SUMMARY OF CHAPTER I OF HARTSHORNE’S
"ALGEBRAIC GEOMETRY”

Notation. Throughout of this Chapter, & denotes an algebraic closed field.

Section I.1. Affine Varieties.
k: algebraically closed field. A™: set of all (aj,as,...,ay,).

Algebraic sets, Zariski topology. Affine algebraic variety is an irreducible closed subsets
in A™. An open set of an affine variety is called a quasi-affine variety.

For an ideal a C k[z1,...,x,], we define its zero set
Z(a){a = (a1,...,an) € A"| f(a) =0 forall f € a}.
For every subset Y C A", we define
I(Y)={f € klx1,...,2,] | f vanishes on Y'}.
Then Z and I are order reversing and
ZIY)=Y, IZ(a)=+a.

So Z and I gives an one-to-one correspondence between the set of algebraic sets in A™ and the set
of radical ideals in k[x1,...,z,]. Under the above correspondence, the irreducible closed subsets
are in one-to-one correspondence of prime in k[zy, ..., x,].

If Y € A" is an algebraic set, the affine coordinate ring of Y is defined to be A(Y) =
klx1,...,z,]/I(Y). It is a finitely generated k-algebra with no non-zero nilpotent elements.

Proposition. 1.5. In a noetherian topological space X, every non-empty closed subset Y can be
expressed as a finite union of Y = Yy U ---UY, of irreducible closed subsets Y;. If we require Y;
does not contain Y; for i # j, then the decomposition is unique.

Proof. The prove the existence of the decomposition, let F be the family of non-empty closed
subsets that can’t be decomposed. We want to prove F is the empty family. Suppose F is not
empty, then F has a minimal element C' using the noetherian assumption. This leads easily a
contraction. To prove the uniqueness, we may assume Y = X (otherwise, we consider Y instead
of X). Suppose X =Y U---UY, is a decomposition of irreducible closed subsets with Y; ¢ Y} for
i # j. We prove that {Y7,...,Y,} is the set of maximal irreducible closed subsets in X (this part
of the argument is easier than the book).

Corollary. 1.6. Every algebraic set in A™ can expressed uniquely as a union of varieties, no one
containing another.

Dimension of a topological space. Krull dimension of a ring. Height of a prime ideal.
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Theorem 1.8A. Let k be a field, and let B be an integral domain which is a finitely generated
k-algebra. Then

(a) the dimension of B is equal to the transcendence degree of the quotient field K (B) of B over k.
(b) For every prime ideal p in B, we have

height p + dim B/p = dim B.

Proposition 1.13. A variety in A™ has dimension n — 1 iff it is the zero set Z(f) of a single
non-constant irreducible polynomial in k[xy, ..., xy)].
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Section 1.2. Projective Varieties.
k; algebraically closed field. P} = P" = k"1 — {0}/k*. S = k[zo, 21, ..., 2y).

Definition. A subset Y of P" is an algebraic set if the zero set of a set T' of homogeneous
polynomials in S.

Zariski topology. Projective varieties. Quasi-projective varieties.

Proposition 2.2. Let U; (i = 0,...,n) be the subset of of P consisting of the points with
homogeneous coordinates (ag,ai,...,a,) with a; # 0. Then U; is an open subset and the map
¢; : Uy = A" given by

ag Ai—1 @i+1 CLn)

oi : (ap, a1, ... ap) — (—, ..., , -
a; a;  a; a;

1s @ homeomorphism.

Corollary 2.3. IfY is a projective (respectively, quasi-projective) variety, then Y is covered by
the open subsets Y NU;, i = 0,1,...,n, which are homeomorhic to affine (respectively, quasi-affine)
varieties via the mapping ¢; defined above.
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Section 1.3. Morphisms.

Definition. Let Y be a quasi-affine variety in A™ over the ground field k. A function f:Y — kis
regular at a point P €Y if there is an open neighborhood U with p € U C Y, and polynomials
g,h € kl[x1,...,2y,], such that h is nowhere zeros on U, and f = g/h on U. We say that f is
regular on Y if it is regular at every point of Y.

Lemma 3.1. A regular function is continuous, where k is given the Zariski topology.

Definition. Let Y be a quasi-projective variety in P™ over the ground field k. A function f : Y — k
isregular at a point P € Y if there is an open neighborhood U with p € U C Y, and homogeneous
polynomials g, h € k[z1,...,x,] of the same degree, such that h is nowhere zeros on U, and f = g/h
on U. We say that f is regular on Y if it is regular at every point of Y.

