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1 Introduction

An understanding of physiological time series such as the heart-beat inter-

vals is important to many areas, like heart-attack prediction, cardiovascular

health, sport and exercise, etc. The study of time series can reveal underlying

mechanisms of the physiological system, which usually contains both deter-

ministic and stochastic components. Therefore the analysis of time series is

very complicated because of the nonlinear and non-stationary characteristics

of physiological time series data. Over the past years, time series analysis

methods are applied to quantify physiological data for identification and clas-

sification (see [7, 12]). The application of physiological time series analysis

commonly focus on measuring different aspects of time series data such as

complexity, regularity, predictability, dimensionality, randomness, self sim-

ilarity, etc. The tools used in these techniques include but not restrict to

the mean, standard deviation, Fourier transform, wavelet, entropy, fractal
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dimension, pattern detection (see [8, 13]).

Recently a new mathematical tool, empirical mode decomposition (EMD),

was proposed by Norden Huang et al (see [5, 6]). It decomposes a time se-

ries into a finite sum of intrinsic mode functions (IMF) that generally admit

well-behaved Hilbert transforms. This decomposition is based on the local

characteristic time scale of the data, which makes EMD applicable to ana-

lyze nonlinear and non-stationary signals. EMD and Hilbert transform to-

gether, called the Hilbert-Huang transform (HHT), usually allow to construct

meaningful time-frequency representations of signals using instantaneous fre-

quency of the data. EMD and HHT have been applied with great success

in many application areas such as biological and medical sciences, geology,

astronomy, engineering, and others (see [5, 1, 3, 6, 11, 10]). Another interest-

ing set of examples is the work of L.Yang, who has successfully applied EMD

based techniques for texture analysis and Chinese handwriting recognition

(see [16, 17, 15, 18]).

The main purpose of this paper is to develop a new approach for the

analysis of physiological times series. Our approach is motivated by two

intuitions and coupled with modern machine learning techniques. The first

intuition comes from a belief that a physiological system should contain a de-

terministic part that reflects the basic mechanism for the system to survive

and a stochastic part that represents the variability of resilience. Mathe-

matically they can be represented by the low frequency and high frequency

components of a physiological signal. This motivates the application of meth-

ods of decomposing signals into various components according to frequencies

in the quantitative analysis of physiological time series. Examples include

2



the Fourier transform, wavelets, EMD. In our method we will use an itera-

tive convolution filter which is an alternative of EMD. The second intuitions

comes from a statistical perspective of irregularity. A lot of study has proved

that normal physiological systems show irregularity due to the existence of

stochastic components while the decrease of irregularity usually imply the

abnormality. From statistical perspective, irregularity of a data set is repre-

sented by the “outliers”. This motivates us to study the statistics of outliers

in physiological time series. However, we must be careful in dong so. Prac-

tical physiological times series usually contains noise which may also appear

as outliers. We have to guarantee the “outliers” we examined are not pure

noise. This is possible because true outliers do not have informative struc-

tures and could be detected. The second intuition is the motivation for our

feature construction in section 2.2.

These two intuitions enable us to decompose the physiological times series

and construct features for our quantitative analysis. Combining with the well

established feature selection techniques in machine learning we can remove

the redundancy of the features and find relevant statistics for classification of

physiological time series. SVM-RFE (Support Vector MachineRecursive Fea-

ture Elimination) is suggested in this paper for linear classification problems.

The details of our approach will be described in Section 2.

We will use our approach to the study of congestive heart failure problems.

The purposes is two-fold: The first is to build good classifier to enable good

diagnosis. The second is to find what kind of irregularity is related to the

heart health. The results and discussions are summarized in Section 3.

The novelty of our method is mainly the following two points. Firstly,
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although we decompose the time series into components of different frequen-

cies, we do not compare them from the frequency domain. Secondly, we

proved that the outliers in a physiological time series are usually not true

outliers but are informative instead.

2 Method

2.1 Signal decomposition

Let L be a low pass filter. Denote by T the weak limit of the the operator

(I − L)n as n →∞, i.e., for a discrete signal X and time t

T (X)(t) = lim
n→∞

(I − L)n(X)(t).

Using this operator iteratively, a signal X can be decomposed as follows: Let

F1 = T (X) and for k ≥ 2,

Fk = T

(
X −

k−1∑
i=1

Fi

)
.

