Homework No. 3 for Math 6170, Due Date: May 5.

Problem 1. Let E / \mathbb{Q} be the elliptic curve with Weierstrass equation

$$
\begin{equation*}
y^{2}-\frac{1}{3} y=x^{3}-\frac{1}{27} \tag{0.1}
\end{equation*}
$$

(1) Prove that $E(\mathbb{Q})$ has only three points. Find all the three points. Hint: you may use Fermat's result that the cubic Fermat's equation

$$
\begin{equation*}
a^{3}+b^{3}=c^{3} \tag{0.2}
\end{equation*}
$$

has only three projective solutions over $\mathbb{Q}:(1,0,1),(1,-1,0),(0,1,1)$; and apply the transformation $a=-3 x, b=-3 y+z, c=-3 y$.
(2) What is the group structure of $E(\mathbb{Q})$?

Problem 2. Let $\left[a_{1}, a_{2}, \ldots, a_{N}, 1\right] \in \mathbb{P}^{N}(\overline{\mathbb{Q}})$ and let

$$
S=\left\{\left[a_{1}^{n}, a_{2}^{n}, \ldots, a_{N}^{n}, 1\right] \mid n=1,2,3, \ldots\right\}
$$

Suppose that there exists a constant C such that $H(P) \leq C$ for all $P \in S$.
(1) Prove that S is a finite set.
(2) Prove that each of a_{i} is either 0 or a root of unity.

Hint: Use Theorem VIII 5.2.