Definition. Let & be a fixed algebraically closed field. A variety over k is any affine, quasi-affine,
projective, or quasi-projective variety. If X,Y are two varieties, a morphism ¢ : X — Y is a
continuous map such that for every open set V' C Y, and every regular function f : V — k, the
function fo ¢ : ¢~ (V) — k is regular.

For an open subset U C Y, the ring of regular functions on U is denoted by O(U).

Theorem 3.2. Let Y C A" be an affine variety with coordinate ring A(Y'). Then

(a) O(Y) is isomorphic to A(Y);

(b) for each point P € Y, let mp C A(Y') be ideal of functions vanishing at P. Then P +— mp gives
a 1-1 correspondence between the points of Y and the mazimal ideals of A(Y);

(c) for each P, O, is isomorphic to A(Y )mp;

(d) K(Y) is isomorphic to the quotient field of A(Y'), and hence K(Y) is a finitely generated
extension field of k of transcendence degree equal to dimY .

Proof. The proof of (b) (c) (d) are straightforward. For one, we have an obvious injective k-algebra
homomorphism A(Y) — O(Y). And we have A(Y) C O(Y) € K(Y) = Frac A(Y). To prove
A(Y) = O(Y), suppose f € O(Y), for each point P € Y, there is open neighborhood Up containing
P such that fly = ap/bp for ap,bp € A(Y) and bp never vanishes on Up. Then {Up}pey is an
open cover of Y, so it has a finite cover Y = Up, U---UUp,. And f‘UPi = a;/b;, b; never vanish on
Up,. Since Y = U Up,, (b1,...,by) = A(Y), so bihy + -+ byhy, = 1 for some hy,..., h, € A(Y).
Assume hyq, ..., h, are all non-zero (it should be clear how to proceed if this assumption is not
satisfied), f = ¢+ =--- = §* as an element in K(Y). It follows that f = ‘gizll == %. So

arhy + -+ aphy
_ — ayhy 4 + anhy, € A(Y).
= i by, T Gl € AR
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Proposition 3.3. Let U; C P" be the open set defined by the equation x; # 0. Then the mapping
¢i : U = A",

[.%'0,.%'1, R ,a:n] — (.’L‘o/wi, R ,xi_l/mi,xiﬂ/xi, c ,a;n/xz)
18 an isomorphism of varieties.

Theorem 3.4. Let Y C P™ be a projective variety with homogeneous coordinate ring S(Y'). Then:
(a) O(Y) = k;

(b) for any point P € Y, let mp C S(Y') be the ideal generated by the set of homogeneous f € S(Y)
such that f(P) =0. Then Op = S(Y)(mp);

(¢) K(Y) = 5(Y))-

Proposition 3.5. Let X be any variety and Y be an affine variety. Then there is a natural bijective
mapping of sets
a:Hom(X,Y) — Hom(A(Y),O(X))

« is the obvious map. The inverse of « is the following: let Y C k" with A(Y) = k[z1,...,z,]/1,
we write x; for z; + 1. If h € Hom(A(Y), O(X)), then h(z1),...,h(z,) € O(X). We define a map
P X — k™ as follows, for p € X,

P(p) = (W(x1)(p); - - -, W) (p))-

It is easy to Im € Y and by the following lemma, v is a morphism of varieties.

Lemma 3.6. Let X be any variety, Y C k™ be an affine variety, a map of sets ¢ : X =Y is a
morphism of variety iff x; o1 is a reqular function on X fori=1,...,n.

Corollary 3.7. Two affine varieties X and Y are isomorphic iff A(X) and A(Y') are isomorphic
as k-algebras.

Corollary 3.7. The category of affine varieties and the category of finitely generated integral
domains over k are anti-equivalent. The equivalence is given as'Y +— A(Y).
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Section 1.4. Rational Maps.

Corollary 3.7. Let X and 'Y be varieties, and let ¢, : X — Y be morphisms, suppose ¢y = ¥|u
in some non-empty open set U C X, then ¢ = .

The proof uses the variety structure on P™ x P™.

Let X,Y be varieties, a rational map ¢ : X — Y is an equivalence class of pairs (U, ¢), where
U C X is an non-empty subset, ¢ is a morphism of U to Y. The pairs (U1, ¢1) and (Us, ¢2) are
equivalent iff ¢1|y,nv, = ¢2|vynv,. The rational map represented by (U, ¢) is dominant if Im ¢ is
dense in Y.

We need to justify the definition by proving that for any non-empty open subset VC U, ¢(V) =
Y. This can be proved as follows. If ¢(V) # Y, then ¢ 1(Y — ¢(V)) and V are disjoint non-empty
open subsets of U, which contradicts the irreducibility of U.

