
Homework for Math 6050F: PDEs, Spring 2017

Tianling Jin

April 17, 2017

Due date: 17 May, 2017.

1. Consider the following Burgers’ equation{
ut + uux = 0 in R× (0,∞)

u(x, 0) = sin(x) on R× {t = 0}.

(i). What is the first time T that the solution u becomes not C1 in the x-variable?
(ii). What is the regularity of the function u(x, T ) (in the x-variable)?

The following problems are from Evans’ book.

2. Compute explicitly the unique entropy solution of the Burgers’ equation{
ut + uux = 0 in R× (0,∞)

u(x, 0) = g(x) on R× {t = 0}.

where

g(x) =


1, x < −1

0, −1 < x < 0

2, 0 < x < 1

0, x > 1

3. Find a solution of
−∆u+ u

n+2
n−2 = 0 in B1 := {x : |x| < 1}

having the form of u = α(1− |x|2)−β for some positive constants α, β. This example shows that
solutions of nonlinear PDE can be finite in the region, but approach to infinite on its boundary.

4. Show that there does not exists an analytic solution to the heat equation ut = uxx in R × R
with u(x, 0) = 1

1+x2
.

5. Assume u is a viscosity solution of

ut +H(Du, x) = 0 in Rn × (0,∞).

Show that û := −u is a viscosity solution of

ût + Ĥ(Dû, x) = 0 in Rn × (0,∞)
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for Ĥ(p, x) = −H(−p, x).

6. Let {uk}∞k=1 be viscosity solutions of the Hamilton-Jacobin equation

ukt +H(Duk, x) = 0 in Rn × (0,∞).

Suppose that uk → u uniformly, and H is continuous. Prove that u is also a viscosity solution of

ut +H(Du, x) = 0 in Rn × (0,∞).

This says that the uniform limits of viscosity solutions are viscosity solutions.

7. Suppose for each ε > 0 that uε is a smooth solution of the viscous Hamilton-Jacobi equation

uεt +H(Duε, x)− ε
n∑

i,j=1

aij(x, t)uεxixj = 0 in Rn × (0,∞),

where aij are smooth and uniformly elliptic. Suppose that uε → u uniformly as ε → 0 and H is
continuous. Prove that u is a viscosity solution of

ut +H(Du, x) = 0 in Rn × (0,∞).

This shows that the viscosity solutions do not depend on the precise smoothing structure.

8. Let ui(i = 1, 2) be bounded viscosity solutions of{
uit +H(Dui, x) = 0 in Rn × (0,∞),

ui = gi on Rn × {t = 0}.

Assume that H satisfies {
|H(p, x)−H(q, x)| ≤ C|p− q|
|H(p, x)−H(p, y)| ≤ C|x− y|(1 + |p|).

Prove the contraction property

sup
Rn
|u1(·, t)− u2(·, t)| ≤ sup

Rn
|g1 − g2| (∀ t ≥ 0).

9. (i) Show that u(x) := 1− |x| is a viscosity solution of{
|u′| = 1 in(−1, 1)

u(−1) = u(1) = 0.
(1)

This means that for each v ∈ C∞(−1, 1), if u − v has a maximum (minimum) at a point x0 ∈
(−1, 1), then |v′(x0)| ≤ 1(≥ 1).

(ii) Prove that ũ(x) = |x| − 1 is not a viscosity solution of (1)
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(iii) Show that ũ is viscosity solution of{
−|u′| = −1 in (−1, 1)

u(−1) = u(1) = 0.
(2)

(What is the meaning of a viscosity solution of (2)?)

10. Let Ω ⊂ be open and bounded. For x ∈ Ω, we define u(x) := dist(x, ∂Ω). Prove that u is
Lipschitz continuous. Moreover, prove that u is a viscosity solution of the eikonal equation

|Du| = 1 in Ω.

This means that for each v ∈ C∞(Ω), if u− v has a maximum (minimum) at a point x0 ∈ Ω, then
|Dv(x0)| ≤ 1(≥ 1).

11. Suppose u is a smooth solution of
ut −∆u+ c(x, t)u = 0 in Ω× (0,∞)

u(x, t) = 0 on ∂Ω× (0,∞)

u(x, 0) = g(x) on Ω× {t = 0}.
(3)

Suppose the function g is bounded in Ω, and the function c satisfies c ≥ γ > 0 in Ω × (0,∞).
Prove

|u(x, t)| ≤ Ce−γt in Ω× (0,∞)

12. Suppose u is a smooth solution of the PDE (3) from Problem 11. Suppose g is bounded and
g ≥ 0 in Ω, and c is bounded in Ω × (0,∞) (but not necessarily nonnegative). Prove that u ≥ 0.
(Hint: What PDE does v := eλtu solve?)
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