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Notation. Throughout of this Chapter, k denotes an algebraic closed field.

Section I.1. Affine Varieties.

k: algebraically closed field. An: set of all (a1, a2, . . . , an).

Algebraic sets, Zariski topology. Affine algebraic variety is an irreducible closed subsets
in An. An open set of an affine variety is called a quasi-affine variety.

For an ideal a ⊂ k[x1, . . . , xn], we define its zero set

Z(a){a = (a1, . . . , an) ∈ An | f(a) = 0 for all f ∈ a}.
For every subset Y ⊂ An, we define

I(Y ) = {f ∈ k[x1, . . . , xn] | f vanishes onY }.
Then Z and I are order reversing and

ZI(Y ) = Ȳ , IZ(a) =
√
a.

So Z and I gives an one-to-one correspondence between the set of algebraic sets in An and the set
of radical ideals in k[x1, . . . , xn]. Under the above correspondence, the irreducible closed subsets
are in one-to-one correspondence of prime in k[x1, . . . , xn].

If Y ⊂ An is an algebraic set, the affine coordinate ring of Y is defined to be A(Y ) =
k[x1, . . . , xn]/I(Y ). It is a finitely generated k-algebra with no non-zero nilpotent elements.

Proposition. 1.5. In a noetherian topological space X, every non-empty closed subset Y can be
expressed as a finite union of Y = Y1 ∪ · · · ∪ Yr of irreducible closed subsets Yi. If we require Yi
does not contain Yj for i 6= j, then the decomposition is unique.

Proof. The prove the existence of the decomposition, let F be the family of non-empty closed
subsets that can’t be decomposed. We want to prove F is the empty family. Suppose F is not
empty, then F has a minimal element C using the noetherian assumption. This leads easily a
contraction. To prove the uniqueness, we may assume Y = X (otherwise, we consider Y instead
of X). Suppose X = Y1 ∪ · · · ∪ Yr is a decomposition of irreducible closed subsets with Yi 6⊂ Yj for
i 6= j. We prove that {Y1, . . . , Yr} is the set of maximal irreducible closed subsets in X (this part
of the argument is easier than the book).

Corollary. 1.6. Every algebraic set in An can expressed uniquely as a union of varieties, no one
containing another.

Dimension of a topological space. Krull dimension of a ring. Height of a prime ideal.
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Theorem 1.8A. Let k be a field, and let B be an integral domain which is a finitely generated
k-algebra. Then
(a) the dimension of B is equal to the transcendence degree of the quotient field K(B) of B over k.
(b) For every prime ideal p in B, we have

height p + dimB/p = dimB.

Proposition 1.13. A variety in An has dimension n − 1 iff it is the zero set Z(f) of a single
non-constant irreducible polynomial in k[x1, . . . , xn].
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Section I.2. Projective Varieties.

k; algebraically closed field. Pn
k = Pn = kn+1 − {0}/k∗. S = k[x0, x1, . . . , xn].

Definition. A subset Y of Pn is an algebraic set if the zero set of a set T of homogeneous
polynomials in S.

Zariski topology. Projective varieties. Quasi-projective varieties.

Proposition 2.2. Let Ui (i = 0, . . . , n) be the subset of of Pn consisting of the points with
homogeneous coordinates (a0, a1, . . . , an) with ai 6= 0. Then Ui is an open subset and the map
φi : Ui → An given by

φi : (a0, a1, . . . , an) 7→ (
a0
ai
, . . . ,

ai−1
ai

,
ai+1

ai
. . . ,

an
ai

)

is a homeomorphism.

Corollary 2.3. If Y is a projective (respectively, quasi-projective) variety, then Y is covered by
the open subsets Y ∩Ui, i = 0, 1, . . . , n, which are homeomorhic to affine (respectively, quasi-affine)
varieties via the mapping φi defined above.
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Section I.3. Morphisms.

Definition. Let Y be a quasi-affine variety in An over the ground field k. A function f : Y → k is
regular at a point P ∈ Y if there is an open neighborhood U with p ∈ U ⊂ Y , and polynomials
g, h ∈ k[x1, . . . , xn], such that h is nowhere zeros on U , and f = g/h on U . We say that f is
regular on Y if it is regular at every point of Y .

