SUMMARY OF CHAPTER I OF HARTSHORNE'S "ALGEBRAIC GEOMETRY"

Notation. Throughout of this Chapter, k denotes an algebraic closed field.

Section I.1. Affine Varieties.

k : algebraically closed field. \mathbf{A}^{n} : set of all $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$.
Algebraic sets, Zariski topology. Affine algebraic variety is an irreducible closed subsets in \mathbf{A}^{n}. An open set of an affine variety is called a quasi-affine variety.

For an ideal $\mathfrak{a} \subset k\left[x_{1}, \ldots, x_{n}\right]$, we define its zero set

$$
Z(\mathfrak{a})\left\{a=\left(a_{1}, \ldots, a_{n}\right) \in \mathbf{A}^{n} \mid f(a)=0 \text { for all } f \in \mathfrak{a}\right\} .
$$

For every subset $Y \subset \mathbf{A}^{n}$, we define

$$
I(Y)=\left\{f \in k\left[x_{1}, \ldots, x_{n}\right] \mid f \text { vanishes on } Y\right\}
$$

Then Z and I are order reversing and

$$
Z I(Y)=\bar{Y}, \quad I Z(\mathfrak{a})=\sqrt{\mathfrak{a}}
$$

So Z and I gives an one-to-one correspondence between the set of algebraic sets in \mathbf{A}^{n} and the set of radical ideals in $k\left[x_{1}, \ldots, x_{n}\right]$. Under the above correspondence, the irreducible closed subsets are in one-to-one correspondence of prime in $k\left[x_{1}, \ldots, x_{n}\right]$.

If $Y \subset \mathbf{A}^{n}$ is an algebraic set, the affine coordinate ring of Y is defined to be $A(Y)=$ $k\left[x_{1}, \ldots, x_{n}\right] / I(Y)$. It is a finitely generated k-algebra with no non-zero nilpotent elements.

Proposition. 1.5. In a noetherian topological space X, every non-empty closed subset Y can be expressed as a finite union of $Y=Y_{1} \cup \cdots \cup Y_{r}$ of irreducible closed subsets Y_{i}. If we require Y_{i} does not contain Y_{j} for $i \neq j$, then the decomposition is unique.

Proof. The prove the existence of the decomposition, let \mathcal{F} be the family of non-empty closed subsets that can't be decomposed. We want to prove \mathcal{F} is the empty family. Suppose \mathcal{F} is not empty, then \mathcal{F} has a minimal element C using the noetherian assumption. This leads easily a contraction. To prove the uniqueness, we may assume $Y=X$ (otherwise, we consider Y instead of $X)$. Suppose $X=Y_{1} \cup \cdots \cup Y_{r}$ is a decomposition of irreducible closed subsets with $Y_{i} \not \subset Y_{j}$ for $i \neq j$. We prove that $\left\{Y_{1}, \ldots, Y_{r}\right\}$ is the set of maximal irreducible closed subsets in X (this part of the argument is easier than the book).

Corollary. 1.6. Every algebraic set in \mathbf{A}^{n} can expressed uniquely as a union of varieties, no one containing another.

Dimension of a topological space. Krull dimension of a ring. Height of a prime ideal.

sUMMARY OF CHAPTER I OF HARTSHORNE'S "ALGEBRAIC GEOMETRY"

Theorem 1.8A. Let k be a field, and let B be an integral domain which is a finitely generated k-algebra. Then
(a) the dimension of B is equal to the transcendence degree of the quotient field $K(B)$ of B over k.
(b) For every prime ideal \mathfrak{p} in B, we have

$$
\text { height } \mathfrak{p}+\operatorname{dim} B / \mathfrak{p}=\operatorname{dim} B
$$

Proposition 1.13. A variety in \mathbf{A}^{n} has dimension $n-1$ iff it is the zero set $Z(f)$ of a single non-constant irreducible polynomial in $k\left[x_{1}, \ldots, x_{n}\right]$.

SUMMARY OF CHAPTER I OF HARTSHORNE'S "ALGEBRAIC GEOMETRY" ${ }_{3}$

Section I.2. Projective Varieties.

k; algebraically closed field. $\mathbf{P}_{k}^{n}=\mathbf{P}^{n}=k^{n+1}-\{0\} / k^{*} . S=k\left[x_{0}, x_{1}, \ldots, x_{n}\right]$.
Definition. A subset Y of \mathbf{P}^{n} is an algebraic set if the zero set of a set T of homogeneous polynomials in S.

Zariski topology. Projective varieties. Quasi-projective varieties.

