L(2, \mathbb{Z})$.

$$
M(n)=\bigcup_{i=1}^{\nu(n)} S L(2, \mathbb{Z}) \alpha_{i}
$$

We have
Lemma. The integral matrices $\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right)$ with $a d=n, a>0, d>0$ and $0 \leq b<d$ are a complete set of representatives for the right coset of $S L(2, \mathbb{Z})$ on $M(n)$.

Notice that

$$
\left(\begin{array}{cc}
1 & \pm 1 \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
1 & 0 \\
\pm 1 & 1
\end{array}\right),\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \in S L(2, \mathbb{Z})
$$

Lemma. Let

$$
M(n)=\bigcup_{i=1}^{\nu(n)} S L(2, \mathbb{Z}) \alpha_{i} .
$$

For a unrestricted modular form f of weight k for $S L(2, \mathbb{Z})$, then

$$
f \circ\left[\alpha_{1}\right]_{k}+\cdots+f \circ\left[\alpha_{\nu(n)}\right]_{k}
$$

is independent of the choices of α_{i} and it is also a unrestricted modular form f of weight k for $S L(2, \mathbb{Z})$.

Proof. The set $M(n)$ is closed under the right multiplication by elements in $S L(2, \mathbb{Z})$. So $S L(2, \mathbb{Z})$ acts on the set of rights cosets of $S L(2, \mathbb{Z})$ in $M(n)$:

$$
S L(2, \mathbb{Z}) \alpha \cdot g=S L(2, \mathbb{Z})(\alpha g)
$$

Therefore $\alpha_{i} g=h_{i} \alpha_{\sigma(i)}$ for $i=1, \ldots, \nu(n), h_{i} \in S L(2, \mathbb{Z}), \sigma$ is a permutation of $\{1,2, \ldots, \nu(n)\}$

$$
\begin{aligned}
& \left(f \circ\left[\alpha_{1}\right]_{k}+\cdots+f \circ\left[\alpha_{\nu(n)}\right]_{k}\right) \circ[g]_{k} \\
& =f \circ\left[\alpha_{1}\right]_{k} \circ[g]_{k}+\cdots+f \circ\left[\alpha_{\nu(n)}\right]_{k} \circ[g]_{k} \\
& =f \circ\left[\alpha_{1} g\right]_{k}+\cdots+f \circ\left[\alpha_{\nu(n)} g\right]_{k} \\
& =f \circ\left[h_{1} \circ \alpha_{\sigma(1)}\right]_{k}+\cdots+f \circ\left[h_{\nu(n)} \alpha_{\sigma(\nu(n))}\right]_{k} \\
& =f \circ\left[\alpha_{\sigma(1)}\right]_{k}+\cdots+f \circ\left[\alpha_{\sigma(\nu(n))}\right]_{k} \\
& =f \circ\left[\alpha_{1}\right]_{k}+\cdots+f \circ\left[\alpha_{\nu(n)}\right]_{k}
\end{aligned}
$$

We define nth Hecke operator $T_{k}(n)$ on M_{k} by

$$
T_{k}(n) f=n^{\frac{k}{2}-1} \sum_{i=1}^{\nu(n)} f \circ\left[\alpha_{i}\right]_{k} .
$$

Proposition 8.16. Let $f \in M_{k}$, if f has q-expansion $f(\tau)=\sum_{n=0}^{\infty} c_{n} q^{n}$. Then $T_{k}(m) f$ has q-expansion

$$
T_{k}(m) f=\sum_{n=0}^{\infty} b_{n} q^{n}
$$

where

$$
b_{n}= \begin{cases}c_{0} \sigma_{k-1}(m) & \text { if } n=0 \\ c_{m} & \text { if } n=1 \\ \sum_{a \mid g c d(n, m)} a^{k-1} c_{n m / a^{2}} & \text { if } n>1\end{cases}
$$

$T_{k}(m)$ carries S_{k} to S_{k}.

