
POINCARÉ-BENDIXSON’S THEOREM: APPLICATIONS AND THE PROOF

FREDERICK TSZ-HO FONG

This lecture note is written for my two lectures of MATH 4999 (Pure Math track).
The content is extracted from a chapter of lecture notes written by the author for a
course on Theory of ODEs at Brown University in Fall ’13 and ’14. Minor revision was
made so that it becomes self-contained and suits this capstone course. Students who
are interested in other parts of the lecture notes (mainly about existence, uniqueness
and stability) may download the full set from the Brown course website:

https://sites.google.com/a/brown.edu/math111-fall-14

1. Motivation

Ordinary Differential Equations (ODEs) are equations whose unknowns functions
have only one independent variable, which will be always denoted by t in this note.
A system of ODEs is a number of simultaneous ODEs with one or more unknown
functions (e.g. x(t), y(t)). Here is an example of a first-order system of ODEs:

dx
dt

= −x + ay + x2y

dy
dt

= b− ay− x2y.

The variable t, often regarded as the time, is the independent variable. The functions
x(t) and y(t) are the unknowns of the system, whereas a and b are constants.

This system governs the glycolysis inside a human body. Here x is the concen-
tration of ADP (adenosine diphosphate) and y is the concentration of F6P (fructose
6-phosphate). The rate of change of each of the two chemicals are governed by the
above ODE system. For instance, one can see that the increase of y will lead to slower
growth rate of y and higher growth rate of x.

Given an initial condition x(0) = x0 and y(0) = y0, if one can solve the above ODE
system then we are able to predict the concentration of these two chemicals in the
future. However, even for a simple-looking system like this one, an explicit solution is
very difficult to find!

Generally speaking, mathematicians had abandoned the search for explicit solu-
tions of this kind of non-linear systems, and instead study the qualitative features of
the system such as existence and uniqueness, stability and periodicity. In fact, life sci-
entists may not really care about the exact solution of the above glycolysis system, but
they may be concerned more on whether the system can maintain a sustainable metab-
olism. In mathematical terms, scientists want to know whether the concentrations of
these two chemicals exhibit a periodic pattern, so that even after some perturbation on
the concentrations, they can be back to the original state (i.e. being normal again) after
some time.

In this lecture notes, we will introduce and give the proof of a celebrated result
– Poincaré-Bendixson’s Theorem – which can show a periodic solution exists for the
glycolysis system.

1
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2. Phase Portrait

The general form of a first-order system of coupled ODEs is:

x′ = P(x, y)

y′ = Q(x, y)

We often put a system of ODEs in a vector form. One key reason of doing that is to
allow geometry kicks in! To represent an ODE system in vector form, we let x(t) be the
unknown vector whose components are the unknown functions x(t) and y(t), i.e.

x(t) =
[

x(t)
y(t)

]
.

We also put the right-hand side of an ODE system into a vector by letting:

F(x, y) =
[

P(x, y)
Q(x, y)

]
.

Since the vector (x, y) can be represented by x, we can further abbreviate F(x, y) by
F(x). Therefore, a general system of ODEs can be written in the form of:

x′ = F(x).

The vector form of an ODE system links the theory of ODEs with geometry. We think
of a solution x(t) as a parametrized curve, x(t) = (x(t), y(t)) in R2. Therefore, we will
often call a solution x(t) as a solution curve, a trajectory or an orbit. The t-derivative,
x′(t) = (x′(t), y′(t)), represents the tangent, or velocity, vector of the curve at time t.

The right-hand side of the equation, written as F(x), defines a vector field on R2.
The vector field corresponding to the glycolysis system is given by:

F(x, y) =
[
−x + ay + x2y
b− ay− x2y

]
and its vector field plot of the special case (a, b) = ( 1

10 , 1
2 ) is shown in Figure 1 .
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Figure 1. The vector field plot of the glycolysis system

In order for x(t) to be a solution curve, it has to satisfy x′ = F(x). Geometrically, it
means that the tangent vector x′(t) of the curve is at any time equal to the vector field
F at the point x(t). To put it in an even simpler terms, the solution curve x(t) flows
along the vector field F at any time. Figure 2 shows the relation between the family of
solution curves (in red) and the vector field (in blue) of the glycolysis example.
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Figure 2. The vector field plot with solution curves with of the gly-
colysis system

A plot consisting of only solution curves of an ODE system is called the phase
portrait of the system.