Proposition 2.2. Let $U_{i}(i=0, \ldots, n)$ be the subset of of \mathbf{P}^{n} consisting of the points with homogeneous coordinates $\left(a_{0}, a_{1}, \ldots, a_{n}\right)$ with $a_{i} \neq 0$. Then U_{i} is an open subset and the map $\phi_{i}: U_{i} \rightarrow \mathbf{A}^{n}$ given by

$$
\phi_{i}:\left(a_{0}, a_{1}, \ldots, a_{n}\right) \mapsto\left(\frac{a_{0}}{a_{i}}, \ldots, \frac{a_{i-1}}{a_{i}}, \frac{a_{i+1}}{a_{i}} \ldots, \frac{a_{n}}{a_{i}}\right)
$$

is a homeomorphism.

Corollary 2.3. If Y is a projective (respectively, quasi-projective) variety, then Y is covered by the open subsets $Y \cap U_{i}, i=0,1, \ldots, n$, which are homeomorhic to affine (respectively, quasi-affine) varieties via the mapping ϕ_{i} defined above.

SUMMARY OF CHAPTER I OF HARTSHORNE'S "ALGEBRAIC GEOMETRY"

Section I.3. Morphisms.

Definition. Let Y be a quasi-affine variety in \mathbf{A}^{n} over the ground field k. A function $f: Y \rightarrow k$ is regular at a point $P \in Y$ if there is an open neighborhood U with $p \in U \subset Y$, and polynomials $g, h \in k\left[x_{1}, \ldots, x_{n}\right]$, such that h is nowhere zeros on U, and $f=g / h$ on U. We say that f is regular on Y if it is regular at every point of Y.

Lemma 3.1. A regular function is continuous, where k is given the Zariski topology.

Definition. Let Y be a quasi-projective variety in \mathbf{P}^{n} over the ground field k. A function $f: Y \rightarrow k$ is regular at a point $P \in Y$ if there is an open neighborhood U with $p \in U \subset Y$, and homogeneous polynomials $g, h \in k\left[x_{1}, \ldots, x_{n}\right]$ of the same degree, such that h is nowhere zeros on U, and $f=g / h$ on U. We say that f is regular on Y if it is regular at every point of Y.

Definition. Let k be a fixed algebraically closed field. A variety over k is any affine, quasi-affine, projective, or quasi-projective variety. If X, Y are two varieties, a morphism $\phi: X \rightarrow Y$ is a continuous map such that for every open set $V \subset Y$, and every regular function $f: V \rightarrow k$, the function $f \circ \phi: \phi^{-1}(V) \rightarrow k$ is regular.

For an open subset $U \subset Y$, the ring of regular functions on U is denoted by $\mathcal{O}(U)$.

Theorem 3.2. Let $Y \subset \mathbf{A}^{n}$ be an affine variety with coordinate ring $A(Y)$. Then
(a) $\mathcal{O}(Y)$ is isomorphic to $A(Y)$;
(b) for each point $P \in Y$, let $\mathfrak{m}_{P} \subset A(Y)$ be ideal of functions vanishing at P. Then $P \mapsto \mathfrak{m}_{P}$ gives a 1-1 correspondence between the points of Y and the maximal ideals of $A(Y)$;
(c) for each P, \mathcal{O}_{p} is isomorphic to $A(Y)_{\mathfrak{m}_{P}}$;
(d) $K(Y)$ is isomorphic to the quotient field of $A(Y)$, and hence $K(Y)$ is a finitely generated extension field of k of transcendence degree equal to $\operatorname{dim} Y$.
Proof. The proof of (b) (c) (d) are straightforward. For one, we have an obvious injective k-algebra homomorphism $A(Y) \rightarrow \mathcal{O}(Y)$. And we have $A(Y) \subset \mathcal{O}(Y) \subset K(Y)=\operatorname{Frac} A(Y)$. To prove $A(Y)=\mathcal{O}(Y)$, suppose $f \in \mathcal{O}(Y)$, for each point $P \in Y$, there is open neighborhood U_{P} containing P such that $\left.f\right|_{U}=a_{P} / b_{P}$ for $a_{P}, b_{P} \in A(Y)$ and b_{P} never vanishes on U_{P}. Then $\left\{U_{P}\right\}_{P \in Y}$ is an open cover of Y, so it has a finite cover $Y=U_{P_{1}} \cup \cdots \cup U_{P_{n}}$. And $\left.f\right|_{U_{P_{i}}}=a_{i} / b_{i}, b_{i}$ never vanish on $U_{P_{i}}$. Since $Y=\cup_{i=1}^{n} U_{P_{i}},\left(b_{1}, \ldots, b_{n}\right)=A(Y)$, so $b_{1} h_{1}+\cdots+b_{n} h_{n}=1$ for some $h_{1}, \ldots, h_{n} \in A(Y)$. Assume h_{1}, \ldots, h_{n} are all non-zero (it should be clear how to proceed if this assumption is not satisfied), $f=\frac{a_{1}}{b_{1}}=\cdots=\frac{a_{n}}{b_{n}}$ as an element in $K(Y)$. It follows that $f=\frac{a_{1} h_{1}}{b_{1} h_{1}}=\cdots=\frac{a_{n} h_{n}}{b_{n} h_{n}}$. So

$$
f=\frac{a_{1} h_{1}+\cdots+a_{n} h_{n}}{b_{1} h_{1}+\cdots+b_{n} h_{n}}=a_{1} h_{1}+\cdots+a_{n} h_{n} \in A(Y) .
$$