Theorem 8.19. On the space M_{k}, the Hecke operators satisfy (a) For a prime power p^{r} with $r \geq 1$,

$$
T_{k}\left(p^{r}\right) T_{k}(p)=T_{k}\left(p^{r+1}\right)+p^{k-1} T_{k}\left(p^{r-1}\right)
$$

(b) $T_{k}(m) T_{k}(n)=T_{k}(m n)$ if $\operatorname{gcd}(m, n)=1$.
(c) The algebra generated by $T_{k}(n)$ for $n=2,3, \ldots$ is generated by $T_{k}(p)$ with p prime and is commutative.

Other results:

$$
T_{2 k}(n) G_{2 k}=\sigma_{2 k-1}(n) G_{2 k}
$$

On S_{k}, we define an inner product (Peterson inner product) by

$$
(f, h)=\int_{R} f(\tau) \overline{h(\tau)} y^{k-2} d x d y
$$

here $\tau=x+i y$. The $T_{k}(n)$ are self-dual operators with respect to the inner product. So S_{k} has an eigen-basis.

IX. Modular Forms For Hecke Subgroups.

The principal congruence subgroup $\Gamma(N)$ (N is a positive integer) is defined by

$$
\Gamma(N)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L(2, \mathbb{Z}) \left\lvert\,\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \equiv\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \bmod N\right.\right\}
$$

It is the kernel of the group homomorphism $S L(2, \mathbb{Z}) \rightarrow S L(2, \mathbb{Z} / N \mathbb{Z})$ induced from the ring homomorphism $\mathbb{Z} \rightarrow \mathbb{Z} / N \mathbb{Z}$.

A subgroup H in $S L(2, \mathbb{Z})$ is called a congruence subgroup if $H \supset \Gamma(N)$ for some N.

$$
\Gamma_{0}(N)=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L(2, \mathbb{Z}) \right\rvert\, c \equiv 0 \bmod N\right\}
$$

is a congruence subgroup. The groups $\Gamma_{0}(N)$ are called the Hecke subgroups.

Lemma. If $H \subset S L(2, \mathbb{Z})$ is a congruence subgroup, then for every $g \in S L(2, \mathbb{Q}), g H^{-1} \cap S L(2, \mathbb{Z})$ is also a congruence subgroup.

Proof. It is enough to prove that for every $g \in S L(2, \mathbb{Q}), g \Gamma(N) g^{-1}$ contains some $\Gamma(M)$. Since $S L(2, \mathbb{Q})$ is generated by

$$
\left(\begin{array}{cc}
1 & \pm \frac{1}{L} \\
0 & 1
\end{array}\right), L \in \mathbb{Z}_{>0}, S=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

it is enough to prove this for $g=\left(\begin{array}{cc}1 & \pm \frac{1}{L} \\ 0 & 1\end{array}\right)$ or $g=S$.
The case $g=S$ is obvious, as $S \in S L(2, \mathbb{Z})$ and $\Gamma(N)$ is normal subgroup of $S L(2, \mathbb{Z})$.

Proof (continued). For $g=\left(\begin{array}{cc}1 & \pm \frac{1}{L} \\ 0 & 1\end{array}\right)$,

$$
g^{-1}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) g=\left(\begin{array}{cc}
a+\frac{c}{L} & b+\frac{d L-a L-c}{L^{2}} \\
c & d-\frac{c}{L}
\end{array}\right)
$$

we see that

$$
g^{-1} \Gamma\left(N L^{2}\right) g \subset \Gamma(N)
$$

SO

$$
\Gamma\left(N L^{2}\right) \subset g \Gamma(N) g^{-1}
$$

Let $\mathbb{P}^{1}(\mathbb{Q})$ be the set of 1 -dimensional \mathbb{Q}-subspaces in $\mathbb{Q}^{2} . G L(2, \mathbb{Q})$ acts on $\mathbb{P}^{1}(\mathbb{Q})$. So $S L(2, \mathbb{Z})$ acts on $\mathbb{P}^{1}(\mathbb{Q})$.

$$
\mathbb{P}^{1}(\mathbb{Q})=\mathbb{Q} \cup\{\infty\}
$$

Lemma. (1). $S L(2, \mathbb{Z})$ acts on $\mathbb{P}^{1}(\mathbb{Q})$ transitively, i.e., there is only one orbit.
(2). If H is a congruence subgroup, then there are only finitely many H-orbits in $\mathbb{P}^{1}(\mathbb{Q})$. Each orbit is called a cusp for H.