Let X, Y be varieties, a birational map is a rational map ¢ : X — Y that has an inverse.

Lemma 4.2. Let Y be a hypersurface in A™ given by the equation f(x1,...,x,) =0, Then A" =Y
is isomorphic to the hypersurface H in A" given by the equation x,,1f = 1. In particular, A" —Y
is affine with its affine ring isomorphic to k[x1,...,x,]f.

Proposition 4.3. On any variety, there is a base for the topology consisting of open affine subsets.
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Section I.5. Non-Singular Varieties.

Definition. Let Y C A" be an affine variety, and let fi,..., fi € k[x1,...,z,] be a set of generators
for the ideal of Y. Y is nonsingular at P € Y if the rank of the matrix {gj:; (P)} is n —r, where
r=dimY. Y is non-singular if it is non-singular at every point.

Definition. Let A be a Noetherian local ring with maximal ideal m and residue field A/m =k, A
is a regular local ring if dimym/m? = dim A.

Theorem 5.1. Let Y C A™ be an affine variety. Let P € Y be a point. Then Y is nonsingular at
P iff the local ring Opy is a regular local ring.

Sketch of Proof. Let P = (a1,...,a,) €Y C A". Let ap = {f(z) € k[z1,...,2,]| f(P) = 0}. Then
ap = (z1 —a1,...,T, — a,). We define a linear map 6 : ap/a%;. — k™ by

O +a3) = (2 (P),... ().

It is easy to see that € is an isomorphism. Let b be the ideal of y, A = k[z1,...,2,]/b. The
maximal ideal of P in A is m = ap/b. We have the exact sequence of vector spaces over k:
0—b/bNab — ap/a?b — m/m? — 0.

Under the isomorphism of 6,

ofi
dimy, #(b/6 N a%) = rank ( J (P)).
61’j
So 5
rank(a:f; (P))=n-—r
iff dimy m/m? = r iff the local ring A, is regular. O

Definition. Let Y be any variety, P € Y is called a nonsingular point if the local ring Opy is
regular. Y is nonsingular if every point in Y is nonsingular. Y is singular if it is not nonsingular.

Proposition 5.2A. If A is a Noetherian local ring with maximal ideal m and residue field k, then
dimym/m? > dim A.

Theorem 5.3. Let Y be a variety, then the set SingY of singular points of Y is a proper closed
subset of Y.
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Section 1.6. Non-Singular Curves.

Let C' be a nonsingular projective curve over k. The function field K(C) is a finitely generated
field extension over k£ with transcendence degree 1.

For example. If C C P? is given by y%?z — (2% + axz? + b2%) = 0. Suppose the equation
23 +ax+b = 0 has no repeated roots, then C is non-singular. The function field K (C) is isomorphic
to the fraction field of the integral domain

kl,yl/(y? = (2° + az + 1)),
K (C) is the extension of k by the generators x,y and z,y satisfies the relation
y* =2 + azx +b.

k(x) C K(C). K(C) = k(x)(y),y is algebraic over k(z). So the transcendence degree of K(C') over
kis 1.

One of the main results (Theorem 6.9) of this section is the converse of the above. For a
finitely generated extension K over k with transcendence degree 1, then there exists a nonsingular
projective curve C over k such that the function field K(C) is isomorphic to K. This C is unique
up to isomorphism.

For example, for K = k(z), the corresponding curve is P*.

If ¢ : C1 — Cs is a morphism of curves that is not a constant map, then ¢ induces a morphism of
fields ¢* : K(C2) — K(C4). ¢* a finite field extension over k. Conversely every finite field extension
f: K(Cy) = K(Ch) is ¢* for a unique morphism ¢ : C; — Ch.
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Section I.7. Intersections in Projective Spaces.

Proposition 7.1(Affine Dimension Theorem). Let Y,Z be varieties of dimensions s,r in A".
Then each irreducible components of Y N Z has dimensional > s +r — n.

Proof. We may assume Y, Z are affine varieties in A™. Step 1. Prove the case that Z is a
hypersurface in A", i.e., Z = Z(f) for some f € k[z1,...,2,]. Let A(Y') be the affine coordinate
ring of Y, then the irreducible components of Y N Z corresponds to the minimal primes ideals in
A(Y)/(f). By Theorem 1.11A, each such minimal prime ideal has height one. The apply Theorem

1.8A. Second step. Let Y x Z embedded to A?®. We notice that Y N Z is isomorphic to Y x ZN A,

where A & {((P,P) € A | P € A"}. A is given by the equation z1 —y; =0,...,2, —y, = 0. O

Proposition 7.2(Projective Dimension Theorem). Let Y, Z be varieties of dimensions s,r in P".
Then each irreducible components of Y, Z has dimensional > s+r—mn. Furthermore, if s+r—n > 0,
then Y N Z is non-empty.