SUMMARY OF CHAPTER I OF HARTSHORNE'S "ALGEBRAIC GEOMETRY" ${ }_{5}$

Proposition 3.3. Let $U_{i} \subset \mathbf{P}^{n}$ be the open set defined by the equation $x_{i} \neq 0$. Then the mapping $\phi_{i}: U_{i} \rightarrow \mathbf{A}^{n}$,

$$
\left[x_{0}, x_{1}, \ldots, x_{n}\right] \mapsto\left(x_{0} / x_{i}, \ldots, x_{i-1} / x_{i}, x_{i+1} / x_{i}, \ldots, x_{n} / x_{i}\right)
$$

is an isomorphism of varieties.

Theorem 3.4. Let $Y \subset \mathbf{P}^{n}$ be a projective variety with homogeneous coordinate ring $S(Y)$. Then: (a) $\mathcal{O}(Y)=k$;
(b) for any point $P \in Y$, let $\mathfrak{m}_{P} \subset S(Y)$ be the ideal generated by the set of homogeneous $f \in S(Y)$ such that $f(P)=0$. Then $\mathcal{O}_{P}=S(Y)_{\left(\mathfrak{m}_{P}\right)}$;
(c) $K(Y)=S(Y)_{(0)}$.

Proposition 3.5. Let X be any variety and Y be an affine variety. Then there is a natural bijective mapping of sets

$$
\alpha: \operatorname{Hom}(X, Y) \rightarrow \operatorname{Hom}(A(Y), \mathcal{O}(X))
$$

α is the obvious map. The inverse of α is the following: let $Y \subset k^{n}$ with $A(Y)=k\left[x_{1}, \ldots, x_{n}\right] / I$, we write x_{i} for $x_{i}+I$. If $h \in \operatorname{Hom}(A(Y), \mathcal{O}(X))$, then $h\left(x_{1}\right), \ldots, h\left(x_{n}\right) \in \mathcal{O}(X)$. We define a map $\psi: X \rightarrow k^{n}$ as follows, for $p \in X$,

$$
\psi(p)=\left(h\left(x_{1}\right)(p), \ldots, h\left(x_{n}\right)(p)\right) .
$$

It is easy to $\operatorname{Im} \psi \in Y$ and by the following lemma, ψ is a morphism of varieties.

Lemma 3.6. Let X be any variety, $Y \subset k^{n}$ be an affine variety, a map of sets $\psi: X \rightarrow Y$ is a morphism of variety iff $x_{i} \circ \psi$ is a regular function on X for $i=1, \ldots, n$.

Corollary 3.7. Two affine varieties X and Y are isomorphic iff $A(X)$ and $A(Y)$ are isomorphic as k-algebras.

Corollary 3.7. The category of affine varieties and the category of finitely generated integral domains over k are anti-equivalent. The equivalence is given as $Y \mapsto A(Y)$.

summary of chapter I of Hartshorne's "ALGEBRAIC GEOMETRY"

Section I.4. Rational Maps.

Corollary 3.7. Let X and Y be varieties, and let $\phi, \psi: X \rightarrow Y$ be morphisms, suppose $\left.\phi\right|_{U}=\left.\psi\right|_{U}$ in some non-empty open set $U \subset X$, then $\phi=\psi$.

The proof uses the variety structure on $P^{n} \times P^{n}$.

Let X, Y be varieties, a rational map $\phi: X \rightarrow Y$ is an equivalence class of pairs (U, ϕ), where $U \subset X$ is an non-empty subset, ϕ is a morphism of U to Y. The pairs $\left(U_{1}, \phi_{1}\right)$ and $\left(U_{2}, \phi_{2}\right)$ are equivalent iff $\left.\phi_{1}\right|_{U_{1} \cap U_{2}}=\left.\phi_{2}\right|_{U_{1} \cap U_{2}}$. The rational map represented by (U, ϕ) is dominant if $\operatorname{Im} \phi$ is dense in Y.

We need to justify the definition by proving that for any non-empty open subset $V \subset U, \overline{\phi(V)}=$ Y. This can be proved as follows. If $\overline{\phi(V)} \neq Y$, then $\phi^{-1}(Y-\overline{\phi(V)})$ and V are disjoint non-empty open subsets of U, which contradicts the irreducibility of U.