Let R be the usual fundamental domain in \mathcal{H} for $S L(2, \mathbb{Z})$. Let H be a congruence subgroup, let

$$
S L(2, \mathbb{Z})=\bigcup_{i=1}^{n} H \alpha_{i}
$$

then $\cup_{i=1}^{n} \alpha_{i} F$ is a fundamental domain for H.

Definition. Let H be a congruence subgroup, an unrestricted modular form of weight $k \in \mathbb{Z}$ for H is an analytic function f on \mathcal{H} with

$$
f\left(\frac{a \tau+b}{c \tau+d}\right)=(c \tau+d)^{k} f(\tau)
$$

for all $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in H$.

Definition. An unrestricted modular form of weight $k \in \mathbb{Z}$ and level $N \geq 1$ is a unrestricted modular form of weight k for $\Gamma_{0}(N)$.

Lemma. If f is an unrestricted modular form of weight k for a congruence subgroup H, for every $g \in S L(2, \mathbb{Q}), f \circ[g]_{k}$ is an unrestricted modular form of weight k for congruence subgroup $g^{-1} \mathrm{Hg} \cap S L(2, \mathbb{Z})$.

Proof. For $u=g^{-1} h g \in g^{-1} H g \cap S L(2, \mathbb{Z})$, so $h \in H$,

$$
\left(f \circ[g]_{k}\right) \circ[u]_{k}=f \circ[g u]_{k}=f \circ[h g]_{k}=\left(f \circ[h]_{k}\right) \circ[g]_{k}=f \circ[g]_{k} .
$$

If f is an unrestricted modular form of weight k and level N, take

$$
\gamma=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \in \Gamma_{0}(N)
$$

we have

$$
f(\tau+1)=f(\tau)
$$

So f has q-expansion

$$
f(\tau)=\sum_{n \in \mathbb{Z}} c_{n} q^{n} .
$$

We say f is holomorphic at ∞ if $c_{n}=0$ for $n<0$ and f vanishes at ∞ if $c_{n}=0$ for $n \leq 0$.

For f as in the previous page, $r \in \mathbb{Q}$, let $g \in S L(2, \mathbb{Z})$ satisfy $g \cdot \infty=r$. Then $f \circ[g]_{k}$ is an unrestricted modular form of weight k for $g^{-1} \Gamma_{0}(N) g$, which is a congruence subgroup, i.e., $g^{-1} \Gamma_{0}(N) g \supset \Gamma(M)$ for some M, for

$$
\begin{gathered}
\gamma=\left(\begin{array}{cc}
1 & M \\
0 & 1
\end{array}\right) \in \Gamma(M), \\
\left(f \circ[g]_{k}\right) \circ[\gamma]_{k}=f \circ[g]_{k}
\end{gathered}
$$

implies that

$$
\left(f \circ[g]_{k}\right)(\tau+M)=\left(f \circ[g]_{k}\right)(\tau)
$$

So $f \circ[g]_{k}$ has q-expansion

$$
\left(f \circ[g]_{k}\right)(\tau)=\sum_{n \in \mathbb{Z}} c_{n} e^{2 \pi i n \frac{1}{M} \tau}
$$

f is called to be holomorphic at r if $c_{n}=0$ for $n<0$ and vanishes at r if $c_{n}=0$ for $n \leq 0$.

It can proved that the above definition is independent of the choice of g. And if f is holomorphic (vanishes) at r, then f is holomorphic (vanishes) at αr for $\alpha \in \Gamma_{0}(N)$.

Definition. A modular form of weight k and level N is an analytic function on \mathcal{H} that satisfies
(1) f is an unrestricted modular form of weight k and level N.
(2) f is holomorphic at all the cusps.
f is called a cusp form of weight k and level N if (2) above is replaced by " f vanishes at all the cusps".

End