Definition 2.1 (Periodic Solutions). Given an ODE system x′ = F(x), a solution x(t)
of the system is said to be a periodic solution, or a closed orbit, if there exists a time
T > 0 such that x(t + T) = x(t) for any t ∈ R. �

The trajectory for a periodic solution is a closed loop on the phase portrait. Note
that an equilibrium solution (i.e. a constant solution) is a fortiori periodic since T can
be taken to be any positive number. A periodic solution which is not a constant is
called a non-trivial periodic solution.

3. Flow Map

Consider a system of ODE x′ = F(x) on R2 with a C1 vector field F. Given any
initial data x(0) = x0, the Existence and Uniqueness Theorem guarantees there always
exists a unique solution x(t). From now on, we will denote this solution by:

ϕt(x0)

meaning that the point x0 flows along the given vector field F for t unit time.
Essentially, ϕt(x0) is exactly the same as x(t) which solves x′ = F(x) with initial

condition x(0) = x0. There is many advantages of using the ϕt-notation. Suppose we
have another initial condition, say y0, we may simply denote the solution by ϕt(y0)
instead of making up a new symbol y(t) for that solution. Even more importantly, the
ϕt satisfies:

• For any real number t and s, and x0 ∈ R2, we have ϕt (ϕs(x0)) = ϕt+s(x0).
• For each fixed t, the map ϕt : R2 → R2 is a continuous map.

A trajectory starting from x0 is given by ϕt(x0) (regarding t as the independent
variable). In order for ϕt(x0) to be periodic, it suffices to have a time T > 0 such that
ϕT(x0) = x0, since it automatically implies ϕt+T(x0) = ϕt(x0) for any t ∈ R using the
fact that ϕT ◦ ϕt = ϕt+T .

The phase portrait of the glycolysis system (with a = 1
10 and b = 1

2 ) is shown in
Figure 3. The phase portrait suggests that there should be a periodic solution (closed
orbit). However, due to some unavoidable numerical errors of the plotting software,
the periodic solution cannot be clearly shown in the diagram. We will show that such
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a periodic solution indeed exists using the Poincaré-Bendixson’s Theorem in the next
section.
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Figure 3. The phase portrait of the system:

4. Poincaré-Bendixson’s Theorem: applications

In this section, we will state an important result in qualitative theory of ODEs, the
Poincaré-Bendixson’s Theorem, and use it to prove that a periodic solution really exists
in glycolysis system. While the theorem cannot tell what is the explicit expression of
the periodic solution, it gives us an idea of where the closed orbit is located in the
phase portrait.

Theorem 4.1 (Poincaré-Bendixson’s Theorem). Let F : R2 → R2 be a C1 vector field in
R2 and consider the system x′ = F(x). Suppose K is a set in R2 such that:

(1) K is closed and bounded;
(2) the system has no equilibrium point in K; and
(3) K contains a forward trajectory of the system, i.e. there exists x0 ∈ K such that

ϕt(x0) ∈ K for any t ≥ 0. Here ϕt denotes the flow of the system.
Then, the system has a non-trivial closed orbit in K.

Yes! The theorem seems to good to be true. In order to guarantee a periodic
solution, one simply needs to exhibit a forward trajectory which is trapped inside K.
This forward trajectory by itself needs not be periodic, but the theorem shows that if
such a trajectory exists, then it will warrant a closed orbit for the system provided that
K fulfills the assumption of the theorem!

We will give the proof of the Poincaré-Bendixson’s Theorem in the next section.
Meanwhile let’s go through some examples to illustrate the use of the theorem. One
typical technique for applying the Poincaré-Bendixson’s Theorem is to construct a
trapping region in the phase portrait, so that trajectories starting from any point in
the region will stay there for any positive time.