Let X, Y be varieties, a birational map is a rational map $\phi: X \rightarrow Y$ that has an inverse.

Lemma 4.2. Let Y be a hypersurface in A^{n} given by the equation $f\left(x_{1}, \ldots, x_{n}\right)=0$, Then $A^{n}-Y$ is isomorphic to the hypersurface H in A^{n+1} given by the equation $x_{n+1} f=1$. In particular, $A^{n}-Y$ is affine with its affine ring isomorphic to $k\left[x_{1}, \ldots, x_{n}\right]_{f}$.

Proposition 4.3. On any variety, there is a base for the topology consisting of open affine subsets.

SUMMARY OF CHAPTER I OF HARTSHORNE'S " ALGEBRAIC GEOMETRY" 7_{7} Section I.5. Non-Singular Varieties.

Definition. Let $Y \subset A^{n}$ be an affine variety, and let $f_{1}, \ldots, f_{k} \in k\left[x_{1}, \ldots, x_{n}\right]$ be a set of generators for the ideal of $Y . Y$ is nonsingular at $P \in Y$ if the rank of the matrix $\left\{\frac{\partial f_{i}}{\partial x_{j}}(P)\right\}$ is $n-r$, where $r=\operatorname{dim} Y . Y$ is non-singular if it is non-singular at every point.

Definition. Let A be a Noetherian local ring with maximal ideal \mathfrak{m} and residue field $A / \mathfrak{m}=k, A$ is a regular local ring if $\operatorname{dim}_{k} \mathfrak{m} / \mathfrak{m}^{2}=\operatorname{dim} A$.

Theorem 5.1. Let $Y \subset A^{n}$ be an affine variety. Let $P \in Y$ be a point. Then Y is nonsingular at P iff the local ring $\mathcal{O}_{P, Y}$ is a regular local ring.
Sketch of Proof. Let $P=\left(a_{1}, \ldots, a_{n}\right) \in Y \subset A^{n}$. Let $\mathfrak{a}_{P}=\left\{f(x) \in k\left[x_{1}, \ldots, x_{n}\right] \mid f(P)=0\right\}$. Then $\mathfrak{a}_{P}=\left(x_{1}-a_{1}, \ldots, x_{n}-a_{n}\right)$. We define a linear map $\theta: \mathfrak{a}_{P} / \mathfrak{a}_{P}^{2} \rightarrow k^{n}$ by

$$
\theta\left(f+\mathfrak{a}_{P}^{2}\right)=\left(\frac{\partial f}{\partial x_{1}}(P), \ldots, \frac{\partial f}{\partial x_{n}}(P)\right) .
$$

It is easy to see that θ is an isomorphism. Let \mathfrak{b} be the ideal of $y, A=k\left[x_{1}, \ldots, x_{n}\right] / \mathfrak{b}$. The maximal ideal of P in A is $\mathfrak{m}=\mathfrak{a}_{P} / \mathfrak{b}$. We have the exact sequence of vector spaces over k :

$$
0 \rightarrow \mathfrak{b} / \mathfrak{b} \cap \mathfrak{a}_{P}^{2} \rightarrow \mathfrak{a}_{P} / \mathfrak{a}_{P}^{2} \rightarrow \mathfrak{m} / \mathfrak{m}^{2} \rightarrow 0
$$

Under the isomorphism of θ,

$$
\operatorname{dim}_{k} \theta\left(\mathfrak{b} / \mathfrak{b} \cap \mathfrak{a}_{P}^{2}\right)=\operatorname{rank}\left(\frac{\partial f_{i}}{\partial x_{j}}(P)\right)
$$

So

$$
\operatorname{rank}\left(\frac{\partial f_{i}}{\partial x_{j}}(P)\right)=n-r
$$

iff $\operatorname{dim}_{k} \mathfrak{m} / \mathfrak{m}^{2}=r$ iff the local ring $A_{\mathfrak{m}}$ is regular.

Definition. Let Y be any variety, $P \in Y$ is called a nonsingular point if the local ring $\mathcal{O}_{P, Y}$ is regular. Y is nonsingular if every point in Y is nonsingular. Y is singular if it is not nonsingular.

Proposition 5.2A. If A is a Noetherian local ring with maximal ideal \mathfrak{m} and residue field k, then $\operatorname{dim}_{k} \mathfrak{m} / \mathfrak{m}^{2} \geq \operatorname{dim} A$.

Theorem 5.3. Let Y be a variety, then the set $\operatorname{Sing} Y$ of singular points of Y is a proper closed subset of Y.

sUMMARY OF CHAPTER I OF HARTSHORNE'S "ALGEBRAIC GEOMETRY" Section I.6. Non-Singular Curves.

Let C be a nonsingular projective curve over k. The function field $K(C)$ is a finitely generated field extension over k with transcendence degree 1 .