Lemma 3.1. A regular function is continuous, where k is given the Zariski topology.

Definition. Let Y be a quasi-projective variety in Pn over the ground field k. A function f : Y → k
is regular at a point P ∈ Y if there is an open neighborhood U with p ∈ U ⊂ Y , and homogeneous
polynomials g, h ∈ k[x1, . . . , xn] of the same degree, such that h is nowhere zeros on U , and f = g/h
on U . We say that f is regular on Y if it is regular at every point of Y .

Definition. Let k be a fixed algebraically closed field. A variety over k is any affine, quasi-affine,
projective, or quasi-projective variety. If X,Y are two varieties, a morphism φ : X → Y is a
continuous map such that for every open set V ⊂ Y , and every regular function f : V → k, the
function f ◦ φ : φ−1(V )→ k is regular.

For an open subset U ⊂ Y , the ring of regular functions on U is denoted by O(U).

Theorem 3.2. Let Y ⊂ An be an affine variety with coordinate ring A(Y ). Then
(a) O(Y ) is isomorphic to A(Y );
(b) for each point P ∈ Y , let mP ⊂ A(Y ) be ideal of functions vanishing at P . Then P 7→ mP gives
a 1-1 correspondence between the points of Y and the maximal ideals of A(Y );
(c) for each P , Op is isomorphic to A(Y )mP ;
(d) K(Y ) is isomorphic to the quotient field of A(Y ), and hence K(Y ) is a finitely generated
extension field of k of transcendence degree equal to dimY .

Proof. The proof of (b) (c) (d) are straightforward. For one, we have an obvious injective k-algebra
homomorphism A(Y ) → O(Y ). And we have A(Y ) ⊂ O(Y ) ⊂ K(Y ) = FracA(Y ). To prove
A(Y ) = O(Y ), suppose f ∈ O(Y ), for each point P ∈ Y , there is open neighborhood UP containing
P such that f |U = aP /bP for aP , bP ∈ A(Y ) and bP never vanishes on UP . Then {UP }P∈Y is an
open cover of Y , so it has a finite cover Y = UP1 ∪ · · · ∪UPn . And f |UPi

= ai/bi, bi never vanish on

UPi . Since Y = ∪ni=1UPi , (b1, . . . , bn) = A(Y ), so b1h1 + · · ·+ bnhn = 1 for some h1, . . . , hn ∈ A(Y ).
Assume h1, . . . , hn are all non-zero (it should be clear how to proceed if this assumption is not

satisfied), f = a1
b1

= · · · = an
bn

as an element in K(Y ). It follows that f = a1h1
b1h1

= · · · = anhn
bnhn

. So

f =
a1h1 + · · ·+ anhn
b1h1 + · · ·+ bnhn

= a1h1 + · · ·+ anhn ∈ A(Y ).

�
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Proposition 3.3. Let Ui ⊂ Pn be the open set defined by the equation xi 6= 0. Then the mapping
φi : Ui → An,

[x0, x1, . . . , xn] 7→ (x0/xi, . . . , xi−1/xi, xi+1/xi, . . . , xn/xi)

is an isomorphism of varieties.

Theorem 3.4. Let Y ⊂ Pn be a projective variety with homogeneous coordinate ring S(Y ). Then:
(a) O(Y ) = k;
(b) for any point P ∈ Y , let mP ⊂ S(Y ) be the ideal generated by the set of homogeneous f ∈ S(Y )
such that f(P ) = 0. Then OP = S(Y )(mP );
(c) K(Y ) = S(Y )(0).

Proposition 3.5. Let X be any variety and Y be an affine variety. Then there is a natural bijective
mapping of sets

α : Hom(X,Y )→ Hom(A(Y ),O(X))

α is the obvious map. The inverse of α is the following: let Y ⊂ kn with A(Y ) = k[x1, . . . , xn]/I,
we write xi for xi + I. If h ∈ Hom(A(Y ),O(X)), then h(x1), . . . , h(xn) ∈ O(X). We define a map
ψ : X → kn as follows, for p ∈ X,

ψ(p) = (h(x1)(p), . . . , h(xn)(p)).

It is easy to Imψ ∈ Y and by the following lemma, ψ is a morphism of varieties.