Example 4.2. Consider the system:

x′ = x− y− x(x2 + y2)

y′ = x + y− y(x2 + y2)

This is a system related to Hopf’s Bifurcation (which we will not talk about in detail).
However, due to this connection, let’s call it the Hopf’s system in this note.
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While it seems difficult to solve the system using Cartesian coordinates, it is much
nicer if one converts it into polar coordinates. Under the transformation rule r2 =
x2 + y2 and tan θ = y

x , we leave it as an exercise for readers to verify that the above
system can be rewritten as:

r′ = r(1− r2)

θ′ = 1

Therefore, if the initial data x0 is on the unit circle r = 1, then it will stay on it for
all time. In polar coordinates, this solution can be explicitly written as r(t) = 1 and
θ(t) = t+ θ0 where θ0 is the initial angle from the positive x-axis. Convert this solution
back to Cartesian coordinates, it is written as: x(t) = (cos(t+ θ0), sin(t+ θ0)). Clearly,
T = 2π is the period of the solution, i.e. x(t + 2π) = x(t) for any t ∈ R.

In general, if the initial data has polar coordinates (r0, θ0), then the solution to the
system is given by

r(t) =
et√(

1
r2

0
− 1
)
+ e2t

, θ(t) = t + θ0.

Therefore, the trajectories off the unit circle are never periodic since r(t) is either
strictly decreasing (when r0 > 1) or strictly increasing (when 0 < r0 < 1). In either
case, the radius r(t) → 1 as t → +∞. Therefore, these trajectories are approaching to
the unit circle. See Figure 4 for the phase portrait.
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Figure 4. The phase portrait of the system in Example 4.2:

r′ = r(1− r2), θ′ = 1

The unit circle is the periodic solution to the system. However, let’s pretend we
don’t know this and try to use the Poincaré-Bendixson’s Theorem to prove that a
periodic solution exists!

Let K be the following closed and bounded subset of R2:

K =

{
x ∈ R2 :

1
2
≤ |x| ≤ 2

}
which is an annular region with outer radius 2 and inner radius 1

2 . The boundary of
K consists of a circle of radius 1

2 and a circle of radius 2, both centered at the origin.
See Figure 5.
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Figure 5. The solution curves starting from anywhere in K are
trapped inside K.

Under the system, r′ = r(1− r2). Therefore, on the boundary circle {r = 2}, we
have r′ = r(1− r2) = −6 < 0, and hence trajectories hitting {r = 2} will decrease it’s
distance from the origin as t increases. On the other hand, on another boundary circle
{r = 1

2}, we have r′ = r(1− r2) = 3
8 > 0, and hence trajectories hitting {r = 1

2} will
increase r as t increases. These show any trajectories in the annular region K will stay
in K for any future time.

Now that K is closed and bounded. The only equilibrium point of the system, the
origin, is not in K. From the above discussion, K contains many forward trajectories
(in particular it contains at least one). All these fulfill the conditions of the Poincaré-
Bendixson’s Theorem, so the system has a non-trivial closed orbit in K. Of course, the
closed orbit as we figured out before is the unit circle.

�

Example 4.3. Back to the glycolysis system:

x′ = −x + ay + x2y

y′ = b− ay− x2y

where a, b > 0 are two parameters.
We will show the quadrilateral region K with vertex (0, 0), (b + b

a , 0), (b, b
a ) and

(0, b
a ) is a trapping region for the system. See Figure 6 for the sketch of the region.

To show it is a trapping region, we need to show the vector field F(x, y) =
[
−x + ay + x2y
b− ay− x2y

]
is pointing into the region near the boundary, or equivalently, F · n > 0 where n is an
inward normal vector of the boundary.

There are four boundary components, three of which are either horizontal or verti-
cal. Let’s verify two of them and the other two are left as an exercise.

On the boundary segment joining (0, 0) and (b + b
a , 0), we have y = 0 (when x is

varying) and the inward normal vector n is
[

0
1

]
, and we have:

F(x, 0) · n = (−x, b) · (0, 1) = b > 0.

Hence F is pointing inward on this boundary component.
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Figure 6. The trapping region in Example 4.3.

The boundary component joining (b + b
a , 0) and (b, b

a ) can be expressed as y =

−x + b+ b
a , with x ∈ [b, b+ b

a ], and the inward normal vector n is (−1,−1). Therefore,

F(x, y) · n = −(−x + ay + x2y)− (b− ay− x2y) = x− b ≥ 0

since x ≥ b.
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Figure 7. The phase portrait inside the trapping region in Example
4.3 when (a, b) = ( 1

10 , 1
2 ).

