Homework No. 1 for Math 6170

Deadline: March 8.
All the problems are computational, just write down your answer, no reasons needed.

Problem 1. Let $C \subset \mathbb{A}^{2}(\mathbb{C})$ be the affine variety of dimension one defined by the equation

$$
C=\left\{(x, y) \mid y^{2}=x^{2}(x-1)\right\}
$$

$\bar{C} \subset \mathbb{P}^{2}(\mathbb{C})$ be its projective closure.
(1) Find all the sigular points in C.
(2) How many are in $\bar{C}-C$? are they smooth points?
(3) Let $P=(1,0) \in C$, it is easy to see P is a smooth point. Find a uniformizer at P.
(4) Find $\operatorname{ord}_{P}(y)$ and $\operatorname{ord}_{P}\left(\frac{y}{x-1}\right)$

Problem 2. Let $C_{1}=\mathbb{P}^{1}(\mathbb{C})=\mathbb{A}^{1}(\mathbb{C}) \cup\{\infty\}$ and $C_{2}=\mathbb{P}^{1}(\mathbb{C})=\mathbb{A}^{1}(\mathbb{C}) \cup$ $\{\infty\}$. Let $\mathbb{C}\left(C_{1}\right)=\mathbb{C}(X)$ denote the function field of C_{1} and $\mathbb{C}\left(C_{2}\right)=\mathbb{C}(Y)$ denote the function field of C_{2}. Given a morphism of fields over $\mathbb{C} \phi^{*}$: $\mathbb{C}(Y) \rightarrow \mathbb{C}(X)$ with

$$
\phi^{*}(Y)=\frac{X^{2}-1}{X+3}
$$

(1) Find the corresponding morphism of curves $\phi: C_{1} \rightarrow C_{2}$.
(2) Find $\operatorname{deg} \phi$.
(3) Find all the ramified points.

Problem 3. Let C be the affine curve over \mathbb{C} given by

$$
C=\left\{(x, y) \mid y^{2}-x^{3}+x+2=0\right\}
$$

So the function field $\mathbb{C}(C)$ is

$$
\mathbb{C}(C)=\operatorname{Frac} \mathbb{C}[X, Y] /\left(Y^{2}-X^{3}+X+2\right)
$$

(1). Find $g \in \mathbb{C}(C)$ such that $d Y=g d X$.
(2). Let $P=(2,2) \in C$, find a uniformizer at P.
(3) Find $\operatorname{ord}_{P} d X$.