Lemma 3.6. Let X be any variety, Y ⊂ kn be an affine variety, a map of sets ψ : X → Y is a
morphism of variety iff xi ◦ ψ is a regular function on X for i = 1, . . . , n.

Corollary 3.7. Two affine varieties X and Y are isomorphic iff A(X) and A(Y ) are isomorphic
as k-algebras.

Corollary 3.7. The category of affine varieties and the category of finitely generated integral
domains over k are anti-equivalent. The equivalence is given as Y 7→ A(Y ).
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Section I.4. Rational Maps.

Corollary 3.7. Let X and Y be varieties, and let φ, ψ : X → Y be morphisms, suppose φ|U = ψ|U
in some non-empty open set U ⊂ X, then φ = ψ.

The proof uses the variety structure on Pn × Pn.

Let X,Y be varieties, a rational map φ : X → Y is an equivalence class of pairs (U, φ), where
U ⊂ X is an non-empty subset, φ is a morphism of U to Y . The pairs (U1, φ1) and (U2, φ2) are
equivalent iff φ1|U1∩U2 = φ2|U1∩U2 . The rational map represented by (U, φ) is dominant if Imφ is
dense in Y .

We need to justify the definition by proving that for any non-empty open subset V ⊂ U , φ(V ) =

Y . This can be proved as follows. If φ(V ) 6= Y , then φ−1(Y −φ(V )) and V are disjoint non-empty
open subsets of U , which contradicts the irreducibility of U .

Let X,Y be varieties, a birational map is a rational map φ : X → Y that has an inverse.

Lemma 4.2. Let Y be a hypersurface in An given by the equation f(x1, . . . , xn) = 0, Then An−Y
is isomorphic to the hypersurface H in An+1 given by the equation xn+1f = 1. In particular, An−Y
is affine with its affine ring isomorphic to k[x1, . . . , xn]f .

Proposition 4.3. On any variety, there is a base for the topology consisting of open affine subsets.
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Section I.5. Non-Singular Varieties.

Definition. Let Y ⊂ An be an affine variety, and let f1, . . . , fk ∈ k[x1, . . . , xn] be a set of generators

for the ideal of Y . Y is nonsingular at P ∈ Y if the rank of the matrix { ∂fi∂xj
(P )} is n− r, where

r = dimY . Y is non-singular if it is non-singular at every point.

Definition. Let A be a Noetherian local ring with maximal ideal m and residue field A/m = k, A
is a regular local ring if dimkm/m

2 = dimA.

Theorem 5.1. Let Y ⊂ An be an affine variety. Let P ∈ Y be a point. Then Y is nonsingular at
P iff the local ring OP,Y is a regular local ring.

Sketch of Proof. Let P = (a1, . . . , an) ∈ Y ⊂ An. Let aP = {f(x) ∈ k[x1, . . . , xn] | f(P ) = 0}. Then
aP = (x1 − a1, . . . , xn − an). We define a linear map θ : aP /a

2
P → kn by

θ(f + a2P ) = (
∂f

∂x1
(P ), . . . ,

∂f

∂xn
(P )).

It is easy to see that θ is an isomorphism. Let b be the ideal of y, A = k[x1, . . . , xn]/b. The
maximal ideal of P in A is m = aP /b. We have the exact sequence of vector spaces over k:

0→ b/b ∩ a2P → aP /a
2
P → m/m2 → 0.

Under the isomorphism of θ,

dimk θ(b/b ∩ a2P ) = rank (
∂fi
∂xj

(P )).

So

rank (
∂fi
∂xj

(P )) = n− r

iff dimk m/m
2 = r iff the local ring Am is regular. �

Definition. Let Y be any variety, P ∈ Y is called a nonsingular point if the local ring OP,Y is
regular. Y is nonsingular if every point in Y is nonsingular. Y is singular if it is not nonsingular.

Proposition 5.2A. If A is a Noetherian local ring with maximal ideal m and residue field k, then
dimkm/m

2 ≥ dimA.

Theorem 5.3. Let Y be a variety, then the set Sing Y of singular points of Y is a proper closed
subset of Y .
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Section I.6. Non-Singular Curves.