After verifying the other two boundary components, we can conclude K is a trap-
ping region. See Figure 7 for the phase portrait inside the trapping region for this
pair of (a, b). Clearly K is closed and bounded. Unfortunately, there is an equilibrium
point (b, b

a+b2 ) which is inside K! One cannot apply the Poincaré-Bendixson’s The-
orem with this K directly. However, it is still possible to show existence of periodic
solution if (b, b

a+b2 ) can be shown to be unstable, since then one can drill a small open

ball Bε((b, b
a+b2 )) inside K and K\Bε((b, b

a+b2 )) is a closed and bounded trapping re-
gion for the system not containing any equilibrium point. The Poincaré-Bendixson’s
Theorem hence shows there is a periodic solution inside the region K\Bε((b, b

a+b2 )).



8 FREDERICK TSZ-HO FONG

The equilibrium point can be shown to be unstable for some (although not all) pairs
of (a, b), for instance a = 1

10 and b = 1
2 (one can use linearization to show that). There

are many other such pairs of a and b too. �

5. Poincaré-Bendixson’s Theorem: the proof

This section is devoted to the proof of the Poincaré-Bendixson’s Theorem. It is an
amazingly beautiful and intelligent proof, using a celebrated result in topology called
the Jordan Curve Theorem.

5.1. Limit Sets. An important concept in the proof of the Poincaré-Bendixson’s The-
orem is the α− and ω− limit sets to be defined below.

Let ϕt be the flow of the Hopf’s system discussed in Example 4.2. Consider the tra-
jectory ϕt(x0) for some point x0 ∈ R2 with polar coordinates (r0, 0). As we computed
before, the trajectory is given in polar coordinates by:

r(t) =
et√(

1
r2

0
− 1
)
+ e2t

, θ(t) = t,

or equivalently in (x, y)-coordinates:

ϕt(x0) = (x(t), y(t)) =
et√(

1
r2

0
− 1
)
+ e2t

(cos t, sin t).

Although the scaling factor et√(
1
r2
0
−1
)
+e2t

approaches to 1 as t→ +∞, the limit limt→+∞ ϕt(x0)

does not exist because the trigonometric functions cos t and sin t are oscillating be-
tween −1 and 1 rather than converging to specific numbers.

However, if one substitute t by a suitable time sequence {tn}∞
n=1 which approaches

to +∞ as n → ∞, then one can possibly talk about convergence of ϕtn(x0) as n → ∞.
For example, if we let tn = 2πn, then

ϕtn(x0) =
e2πn√(

1
r2

0
− 1
)
+ e4πn

(cos(2πn), sin(2πn))

=
e2πn√(

1
r2

0
− 1
)
+ e4πn

(1, 0).

Letting n→ ∞ gives ϕtn(x0)→ (1, 0) as n→ ∞.
That says, although we do not have convergence for ϕt(x0) when t is regarded

as a continuous parameter, we can still talk about a discrete notion of convergence by
substituting t by a suitable sequence tn. The cost is that now the “limit” may not be
unique. For instance, if one choose tn = 2πn + θ0 where θ0 is any fixed angle, then
one should verify that ϕtn(x0) → (cos θ0, sin θ0) as n → +∞, which is another point
on the unit circle.

Under this generalized notion of limits, we no longer say ϕt(x0) converges to a
particular point, but rather say ϕt(x0) approaches to a set. This motivates the following
definition:
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Definition 5.1 (Limit Points and Limit Sets). Let ϕt be the flow of an ODE system on
Rd. A point y ∈ Rd is called an ω-limit point of x0 if there exists a time sequence
tn → +∞ as n → ∞ such that ϕtn(x0) → y as n → ∞. The ω-limit set of x0, denoted
by ω(x0), is the set of all possible ω-limit points of x0. Precisely,

ω(x0) = {y ∈ Rd : ∃tn → +∞ as n→ ∞ such that ϕtn(x0)→ y as n→ ∞}.