For example. If $C \subset \mathbf{P}^{2}$ is given by $y^{2} z-\left(x^{3}+a x z^{2}+b z^{3}\right)=0$. Suppose the equation $x^{3}+a x+b=0$ has no repeated roots, then C is non-singular. The function field $K(C)$ is isomorphic to the fraction field of the integral domain

$$
k[x, y] /\left(y^{2}-\left(x^{3}+a x+b\right)\right) .
$$

$K(C)$ is the extension of k by the generators x, y and x, y satisfies the relation

$$
y^{2}=x^{3}+a x+b \text {. }
$$

$k(x) \subset K(C) . K(C)=k(x)(y), y$ is algebraic over $k(x)$. So the transcendence degree of $K(C)$ over k is 1 .

One of the main results (Theorem 6.9) of this section is the converse of the above. For a finitely generated extension K over k with transcendence degree 1, then there exists a nonsingular projective curve C over k such that the function field $K(C)$ is isomorphic to K. This C is unique up to isomorphism.

For example, for $K=k(x)$, the corresponding curve is \mathbf{P}^{1}.

If $\phi: C_{1} \rightarrow C_{2}$ is a morphism of curves that is not a constant map, then ϕ induces a morphism of fields $\phi^{*}: K\left(C_{2}\right) \rightarrow K\left(C_{1}\right)$. ϕ^{*} a finite field extension over k. Conversely every finite field extension $f: K\left(C_{2}\right) \rightarrow K\left(C_{1}\right)$ is ϕ^{*} for a unique morphism $\phi: C_{1} \rightarrow C_{2}$.

SUMMARY OF CHAPTER I OF HARTSHORNE'S "ALGEBRAIC GEOMETRY" ${ }^{9}$ Section I.7. Intersections in Projective Spaces.

Proposition 7.1(Affine Dimension Theorem). Let Y, Z be varieties of dimensions s,r in \mathbf{A}^{n}. Then each irreducible components of $Y \cap Z$ has dimensional $\geq s+r-n$.
Proof. We may assume Y, Z are affine varieties in \mathbf{A}^{n}. Step 1. Prove the case that Z is a hypersurface in \mathbf{A}^{n}, i.e., $Z=Z(f)$ for some $f \in k\left[x_{1}, \ldots, x_{n}\right]$. Let $A(Y)$ be the affine coordinate ring of Y, then the irreducible components of $Y \cap Z$ corresponds to the minimal primes ideals in $A(Y) /(f)$. By Theorem 1.11A, each such minimal prime ideal has height one. The apply Theorem 1.8 A . Second step. Let $Y \times Z$ embedded to $\mathbf{A}^{2 n}$. We notice that $Y \cap Z$ is isomorphic to $Y \times Z \cap \Delta$, where $\Delta \stackrel{\text { def }}{=}\left\{\left((P, P) \in \mathbf{A}^{2 n} \mid P \in \mathbf{A}^{n}\right\} . \Delta\right.$ is given by the equation $x_{1}-y_{1}=0, \ldots, x_{n}-y_{n}=0$.

Proposition 7.2(Projective Dimension Theorem). Let Y, Z be varieties of dimensions s, r in \mathbf{P}^{n}. Then each irreducible components of Y, Z has dimensional $\geq s+r-n$. Furthermore, if $s+r-n \geq 0$, then $Y \cap Z$ is non-empty.
Proof. The dimension inequality follows from the affine case. If $s+r-n \geq 0$. let $C(Y), C(Z) \subset \mathbf{A}^{n+1}$ be the cone of Y, Z respectively. Then $\operatorname{dim} C(Y)=\operatorname{dim} Y+1=s+1, \operatorname{dim} C(Z) \geq \operatorname{dim} Z+1=r+1$ (this can be proved using the chain of irreducible subsets, for any chain $Y_{0} \subset \cdots \subset Y_{s}=Y$, we have the chain $\{0\} \subset C\left(Y_{0}\right) \subset \cdots \subset C\left(Y_{s}\right)=C(Y)$. So each irreducible components of $C(Y) \cap C(Z)$ has dimension $\geq s+1+r+1-(n+1) \geq 1$. But $C(Y) \cap C(Z)$ is not empty as contains 0 .

Definition. A numerical polynomial is a polynomial in $P(z) \in \mathbb{Q}[x]$ such that $P(n) \in \mathbb{Z}$ for n sufficiently large.