Let C be a nonsingular projective curve over k. The function field K(C) is a finitely generated
field extension over k with transcendence degree 1.

For example. If C ⊂ P2 is given by y2z − (x3 + axz2 + bz3) = 0. Suppose the equation
x3+ax+b = 0 has no repeated roots, then C is non-singular. The function field K(C) is isomorphic
to the fraction field of the integral domain

k[x, y]/(y2 − (x3 + ax+ b)).

K(C) is the extension of k by the generators x, y and x, y satisfies the relation

y2 = x3 + ax+ b.

k(x) ⊂ K(C). K(C) = k(x)(y),y is algebraic over k(x). So the transcendence degree of K(C) over
k is 1.

One of the main results (Theorem 6.9) of this section is the converse of the above. For a
finitely generated extension K over k with transcendence degree 1, then there exists a nonsingular
projective curve C over k such that the function field K(C) is isomorphic to K. This C is unique
up to isomorphism.

For example, for K = k(x), the corresponding curve is P1.

If φ : C1 → C2 is a morphism of curves that is not a constant map, then φ induces a morphism of
fields φ∗ : K(C2)→ K(C1). φ

∗ a finite field extension over k. Conversely every finite field extension
f : K(C2)→ K(C1) is φ∗ for a unique morphism φ : C1 → C2.
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Section I.7. Intersections in Projective Spaces.

Proposition 7.1(Affine Dimension Theorem). Let Y,Z be varieties of dimensions s, r in An.
Then each irreducible components of Y ∩ Z has dimensional ≥ s+ r − n.

Proof. We may assume Y,Z are affine varieties in An. Step 1. Prove the case that Z is a
hypersurface in An, i.e., Z = Z(f) for some f ∈ k[x1, . . . , xn]. Let A(Y ) be the affine coordinate
ring of Y , then the irreducible components of Y ∩ Z corresponds to the minimal primes ideals in
A(Y )/(f). By Theorem 1.11A, each such minimal prime ideal has height one. The apply Theorem
1.8A. Second step. Let Y ×Z embedded to A2n. We notice that Y ∩Z is isomorphic to Y ×Z ∩∆,

where ∆
def
= {((P, P ) ∈ A2n | P ∈ An}. ∆ is given by the equation x1− y1 = 0, . . . , xn− yn = 0. �

Proposition 7.2(Projective Dimension Theorem). Let Y,Z be varieties of dimensions s, r in Pn.
Then each irreducible components of Y,Z has dimensional ≥ s+r−n. Furthermore, if s+r−n ≥ 0,
then Y ∩ Z is non-empty.

Proof. The dimension inequality follows from the affine case. If s+r−n ≥ 0. let C(Y ), C(Z) ⊂ An+1

be the cone of Y,Z respectively. Then dimC(Y ) = dimY +1 = s+1, dimC(Z) ≥ dimZ+1 = r+1
(this can be proved using the chain of irreducible subsets, for any chain Y0 ⊂ · · · ⊂ Ys = Y , we have
the chain {0} ⊂ C(Y0) ⊂ · · · ⊂ C(Ys) = C(Y ). So each irreducible components of C(Y ) ∩ C(Z)
has dimension ≥ s+ 1 + r + 1− (n+ 1) ≥ 1. But C(Y ) ∩ C(Z) is not empty as contains 0. �

Definition. A numerical polynomial is a polynomial in P (z) ∈ Q[x] such that P (n) ∈ Z for n
sufficiently large.

Proposition 7.3. (a). If P (x) is a numerical polynomial, then P (x) can be written as

P (z) = cr

(
z

r

)
+ · · ·+ c1

(
z

r

)
+ c0

for some r and integers c0, c1, . . . , cr ∈ Z. In particular P (n) ∈ Z for all n ∈ Z.
(b). If f : Z → Z be a map such that ∆f(n) = f(n + 1) − f(n) = Q(n) for n � 0 for some
numerical polynomial Q, then there is a numerical polynomial P such that f(n) = P (n) for n� 0.

Let S be a graded ring, M be a graded S-module, for every integer l we denote M(l) the same
M -module but with gradation M(l)d = Md+l.