A point z ∈ Rd is called an α-limit point of x0 if there exists a time sequence
tn → −∞ as n → ∞ such that ϕtn(x0) → y as n → ∞. The α-limit set of x0, denoted
by α(x0), is the set of all possible α-limit points of x0. Precisely,

α(x0) = {z ∈ Rd : ∃tn → −∞ as n→ ∞ such that ϕtn(x0)→ z as n→ ∞}.
�

Remark 5.2. The letters α and ω are chosen because they are the first and the last Greek
alphabet respectively. �

Example 5.3. Recall that the flow of the Hopf’s system is given by

ϕt(x0) = (x(t), y(t)) =
et√(

1
r2

0
− 1
)
+ e2t

(cos t, sin t),

where x0 = (r0, 0) in (x, y)-coordinates and r0 > 0.
As discussed before, there exists a sequence of times tn = 2πn + θ0 → +∞ as

n → ∞ such that ϕtn(x0) → (cos θ0, sin θ0). One can pick θ0 to be any angle, so any
point on the unit circle is an ω-limit point of x0. Conversely, any ω-limit point of x0
must be on the unit circle since |ϕtn(x0)| → 1 as n → ∞ for any sequence tn → +∞.
Therefore, the ω-limit set of x0 is the unit circle. Symbolically, we denote it by:

ω(x0) = {y ∈ R2 : |y| = 1}.
The α-limit points of x0 is bit more subtle than their ω-counterparts. If x0 = (r0, 0) is

chosen such that 0 < r0 < 1, then 1
r2

0
− 1 is positive and so

√(
1
r2

0
− 1
)
+ e2t is defined

for all time t. Therefore it makes sense to talk about ϕtn(x0) for sequences tn → −∞.
One can verify that in this case ϕtn(x0) → (0, 0) for any sequence tn → −∞, and so 0
is the only α-limit point of x0 = (r0, 0). Symbolically, it is defined by:

α(x0) = {0} when 0 < r0 < 1.

However, x0 = (r0, 0) with r0 > 1. The square-root

√(
1
r2

0
− 1
)
+ e2t is undefined

when t is sufficiently negative. It is therefore forbidden to substitute t by a sequence
tn that goes to −∞. Therefore, there is no α-limit point for this x0, and symbolically
we say:

α(x0) = ∅ when r0 > 1.
�

We will mostly deal with ω-limits in the rest of the chapter. While it is possible to
determine the limit sets for the Hopf’s system where the flow map can be explicitly
stated, it is in general difficult to determine limit sets for most nonlinear systems. In
the rest of the chapter, we will deal with limit sets in a qualitative way rather than
finding them explicitly.

The following lemma presents some important facts about ω-limit sets. They will
be used often when establishing the Poincaré-Bendixson’s Theorem.



10 FREDERICK TSZ-HO FONG

Lemma 5.4. Let ϕt be the flow of a C1-system on Rd. Suppose y ∈ ω(x) for some x ∈ Rd,
then we have:

(1) ϕs(y) ∈ ω(x) for any s (as long as ϕs(y) exists).
(2) If z = ϕs(y) for some fixed s, i.e. z is on the trajectory through y, then z ∈ ω(x).
(3) If w ∈ ω(y), i.e. w is an ω-limit point of y, then we also have w ∈ ω(x). [In other

words, w ∈ ω(y) and y ∈ ω(x) imply w ∈ ω(x).]

Proof. Given that y ∈ ω(x), there exists a sequence of times tn → +∞ such that
limn→∞ ϕtn(x) = y.

Parts (1) and (2) are easy consequences of the continuity of ϕs. The detail is as
follows:

To prove (1), we consider ϕs+tn(y) = ϕs(ϕtn(y)). Since ϕs is continuous, we have:

lim
n→∞

ϕs+tn(x) = lim
n→∞

ϕs(ϕtn(x)) = ϕs

(
lim

n→∞
ϕtn(x)

)
= ϕs(y).

Therefore, ϕs(y) ∈ ω(x) and the associated time sequence is s + tn.
For (2), we consider:

z = ϕs(y) (given)

= ϕs

(
lim

n→∞
ϕtn(x)

)
(given)

= lim
n→∞

ϕs(ϕtn(x)) (ϕs is continuous)

= lim
n→∞

ϕtn+s(x).

Therefore, z is an ω-limit point of x since there exists a time sequence tn + s → +∞
such that ϕtn+s(x)→ z. It completes the proof of (2).