After m steps we get F1, . . . , Fm which we call mode functions and the resid-

ual

R = X −
m∑

i=1

Fi.

Then we have

X = F1 + F2 + . . . + Fm + R.

In this decomposition, roughly speaking the former mode functions are noise

or high frequency components and the latter mode functions are low fre-

quency components and R is the trend.
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This procedure follows the spirit of the traditional EMD introduced in

[5]. In the traditional EMD, the low pass filter L is chosen as the average

of the upper envelope (the cubic spline connecting the local maxima) and

the lower envelope (the cubic spline connecting the local minima). This

method, although has been successfully used in many applications, is lack of

theoretical foundation and has its limitations.

In [9] a new approach is proposed. In this new approach the low pass

filter is a moving average generated by a mask a = (aj)
N
j=−N that gives the

L(X) as the convolution of a and X, i.e.,

L(X)(t) =
N∑

j=−N

ajX(j + t).

With this choice of L we call the operator T an iterative convolution filter.

A rigorous mathematical foundation and convergence analysis is in [9, 14].

Note the mask a is finitely supported on [−N, N ] and N is called the window

size. The flexibility to choose the window size is crucial in applications and

forms a main advantage of this method.

Similar to decompositions by many other methods like Fourier transform

and wavelets , the trend and low frequency components are usually assumed

to characterize the profile of the signal and the high frequency components

characterize the details. In different applications we need the features of

difference components.

2.2 Feature extraction

After decomposing the signal into the mode functions and the trend, we

need to extract statistics that can characterize the essential features of these
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components. This step requires a priori knowledge of the problem under

consideration. It could be rather weak. But without any priori knowledge,

it is difficult to get proper statistics. Also, this step is strongly problem

dependent. In the following let us use the heart-beat intervals as an example

to illustrate how to construct the features.

For each mode function Fi, we first get its mean mi and standard deviation

σi. By the previous studies [2] the healthy heart beats more irregularly than

the unhealthy heart. This motivates us to design the statistics to measure the

irregularity. To this end, we consider the terms that are larger than m + σ

and find their mean and standard deviation. We also find the mean and

standard deviation of the terms that are larger than m + 2σ. Symmetrically

we also get the mean and standard deviation of those terms that are smaller

than m − σ and m − 2σ. Note all these terms are in some sense “outliers”

and it is natural to use the statistics of the outliers as the characterization

of the irregularity.

Next we consider the local maxima and local minima of Fi. These two

series measure the local upper amplitude. For each series we consider the ten

statistics as those for Fi.

Therefore for each component we get 30 statistics.

Unlike in [2], we use the whole 24-hour heart beat time series and as-

sume we do not know the periods for different activities such as sleeping and

walking. We think the statistics for different periods should be different and

not all of them represent the difference between the healthy and unhealthy

people. This motivates the idea of split the whole time series into subseries.

Suppose we have K subseries for each patient. Then we get K subcompo-
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nents for each mode function which will be denoted by Fij, j = 1, . . . , K. For

each subcomponent Fij we also get the 30 statistics as for Fi. For the same

statistics, we have K values from the K subcomponents. We compute the

mean of all values, the mean of lower half and upper half, respectively. This

gives 90 statistics as summary. So for each component we get 120 statistics.

For physiological signals, we believe the trend and low frequency com-

ponents are determined by the fundamental mechanism while the individual

differences should be reflected by the high frequency components. In case

that we do not have much knowledge about the disease to be diagnosed we

may assume the features may also comes from the trend. So the same 120

statistics are also computed for the trend component.

2.3 Feature subset selection

After the above two steps we have get many features for the data. Usually

only a small part of them are related to the diagnosis and the physiological

mechanism of the disease. The task of the third step is to find the relevant

ones. This will be realized by eliminating the irrelevant ones step by step.

Firstly, if a statistic is almost constant, then it is useless in the diagnosis

and should be eliminated. For example, the means of the mode functions mi

are all approximately zero and should be eliminated.

Next we use the SVM-RFE method [4] to rank the features. In this

method, given a set of training samples, we first train linear SVM to get

a classifier and then rank the features according to the weights. Because

of large feature size and small training samples, the classifier might not be

as good. Also, the high correlation between the features may result the
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relevant features to have small weights. These reasons could lead the rank to

be inaccurate. In order to refine the rank we eliminate the least important

feature and repeat the process to re-rank the remained features. Running

this process iteratively we finally get the refined rank of the features.