Proposition 7.4. Let M be a finitely generated graded module over a noetherian graded ring S.
Then there exists a a filtration of 0 = M0 ⊂M1 ⊂ · · · ⊂M r = M by graded submodules, such that
for each i, M i/M i−1 ' (S/pi)(li), where pi is a homogeneous ideal of S and li ∈ Z. The filtration
is not unique, but for any such filtration we have
(a) if p is homogeneous prime homogeneous ideal of S, then p ⊇ AnnM if and only p ⊇ pi for
some i. In particular the minimal elements of the set {p1, . . . , pr} are just the minimal primes of
M , i.e., the primes which minimal containing AnnM .
(b) for each minimal prime ideal p of M , the numner of times which p occurs in the set {p1, . . . , pr}
is equal to the length of Mp over Sp and hence is independent of the filtration.
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Proof. The existence of the filtration follows from the book (using the assumption that S and M
are noetherian.) (a) First we note that AnnM ⊂ p1 ∩ · · · ∩ pr. And if ai ∈ pi, i = 1, . . . , r, then
a1 · · · ar ∈ AnnM . If p ⊇ AnnM , we prove p ⊇ pi for some i. Suppose this is not true, we can find,
for each i, ai ∈ pi, but ai /∈ p. then a1 · · · ar ∈ AnnM , a1 · · · ar /∈ p, contradicts to p ⊇ AnnM . If
p ⊇ pi ⊃ p1 ∩ · · · ∩ pr ⊃ AnnM .

Theorem 7.5. (Hilbert-Serre) (1) Let M be a finitely generated graded S = k[x0, x1, . . . , xn]-
module. Let φM (l) = dimkMl, then there is a unique polynomial PM (z) ∈ Q[z] such that φM (l) =
PM (l) for all l � 0. (2) Further more, degPM (z) = dimZ(AnnM), where Z(AnnM) is the zero
set of the homogeneous ideal AnnM in Pn(k).

Proof. First we note that for an exact sequence 0→M ′ →M →M ′′ → 0, we have

Ann(M ′)Ann(M ′′) ⊂ Ann(M) ⊂ Ann(M ′) ∩Ann(M ′′)

This implies that Z(Ann(M)) = Z(Ann(M1)) ∪ Z(Ann(M2)), so

dimZ(Ann(M)) = max(dimZ(Ann(M1)), dimZ(Ann(M2))).

It is enough to prove the case M = S/p(l) for some homogeneous prime ideal p. It is easy to prove
the case M = S/p, where Ann(M) = p. We may assume p 6= (x0, . . . , xn). Choose xi /∈ p. We have
the exact sequence

0→M(1)→M →M ′′ = M/xiM → 0

where the first map is a 7→ x1a.

dim(M/xiM)l = dimMl − dimMl−1

Using induction assumption, dim(M/xiM)l = φM ′′(l) for numerical polynomial PM ′′(l) for l large,
so dimMl = PM (l) is also a numerical polynomial PM for l large. We have PM ′′(l) = PM (l) −
PM (l−1). So degPM ′′ = degPM −1. Ann(M ′) = (xi, p), so Z(Ann(M ′)) = Z(Ann(M))∩Z((xi)).
�

Definition. The polynomial of the theorem is the Hilbert polynomial of M .

Definition. If Y ⊂ Pn(k) is an algebraic set of dimension r, let PY be the Hilbert polynomial of
the homogeneous coordinate ring of Y , then degPY = r. We define the degree of Y to be r! times
the leading coefficient of PY .

Proposition 7.6.
(a) If Y ⊂ Pn, Y is not empty, then the degree Y is a positive integer.
(b) If Y = Y1 ∪ Y2, where Y1 and Y2 have the same dimension r, and dimY1 ∩ Y2 < r, Then
deg Y = deg Y1 + deg Y2.
(c) deg Pn = 1
(d) If H ⊂ Pn is a hypersurface whose ideal is generated by a homogeneous polynomial of degree g,
then deg Y = d.

Proof. (a) (c) (d) are proved by direct computations. For (b), we use the exact sequence

0→ S/I1 ∩ I2 → S/I1 ⊕ S/I2 → S/(I1 + I2)→ 0.