Proof. The dimension inequality follows from the affine case. If s+r—n > 0. let C(Y),C(Z) c A"t}
be the cone of Y, Z respectively. Then dimC(Y) =dimY +1 =s+1,dimC(Z) > dimZ+1 =r+1
(this can be proved using the chain of irreducible subsets, for any chain Yy C --- C Y5 =Y, we have
the chain {0} € C(Yp) C --- € C(Ys) = C(Y). So each irreducible components of C(Y) N C(Z)
has dimension > s+ 1+7r+1—(n+1) > 1. But C(Y)NC(Z) is not empty as contains 0. O

Definition. A numerical polynomial is a polynomial in P(z) € Q[z] such that P(n) € Z for n
sufficiently large.

Proposition 7.3. (a). If P(x) is a numerical polynomial, then P(z) can be written as

P(z)zcr<i> +---+cl<i) + ¢

for some r and integers co,c1,. .., ¢ € Z. In particular P(n) € Z for all n € Z.
(b). If f : Z — Z be a map such that Af(n) = f(n+1) — f(n) = Q(n) for n > 0 for some
numerical polynomial Q, then there is a numerical polynomial P such that f(n) = P(n) for n > 0.

Let S be a graded ring, M be a graded S-module, for every integer [ we denote M (l) the same
M-module but with gradation M (1)g = Mgy.

Proposition 7.4. Let M be a finitely generated graded module over a noetherian graded ring S.
Then there exists a a filtration of 0 = M° C M' C --- C M" = M by graded submodules, such that
for each i, M*/M*1 ~ (S/p;)(I;), where p; is a homogeneous ideal of S and l; € Z. The filtration
is not unique, but for any such filtration we have

(a) if p is homogeneous prime homogeneous ideal of S, then p O Ann M if and only p 2 p; for

some i. In particular the minimal elements of the set {pi1,...,p,} are just the minimal primes of
M, i.e., the primes which minimal containing Ann M .
(b) for each minimal prime ideal p of M, the numner of times which p occurs in the set {p1,...,p,}

is equal to the length of M, over &, and hence is independent of the filtration.
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Proof. The existence of the filtration follows from the book (using the assumption that S and M
are noetherian.) (a) First we note that Ann M C pyN---Np,. And if a; € p;, ¢ = 1,...,7, then
a1---a, € Ann M. If p O Ann M, we prove p D p; for some i. Suppose this is not true, we can find,
for each i, a; € p;, but a; ¢ p. then a1 ---a, € AunM, ay - --a, ¢ p, contradicts to p O Ann M. If
POPiOpIN---Np, DAnn M.

Theorem 7.5. (Hilbert-Serre) (1) Let M be a finitely generated graded S = k[zg,x1,...,%y,]-
module. Let ¢pr(l) = dimy, M, then there is a unique polynomial Pyr(z) € Q[z] such that ¢pr(l) =
Pr(1) for alll > 0. (2) Further more, deg Pys(2) = dimZ(Ann M), where Z(Ann M) is the zero
set of the homogeneous ideal Ann M in P"(k).

Proof. First we note that for an exact sequence 0 — M’ — M — M" — 0, we have
Ann(M")Ann(M") € Ann(M) C Ann(M’) N Ann(M")
This implies that Z(Ann(M)) = Z(Ann(My)) U Z(Ann(Mz)), so
dim Z(Ann(M)) = max(dim Z(Ann(M)),dim Z(Ann(Ms))).
It is enough to prove the case M = S/p(l) for some homogeneous prime ideal p. It is easy to prove
the case M = S/p, where Ann(M) = p. We may assume p # (xo, ..., zy). Choose z; ¢ p. We have
the exact sequence
0—M1)—=M—M"=M/z;M — 0
where the first map is a — z1a.
dim(M/z;M); = dimM; — dimM;_,

Using induction assumption, dim (M /x;M); = ¢pr (1) for numerical polynomial Py (1) for [ large,
so dimM; = Py(l) is also a numerical polynomial Pys for [ large. We have Py (1) = Py(l) —
Pyrr(1—1). So deg Py = deg Pyy — 1. Ann(M') = (x4, p), so Z(Ann(M")) = Z(Ann(M)) N Z((z;)).
U

Definition. The polynomial of the theorem is the Hilbert polynomial of M.

Definition. If Y C P"(k) is an algebraic set of dimension r, let Py be the Hilbert polynomial of
the homogeneous coordinate ring of Y, then deg Py = r. We define the degree of Y to be r! times
the leading coefficient of Py.