For (3), since w ∈ ω(y) there exists a sequence of times sk → ∞ such that ϕsk (y)→
w as k → ∞. Given that limn→∞ ϕtn(x) = y and by the continuity of ϕsk , we have
limn→∞ ϕsk+tn(x) = ϕsk (y) for each fixed k. We pick a subsequence tnk of tn such that
for each k, we have ∣∣∣ϕsk+tnk

(x)− ϕsk (y)
∣∣∣ < 1

k
.

Consider the sequence of times sk + tnk , we then have:∣∣∣ϕsk+tnk
(x)−w

∣∣∣ = ∣∣∣ϕsk+tnk
(x)− ϕsk (y) + ϕsk (y)−w

∣∣∣
≤
∣∣∣ϕsk+tnk

(x)− ϕsk (y)
∣∣∣+ ∣∣ϕsk (y)−w

∣∣∣∣∣ϕsk+tnk
(x)−w

∣∣∣ ≤ 1
k︸︷︷︸
→0

+
∣∣ϕsk (y)−w

∣∣︸ ︷︷ ︸
→0

.

As k → +∞, we have
∣∣∣ϕsk+tnk

(x)−w
∣∣∣ → 0, or in other words ϕsk+tnk

(x) → w. There-
fore, w ∈ ω(x) and its associated time sequence is sk + tnk . �

5.1.1. Closedness and boundedness of the trapping region. Recall there are two condi-
tions for the trapping region K in the statement of the Poincaré-Bendixson’s Theo-
rem, namely K has to be closed and bounded. These two conditions have important
implications in terms of limit sets.

Suppose ϕt(x0) is a forward trajectory contained in K entirely. If K were not
bounded, then ϕt(x0) may diverge to infinity as t → +∞ then there is no ω-limit
point to talk about. The boundedness of K guarantees there is at least one ω-limit
point of x0. In fact, it is a consequence of the following famous theorem in analysis:

Theorem 5.5 (Bolzano-Weierstrass’s Theorem). If S is a bounded infinite set in Rd, then
there exists a sequence sn ∈ S such that sn converges to a limit s0 in Rd as n→ ∞.
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We omit the proof here. A standard proof can be found in any basic analysis
textbook and should have been covered in MATH 2031.

Now applying the Bolzano-Weierstrass’s Theorem to our scenario. The forward
trajectory ϕt(x0) is an infinite set (unless x0 is an equilibrium point, but then ω(x0) is
{x0} itself). If it is completely inside a bounded set K, then the trajectory is a bounded
infinite set so the theorem implies there exists a sequence ϕtn(x0) that converges to a
limit y in Rd. Consequently, ω(x) contains at least one point y.

The boundedness of K guarantees the forward trajectory has at least one ω-limit
point. However, boundedness alone cannot guarantee the limit point must be in K.
That’s why we need to combine closedness with boundedness. The following is a
“common-sense” fact in analysis and point-set topology:

Proposition 5.6. Let K be a closed set in Rd. If xn is a sequence in K and that xn → y as
n→ ∞, then the limit y must be in K.

Proof. We prove by contradiction. Suppose y is not in K, then y ∈ Rd\K. Since K is
closed, the complement Rd\K is open. By the definition of openness, there exists a
ball Bε(y) that is contained inside Rd\K.

The sequence xn → y as n → ∞, so xn will eventually enter the ball Bε(y) for
sufficiently large n. However, it is not possible since all xn’s are in K but the ball Bε(y)
is disjoint from K. Therefore, we must have y ∈ K. �

Combining closedness and boundedness of K, the forward trajectory ϕt(x0) trapped
inside K must have at least one ω-limit point, and all ω-limit points must be in K. This
is significant since then our proof “game” will be confined in the trapping region K.

5.2. Local Sections and Flow Boxes. The Poincaré-Bendixson’s Theorem requires the
trapping region K has no equilibrium point for the system. We will explore why this
is needed in this subsection.

From now on, we will restrict the discussion to planar system only. Let x0 be a non-
equilibrium point of a C1-system x′ = F(x). The vector F(x0) at x0 is non-zero, and so
there is a straight line, denoted by l(x0), passing through x0 and is perpendicular to
F(x0). Pick a point x on this line l(x0), then one can tell whether F(x) is pointing at
the same side of the line as F(x0) by considering the dot product F(x) · F(x0). If the
dot product is positive, then F(x) points at the same side of the line as F(x0).