�
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Let Y ⊂ Pn be a projective variety, and let H ⊂ Pn be a hypersurface not containing Y ,
I(H) = (f), deg f = degH. Then Z(IY + IH) = Y ∩H. Notice that IY + IH ⊂ IY ∩H . Y ∩H =
Z1 ∪ Z2 ∪ · · · ∪ Zs, Zi’s are the set of irreducible components of Y ∩H. Let pj be the prime ideal
of Zj . The intersection multiplicity is defined as

i(Y,H;Zj) = µpj (S/(IY + IH)).

Theorem 7.7. Let Y be a variety of dimension ≥ 1 in Pn, and let H be a hypersurface not
containing Y . Let Z1, . . . , Zs be the irreducible components of Y ∩H. Then

(deg Y )(degH) =
s∑

j=1

i(Y,H;Zj) · degZj

Proof. Let (f) = IH , consider the following exact sequence of graded S-modules

0 // S/IY (−d)
f // S/IY // M

def
= S/(IY + IH) // 0

Let PY be the Hilbert polynomial for S/IY , similar meaning for PM . Then we have

PM (z) = PY (z)− PY (z − d).

degPY = dimY = r. Compare the coefficient of tr−1 in the above identity, we prove the identity
in the theorem.

Corollary 7.8. (Bezout Theorem) Let Y, Z be distinct curves in P2, having degree d, e. Let
Y ∩ Z = {P1, . . . , Ps}, then

s∑
j=1

i(Y, Z;Pj) = de.

Summary. S = k[x0, . . . , xn].
(1) Any finitely graded S-module M has a filtration of graded submodules

0 = M0 ⊂M1 ⊂ · · · ⊂M r = M

such that M i/M i−1 ∼= S/pi[li] for some homogeneous prime ideal pi. The minimal members in the
list {p1, . . . , pr} is the same as the minimal prime ideals containing Ann(M). The multiplicity of a
minimal prime containing Ann(M) in the list {p1, . . . , pr} is independent of the filtration.
(2). For finitely graded S-module M , there is a polynomial PM (z) such that PM (l) = dimMl for
l� 0.
(3). When M = S/IY , where Y is an algebraic set in Pn (not necessarily irreducible), we write
PY = PS/IY . then dimY = degPY . Suppose dimY = r. The deg Y is defined to be the r! times
the leading coefficient of PY (z).
(4) For a homogeneous ideal I ⊂ S (not necessarily prime), The minimal primes containing I =
Ann(S/I) corresponds to the irreducible components of Z(I).
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The remaining part of this section is a proof of Pascal Hexagon Theorem. We need to extend
Bezout Theorem.

A generalized curve in P2 is the zero set C in P2 given by a homogeneous polynomial f =
f1 · · · fm (product of distinct irreducble polynomials). So C = C1∪· · ·∪Cm; C1, . . . , Cm are curves.

degC
def
= deg f = degC1 + . . . degCm.

If we have another generalized curve D = D1 ∪ · · · ∪Dm, P ∈ C ∩D, we define

i(C,D, P ) =
∑

k=1,...,m;j=1,...,n

i(Ck, Dj , P ).

The Bezout Theorem is implies that∑
P

i(C,D;P ) = (degC) (degD).

Theorem. Let C1 and C2 be wo g-curves of degree n in P2 which intersect at n2 points. Assume
exactly nl (l < n) of them lie in an irreducible curve E of degree l. Then the remaining n(n− l) of
points lie on a g-curve of degree at most n− l.
Proof. Let C1, C2, E has equations f1(x, y, z), f2(x, y, z), g(x, y, z), choose P = (a, b, c) ∈ E ∈
C1 ∩ C2. Let

S(x, y, z)
def
= f1(a, b, c)f2(x, y, z)− f2(a, b, c)f1(x, y, z).

S(x, y, z) = 0 gives a generalized curve F . E∩F contains at least nl+1 points (C1∩C2∩E)∪{P}.
So by Bezout Theorem E is a component of F . So S(, x, y, z) = g(x, y, z)h(x, y, z). The generalized
curve h(x, y, z) = 0 has degree ≤ n− l and contains the other n(n− l)-pints.

Theorem. (Pascal’s Mystic Hexagon) Consider a hexagon inscribed in an irreducible conic
in P2, then the three pairs of opposite sides of it meet in three collinear points .
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