Proposition 7.6.

(a) If Y C P", Y is not empty, then the degree Y is a positive integer.

(b) If Y = Y1 UYs, where Y1 and Ya have the same dimension r, and dimY; NYs < r, Then
degY = degY) + degYs.

(c) degP™ =1

(d) If H C P™ is a hypersurface whose ideal is generated by a homogeneous polynomial of degree g,
then degY =d.

Proof. (a) (c) (d) are proved by direct computations. For (b), we use the exact sequence

0— S/Il NIy — S/Il@S/IQ — S/(Il -}-Ig) — 0.
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Let Y C P" be a projective variety, and let H C P" be a hypersurface not containing Y,
I(H) = (f), deg f = deg H. Then Z(Iy + Ig) =Y N H. Notice that Iy + Iy C Iyng. YNH =
Z1UZyU---UZg, Z;’s are the set of irreducible components of Y N H. Let p; be the prime ideal
of Z;. The intersection multiplicity is defined as

i(Y, H; Z5) = pp,; (S/(Iy + Inr)).

Theorem 7.7. Let Y be a variety of dimension > 1 in P™, and let H be a hypersurface not
containing Y. Let Z1, ..., Zs be the irreducible components of Y N H. Then
S
(degY)(deg H) = > i(Y, H; Z;) - deg Z;
j=1

Proof. Let (f) = Iy, consider the following exact sequence of graded S-modules

! def

0—— S/Iy(—d)
Let Py be the Hilbert polynomial for S/Iy, similar meaning for Py;. Then we have
Py(z) = Py(z) — Py(z —d).

deg Py = dimY = r. Compare the coefficient of #"~! in the above identity, we prove the identity
in the theorem.

Corollary 7.8. (Bezout Theorem) Let Y, Z be distinct curves in P2, having degree d,e. Let
YNZ=A{P,...,Ps}, then
S
> (Y, Z; Py) = de.
j=1

Summary. S = k[zg,...,Ty].
(1) Any finitely graded S-module M has a filtration of graded submodules

0=McM'c...cM" =M

such that M?/Mi~! = §/p;[l;] for some homogeneous prime ideal p;. The minimal members in the
list {p1,...,p,} is the same as the minimal prime ideals containing Ann(M). The multiplicity of a
minimal prime containing Ann(M) in the list {p1,...,p,} is independent of the filtration.

(2). For finitely graded S-module M, there is a polynomial Pys(z) such that Pys(l) = dim M; for
[>0.

(3). When M = S/Iy, where Y is an algebraic set in P™ (not necessarily irreducible), we write
Py = Pg/r,,. then dimY = deg Py. Suppose dimY = r. The degV is defined to be the ! times
the leading coefficient of Py (z).

(4) For a homogeneous ideal I C S (not necessarily prime), The minimal primes containing I =
Ann(S/I) corresponds to the irreducible components of Z(I).
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The remaining part of this section is a proof of Pascal Hexagon Theorem. We need to extend
Bezout Theorem.

A generalized curve in P? is the zero set C' in P? given by a homogeneous polynomial f =
f1++ fm (product of distinct irreducble polynomials). So C' = C1U---UCy; C1, ..., Cy, are curves.
deg C def deg f =degC} + ...deg Cp,.

If we have another generalized curve D = Dy U---UD,,, P € C N D, we define
i(C,D, P) = Z i(Cy, Dj, P).
k=1,...m;5=1,...n
The Bezout Theorem is implies that

> i(C, D; P) = (deg C) (deg D).
5

Theorem. Let Cy and Cy be wo g-curves of degree n in P? which intersect at n? points. Assume
exactly nl (I < n) of them lie in an irreducible curve E of degree . Then the remaining n(n —1) of
points lie on a g-curve of degree at most n — [.

Proof. Let Cp,Cy, E has equations fi(x,y, 2), f2(x,y, 2),9(z,y, 2), choose P = (a,b,c) € E €
C1NCy. Let

S(,y,2) = fi(a,b,)falw,y, 2) = fala,b,0) filw,, 2).
S(z,y,z) = 0 gives a generalized curve F. ENF contains at least nl+ 1 points (C; NCoNE)U{P}.
So by Bezout Theorem F is a component of F'. So S(,z,y, z) = g(z,y, 2)h(z,y, z). The generalized
curve h(z,y,z) = 0 has degree < n — [ and contains the other n(n — [)-pints.

Theorem. (Pascal’s Mystic Hexagon) Consider a hexagon inscribed in an irreducible conic
in P2, then the three pairs of opposite sides of it meet in three collinear points .
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