Proposition 7.3. (a). If $P(x)$ is a numerical polynomial, then $P(x)$ can be written as

$$
P(z)=c_{r}\binom{z}{r}+\cdots+c_{1}\binom{z}{r}+c_{0}
$$

for some r and integers $c_{0}, c_{1}, \ldots, c_{r} \in \mathbb{Z}$. In particular $P(n) \in \mathbb{Z}$ for all $n \in \mathbb{Z}$.
(b). If $f: \mathbb{Z} \rightarrow \mathbb{Z}$ be a map such that $\Delta f(n)=f(n+1)-f(n)=Q(n)$ for $n \gg 0$ for some numerical polynomial Q, then there is a numerical polynomial P such that $f(n)=P(n)$ for $n \gg 0$.

Let S be a graded ring, M be a graded S-module, for every integer l we denote $M(l)$ the same M-module but with gradation $M(l)_{d}=M_{d+l}$.

Proposition 7.4. Let M be a finitely generated graded module over a noetherian graded ring S. Then there exists a a filtration of $0=M^{0} \subset M^{1} \subset \cdots \subset M^{r}=M$ by graded submodules, such that for each $i, M^{i} / M^{i-1} \simeq\left(S / \mathfrak{p}_{i}\right)\left(l_{i}\right)$, where \mathfrak{p}_{i} is a homogeneous ideal of S and $l_{i} \in \mathbb{Z}$. The filtration is not unique, but for any such filtration we have
(a) if \mathfrak{p} is homogeneous prime homogeneous ideal of S, then $\mathfrak{p} \supseteq$ Ann M if and only $\mathfrak{p} \supseteq \mathfrak{p}_{i}$ for some i. In particular the minimal elements of the set $\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{r}\right\}$ are just the minimal primes of M, i.e., the primes which minimal containing Ann M.
(b) for each minimal prime ideal \mathfrak{p} of M, the numner of times which \mathfrak{p} occurs in the set $\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{r}\right\}$ is equal to the length of $M_{\mathfrak{p}}$ over $\mathfrak{S}_{\mathfrak{p}}$ and hence is independent of the filtration.

\$UMMARY OF CHAPTER I OF HARTSHORNE'S "ALGEBRAIC GEOMETRY"

Proof. The existence of the filtration follows from the book (using the assumption that S and M are noetherian.) (a) First we note that Ann $M \subset \mathfrak{p}_{1} \cap \cdots \cap \mathfrak{p}_{r}$. And if $a_{i} \in \mathfrak{p}_{i}, i=1, \ldots, r$, then $a_{1} \cdots a_{r} \in$ Ann M. If $\mathfrak{p} \supseteq$ Ann M, we prove $\mathfrak{p} \supseteq \mathfrak{p}_{i}$ for some i. Suppose this is not true, we can find, for each $i, a_{i} \in \mathfrak{p}_{i}$, but $a_{i} \notin \mathfrak{p}$. then $a_{1} \cdots a_{r} \in \operatorname{Ann} M, a_{1} \cdots a_{r} \notin \mathfrak{p}$, contradicts to $\mathfrak{p} \supseteq$ Ann M. If $\mathfrak{p} \supseteq \mathfrak{p}_{i} \supset \mathfrak{p}_{1} \cap \cdots \cap \mathfrak{p}_{r} \supset$ Ann M.

Theorem 7.5. (Hilbert-Serre) (1) Let M be a finitely generated graded $S=k\left[x_{0}, x_{1}, \ldots, x_{n}\right]$ module. Let $\phi_{M}(l)=\operatorname{dim}_{k} M_{l}$, then there is a unique polynomial $P_{M}(z) \in \mathbb{Q}[z]$ such that $\phi_{M}(l)=$ $P_{M}(l)$ for all $l \gg 0$. (2) Further more, $\operatorname{deg} P_{M}(z)=\operatorname{dim} Z(\operatorname{Ann} M)$, where $Z(\operatorname{Ann} M)$ is the zero set of the homogeneous ideal Ann M in $\mathbb{P}^{n}(k)$.
Proof. First we note that for an exact sequence $0 \rightarrow M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0$, we have

$$
\operatorname{Ann}\left(M^{\prime}\right) \operatorname{Ann}\left(M^{\prime \prime}\right) \subset \operatorname{Ann}(M) \subset \operatorname{Ann}\left(M^{\prime}\right) \cap \operatorname{Ann}\left(M^{\prime \prime}\right)
$$

This implies that $Z(\operatorname{Ann}(M))=Z\left(\operatorname{Ann}\left(M_{1}\right)\right) \cup Z\left(\operatorname{Ann}\left(M_{2}\right)\right)$, so

$$
\operatorname{dim} Z(A n n(M))=\max \left(\operatorname{dim} Z\left(A n n\left(M_{1}\right)\right), \operatorname{dim} Z\left(A n n\left(M_{2}\right)\right)\right)
$$