Since F(x0) · F(x0) = |F(x0)|2 > 0, by continuity of the vector field, the dot product
F(x) · F(x0) must be positive as far as x is sufficiently close to x0. Consequently, one
can find a line segment Sx0 of l(x0) such that at every point x on this line segment Sx0 ,
the vector field F(x) is pointing at the same side of l(x0) as F(x0). This line segment is
called:

Definition 5.7 (Local Sections). Let x0 be a non-equilibrium point of a C1-system
x′ = F(x). A local sections Sx0 is a line segment passing through x0 and perpendicular
to F(x0) such that F(x) · F(x0) > 0 for any x ∈ Sx0 . �

Sx0

x0

F(x0)

Figure 8. A local section Sx0 based at x0.
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Given a local section Sx0 , one can construct a flow box at x0 to be described below.
As the vector field F(x) is pointing at the same side of the local section Sx0 when x
is sufficiently close to x0. One can expect there is a neighborhood V of x0 so that the
trajectories inside V are flowing in approximately parallel directions as shown in Figure 9.
A flow box has two edges: the in-edge and the out-edge. A flow box is characterized
by the following properties:

(1) Any trajectory must enter the flow box V through its in-edge.
(2) After a trajectory enters the flow box V , it must intersect the local section Sx0

exactly once before leaving V .
(3) Any trajectory must leave the flow box V through its out-edge.

in-edge out-edge
S

Figure 9. An example of a flow box and a local section.

The formal construction of flow boxes is bit technical so we omit it here. Readers
may consult Section 10.2 of Hirsch-Smale-Devaney’s book for both the formal defini-
tion and the existence proof of flow boxes using the Implicit Function Theorem. In
order to understand the key idea of the Poincaré-Bendixson’s Theorem, it is more im-
portant to keep in mind the geometric intuition of flow boxes, rather than knowing the
formal definition or why flow boxes must exist.

5.3. Jordan Curve Theorem and Consequences. Limit sets, local sections and flow
boxes are three key ingredients in the proof of the Poincaré-Bendixson’s Theorem. In
this subsection, we will first state (but not prove) a celebrated result in topology, the
Jordan Curve Theorem. It will lead to two important consequences about limit sets
and local sections.

The statement of the Jordan Curve Theorem, stated below, sounds quite trivial
and you may wonder why such an obvious statement can be qualified as a theorem.
Nonetheless, the proof requires an advanced concept called Homology which is usu-
ally taught in graduate level Algebraic Topology course.

Theorem 5.8 (Jordan Curve Theorem). Any continuous simple closed curve C in the plane
R2 divides the plane into two disjoint components, i.e. there exist two disjoint connected open
sets U and V such that R2\C = U ∪ V. Moreover, one of the U and V is bounded and the
other one must be unbounded.

The first consequence of the Jordan Curve Theorem is about monotonicity:

Lemma 5.9. Let ϕt be the flow of a C1 planar system, and let S be any local section. Consider a
trajectory ϕt(y) from a point y in R2. If t1 < t2 < t3 are times at which the trajectory ϕt(y)
intersects S , then the intersection points ϕt1(y), ϕt2(y) and ϕt3(y) must be in monotonic
order on the local section S (see Figures 10 and 11 for an example and a non-example of
monotonically ordered points).

Proof. First construct a continuous simple closed curve C by gluing the part of the
trajectory ϕt(y) for t ∈ [t1, t2] and the line segment joining ϕt1(y) and ϕt2(y). The
Jordan Curve Theorem asserts that C divides the plane R2 into two disjoint open
sets U and V. Assume without loss of generality that the trajectory ϕt(y) enters the
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region U shortly after t2. Suppose at a later time t3, the trajectory intersects S in the
middle of ϕt1(y) and ϕt2(y) (let’s call this 1− 3− 2 configuration), then S being a
local section implies the trajectory must come from another region V shortly before
t3 (see Figure 12). However, it is impossible since U and V are disjoint. It rules out
the 1 − 3 − 2 arrangement on the local section S . Similarly, one can also rule out
the 3− 1− 2 configuration by the same argument. Therefore, the only possibility is
1− 2− 3, which is exactly what we need to show. �

S

t1

t2

t3

Figure 10. ϕti (x0)’s are monotonically ordered on S

S

t1

t2

t3

Figure 11. ϕti (x0)’s are not monotonically ordered on S

S

t1

t2
t3

U

V

Figure 12. The trajectory in blue is a hypothetical trajectory that gives
a 1− 3− 2 configuration. This configuration is ruled out by the Jordan
Curve Theorem.
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If we further assume that the point y of Lemma 5.9 is an ω-limit point of another
point x, then we have a stronger result:

Lemma 5.10. Let ϕt be the flow of a C1 planar system, and let S be any local section. If a
trajectory ϕt(y) starts from a point y ∈ ω(x) for some x ∈ R2, then the trajectory ϕt(y)
intersects S at at most one point.

Remark 5.11. The trajectory can intersect S for infinitely many times, but the lemma
shows the intersection point must be the same every time. �

Proof. We prove by contradiction. Suppose ϕt(y) intersects S at two different points z
and w. One can then find two disjoint flow boxes, V based at z and anotherW based
at w.

As z and w are on the trajectory from y, they are both ω-limit points of x by Lemma
5.4. As a result, there exist sequences tn → +∞ and sn → +∞ such that ϕtn(x) → z
and ϕsn(x)→ w as n→ ∞.

There must be infinitely many ϕtn(x)’s in V since ϕtn(x) converges to z which is
inside V . Therefore, by the property of a flow box, the trajectory ϕt(x) must enter the
flow box for infinitely many times and intersect the V-portion of the local section S
for infinitely many times. See Figure 13.

Similarly, the trajectory ϕt(x) must intersect the W-portion of the local section S
for infinitely many times. However, Lemma 5.9 shows ϕt(x) must intersect the local
section S in monotonic order. It is impossible to have this trajectory intersecting the
V- andW-portions of the local section S both for infinitely many times and overall in
a monotonic order. It leads to a contradiction. Therefore, ϕt(y) cannot intersect S at
two different points, and hence it can only intersect S at at most one point. �

S

V

W

from x intersect S for ∞ times

from above intersect S for ∞ times

Figure 13. The trajectory from x cannot intersect S first in V and then
W both for infinitely many times in a monotonic manner. This leads
to a contradiction. Note that the trajectory from y is not shown in the
figure since it is not relevant.

5.4. Completion of the Proof: A Tale of Three Points. Finally, with Lemma 5.10, we
are ready to give the proof of the Poincaré-Bendixson’s Theorem.

Proof of Poincaré-Bendixson’s Theorem. Recall that the set-up is that there is a closed
and bounded set K in R2 that contains a forward trajectory ϕt(x) for t ∈ [0, ∞). By
the closedness and boundedness of K, the limit set ω(x) is non-empty (by Bolzano-
Weierstrass) and is contained inside K (by closedness). The absence of equilibrium
point in K and that ω(x) ⊂ K guarantee every point on ω(x) has a local section and a
flow box around the point.

Now let y be any point in ω(x). The key idea of proving the theorem is to show
that ϕt(y) is a periodic solution. In order to prove this, consider a point z ∈ ω(y).
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Since y ∈ ω(x), Lemma 5.4 shows ϕt(y) ∈ ω(x) ⊂ K for any t ≥ 0. Consequently, the
closedness of K implies ω(y) ⊂ K, and so z ∈ K.

Now that z ∈ K, it is not an equilibrium point and so there exists a local section S
and a flow box V based at z. Now the proof is completed by applying Lemma 5.10:
since y is an ω-limit point of x, the lemma shows that the trajectory ϕt(y) intersects the
local section S at at most one point. Since z is an ω-limit point of y, it implies ϕt(y)
must enter the flow box V for at infinitely many times, and intersect S for infinitely
many times but every time the intersection point must be the same. Therefore, one
can pick two different times s and t, where s < t, such that ϕt(y) = ϕs(y), which
implies ϕt−s(y) = y. In other words, the trajectory ϕt(y) is periodic with a period
t− s > 0. It completes the proof. �
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