It is enough to prove the case $M=S / \mathfrak{p}(l)$ for some homogeneous prime ideal \mathfrak{p}. It is easy to prove the case $M=S / \mathfrak{p}$, where $\operatorname{Ann}(M)=\mathfrak{p}$. We may assume $\mathfrak{p} \neq\left(x_{0}, \ldots, x_{n}\right)$. Choose $x_{i} \notin \mathfrak{p}$. We have the exact sequence

$$
0 \rightarrow M(1) \rightarrow M \rightarrow M^{\prime \prime}=M / x_{i} M \rightarrow 0
$$

where the first map is $a \mapsto x_{1} a$.

$$
\operatorname{dim}\left(M / x_{i} M\right)_{l}=\operatorname{dim} M_{l}-\operatorname{dim} M_{l-1}
$$

Using induction assumption, $\operatorname{dim}\left(M / x_{i} M\right)_{l}=\phi_{M^{\prime \prime}}(l)$ for numerical polynomial $P_{M^{\prime \prime}}(l)$ for l large, so $\operatorname{dim} M_{l}=P_{M}(l)$ is also a numerical polynomial P_{M} for l large. We have $P_{M^{\prime \prime}}(l)=P_{M}(l)-$ $P_{M}(l-1)$. So $\operatorname{deg} P_{M^{\prime \prime}}=\operatorname{deg} P_{M}-1 . \operatorname{Ann}\left(M^{\prime}\right)=\left(x_{i}, \mathfrak{p}\right)$, so $Z\left(\operatorname{Ann}\left(M^{\prime}\right)\right)=Z(\operatorname{Ann}(M)) \cap Z\left(\left(x_{i}\right)\right)$.

Definition. The polynomial of the theorem is the Hilbert polynomial of M.

Definition. If $Y \subset \mathbf{P}^{n}(k)$ is an algebraic set of dimension r, let P_{Y} be the Hilbert polynomial of the homogeneous coordinate ring of Y, then $\operatorname{deg} P_{Y}=r$. We define the degree of Y to be r ! times the leading coefficient of P_{Y}.

Proposition 7.6.

(a) If $Y \subset \mathbf{P}^{n}, Y$ is not empty, then the degree Y is a positive integer.
(b) If $Y=Y_{1} \cup Y_{2}$, where Y_{1} and Y_{2} have the same dimension r, and $\operatorname{dim} Y_{1} \cap Y_{2}<r$, Then $\operatorname{deg} Y=\operatorname{deg} Y_{1}+\operatorname{deg} Y_{2}$.
(c) $\operatorname{deg} \mathbf{P}^{n}=1$
(d) If $H \subset \mathbf{P}^{n}$ is a hypersurface whose ideal is generated by a homogeneous polynomial of degree g, then $\operatorname{deg} Y=d$.
Proof. (a) (c) (d) are proved by direct computations. For (b), we use the exact sequence

$$
0 \rightarrow S / I_{1} \cap I_{2} \rightarrow S / I_{1} \oplus S / I_{2} \rightarrow S /\left(I_{1}+I_{2}\right) \rightarrow 0
$$

SUMMARY OF CHAPTER I OF HARTSHORNE'S "ALGEBRAIC GEOMETRY"11

Let $Y \subset \mathbf{P}^{n}$ be a projective variety, and let $H \subset \mathbf{P}^{n}$ be a hypersurface not containing Y, $I(H)=(f), \operatorname{deg} f=\operatorname{deg} H$. Then $Z\left(I_{Y}+I_{H}\right)=Y \cap H$. Notice that $I_{Y}+I_{H} \subset I_{Y \cap H} . Y \cap H=$ $Z_{1} \cup Z_{2} \cup \cdots \cup Z_{s}, Z_{i}$'s are the set of irreducible components of $Y \cap H$. Let \mathfrak{p}_{j} be the prime ideal of Z_{j}. The intersection multiplicity is defined as

$$
i\left(Y, H ; Z_{j}\right)=\mu_{\mathfrak{p}_{j}}\left(S /\left(I_{Y}+I_{H}\right)\right) .
$$

Theorem 7.7. Let Y be a variety of dimension ≥ 1 in \mathbf{P}^{n}, and let H be a hypersurface not containing Y. Let $Z_{1}, \ldots, Z_{\text {s }}$ be the irreducible components of $Y \cap H$. Then

$$
(\operatorname{deg} Y)(\operatorname{deg} H)=\sum_{j=1}^{s} i\left(Y, H ; Z_{j}\right) \cdot \operatorname{deg} Z_{j}
$$

Proof. Let $(f)=I_{H}$, consider the following exact sequence of graded S-modules

$$
0 \longrightarrow S / I_{Y}(-d) \stackrel{f}{\longrightarrow} S / I_{Y} \longrightarrow M \stackrel{\text { def }}{=} S /\left(I_{Y}+I_{H}\right) \longrightarrow 0
$$

Let P_{Y} be the Hilbert polynomial for S / I_{Y}, similar meaning for P_{M}. Then we have

$$
P_{M}(z)=P_{Y}(z)-P_{Y}(z-d) .
$$

$\operatorname{deg} P_{Y}=\operatorname{dim} Y=r$. Compare the coefficient of t^{r-1} in the above identity, we prove the identity in the theorem.

Corollary 7.8. (Bezout Theorem) Let Y, Z be distinct curves in \mathbf{P}^{2}, having degree d, e. Let $Y \cap Z=\left\{P_{1}, \ldots, P_{s}\right\}$, then

$$
\sum_{j=1}^{s} i\left(Y, Z ; P_{j}\right)=d e
$$

Summary. $S=k\left[x_{0}, \ldots, x_{n}\right]$.
(1) Any finitely graded S-module M has a filtration of graded submodules

$$
0=M^{0} \subset M^{1} \subset \cdots \subset M^{r}=M
$$

such that $M^{i} / M^{i-1} \cong S / \mathfrak{p}_{i}\left[l_{i}\right]$ for some homogeneous prime ideal \mathfrak{p}_{i}. The minimal members in the list $\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{r}\right\}$ is the same as the minimal prime ideals containing $\operatorname{Ann}(M)$. The multiplicity of a minimal prime containing $\operatorname{Ann}(M)$ in the list $\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{r}\right\}$ is independent of the filtration.
(2). For finitely graded S-module M, there is a polynomial $P_{M}(z)$ such that $P_{M}(l)=\operatorname{dim} M_{l}$ for $l \gg 0$.
(3). When $M=S / I_{Y}$, where Y is an algebraic set in \mathbf{P}^{n} (not necessarily irreducible), we write $P_{Y}=P_{S / I_{Y}}$. then $\operatorname{dim} Y=\operatorname{deg} P_{Y}$. Suppose $\operatorname{dim} Y=r$. The $\operatorname{deg} Y$ is defined to be the $r!$ times the leading coefficient of $P_{Y}(z)$.
(4) For a homogeneous ideal $I \subset S$ (not necessarily prime), The minimal primes containing $I=$ $\operatorname{Ann}(S / I)$ corresponds to the irreducible components of $Z(I)$.

SUMMARY OF CHAPTER I OF HARTSHORNE'S "ALGEBRAIC GEOMETRY"

The remaining part of this section is a proof of Pascal Hexagon Theorem. We need to extend Bezout Theorem.

A generalized curve in \mathbf{P}^{2} is the zero set C in \mathbf{P}^{2} given by a homogeneous polynomial $f=$ $f_{1} \cdots f_{m}$ (product of distinct irreducble polynomials). So $C=C_{1} \cup \cdots \cup C_{m} ; C_{1}, \ldots, C_{m}$ are curves.

$$
\operatorname{deg} C \stackrel{\operatorname{def}}{=} \operatorname{deg} f=\operatorname{deg} C_{1}+\ldots \operatorname{deg} C_{m}
$$

If we have another generalized curve $D=D_{1} \cup \cdots \cup D_{m}, P \in C \cap D$, we define

$$
i(C, D, P)=\sum_{k=1, \ldots, m ; j=1, \ldots, n} i\left(C_{k}, D_{j}, P\right) .
$$

The Bezout Theorem is implies that

$$
\sum_{P} i(C, D ; P)=(\operatorname{deg} C)(\operatorname{deg} D) .
$$

Theorem. Let C_{1} and C_{2} be wo g-curves of degree n in \mathbf{P}^{2} which intersect at n^{2} points. Assume exactly $n l(l<n)$ of them lie in an irreducible curve E of degree l. Then the remaining $n(n-l)$ of points lie on a g-curve of degree at most $n-l$.

Proof. Let C_{1}, C_{2}, E has equations $f_{1}(x, y, z), f_{2}(x, y, z), g(x, y, z)$, choose $P=(a, b, c) \in E \in$ $C_{1} \cap C_{2}$. Let

$$
S(x, y, z) \stackrel{\text { def }}{=} f_{1}(a, b, c) f_{2}(x, y, z)-f_{2}(a, b, c) f_{1}(x, y, z)
$$

$S(x, y, z)=0$ gives a generalized curve $F . E \cap F$ contains at least $n l+1$ points $\left(C_{1} \cap C_{2} \cap E\right) \cup\{P\}$. So by Bezout Theorem E is a component of F. So $S(, x, y, z)=g(x, y, z) h(x, y, z)$. The generalized curve $h(x, y, z)=0$ has degree $\leq n-l$ and contains the other $n(n-l)$-pints.

Theorem. (Pascal's Mystic Hexagon) Consider a hexagon inscribed in an irreducible conic in \mathbf{P}^{2}, then the three pairs of opposite sides of it meet in three collinear points .

References

[Ha] R. Hartshorne, Algebraic Geometry.