With this rank of features we can conclude which statistics are useful

for the diagnosis and characterize the essence of the underlying physiological

mechanism. Good classifiers can then be built to make accurate diagnosis.

3 Experiments and Results

In this section we apply our new method described in Section 2 to the hear

beat interval times series and report our results and conclusions.

3.1 The data set

The data set includes the heart beat interval time series of 72 healthy people

and 43 CHF patients. For each people the heart beat interval is measured

for 24 hours under various activities. In our experiment we will assume the

activity period is not known. The average ages of these two groups are both

55 years. The standard deviation of age of CHF patients is 11 years and

which of healthy people is 16 years. If divide CHF patients into 4 degrees

where the degree I is a slight CHF and the degree IV is a severe CHF, most

CHF patients are of the degree III.
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Figure 1: The mean and variance (in second) of the times series, ’o’ for

healthy people and ‘*’ for CHF patients.

3.2 A primary study

Before using our new method, we study the classification ability of two simple

statistics: mean and variance. In Figure 1 we plot the mean and variance

of the heart beat intervals for the healthy people and CHF patients. We see

that the healthy people and the CHF patients can be roughly separated. The

average heart beat interval of healthy people is larger and so is the variance.

It shows the heart of healthy people beats slower and more irregularly. This

observation coincides with the previous study.

At the same time, we notice that several cases falling into the healthy

people show to be severe CHF patients. So we conjecture that the mean and

variance might not reflect the essence of the underlying mechanism, although
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they have good separability.

3.3 Experiment: feature extraction

For each time series, we use the iterative convolution filter to realize the

signal decomposition. In this step we need to specify the window size of the

mask. It turns out it should be chosen between 50 and 100 to be stable. In

our experiment it is chosen to be 50.

We then calculate the statistics proposed in Subsection 2.2. Here we need

to specify the parameter K, the number of subseries. If a statistic really cap-

tures the essence of the data set, it should be stable and independent of the

choice of K once it is chosen within a reasonable interval. Our experiments

show that K = 50 is a good choice. Most heart beat signals were recorded

for a little bit more than 24 hours. Thus when K = 50, each subseries is

around 30 minutes of record.

Previous studies have shown that healthy heart beats irregularly. In

statistics, irregularity could be measured by statistics of “outliers” that are

not due to noise. This motivates us to consider the upper half mean and

the lower half mean of the fluctuations. At the same time, from the study in

Section 3.2 we find that a healthy heart beats slower than an unhealthy heart

in average. These two intuitions enlighten us to conjecture that those larger

heart beat intervals (i.e. slower heart beats) in the times series characterize

the difference between the healthy people and CHF patients. To confirm

this, we do a correlation analysis.

For the first two IMFs of the 50 components of each time series, we

calculate and sort the mean and standard deviation of those terms larger
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than mean plus standard deviation and those terms larger than mean plus

two times standard deviation. For each statistic we compute its correlation

to the CHF disease. The result is plotted in Figure 2 in red color. We

compute the same indices for those items smaller than the mean minus one

and two times standard deviation. The result is plotted in Figure 2 in blue

color. From the comparison we see that, in average, correlations of the

statistics associated to the larger fluctuations are larger and the upper half

mean of these statistics are stable. This observation motives us to disregard

the smaller fluctuations and the statistics for those.

3.4 Feature ranking and subset selection

To rank the features, we randomly split the data set into two subsets as

the training set and the test set, respectively. In the training set we have 50

healthy subjects and 30 CHF subjects and in the test set there are 22 healthy

and 13 CHF subjects. We use the training set to build the SVM classifier

and use the test set to control the accuracy. Using the SVM-RFE methods

described in Subsection 2.3 we rank the features. To guarantee the stability

of the rank we repeat this procedure 1000 times and choose the statistics

that appear most frequently in the model.

In all 1000 repeats, the classification error on the test data set is summa-

rized in the following table:

number of errors 0 1 2 3 4 5

number of repeats 823 116 42 14 4 1
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Figure 2: The correlations of various statistics to the CHF disease. The

first column is for the first IMF and the second column is for the second

IMF. The first line is for the mean of those items larger than the mean

plus standard deviation (red line) and those items smaller than the mean

minus the standard deviation (blue line). The second line is for the standard

deviation of two types items. The third line is for the mean of those items

larger than the mean plus 2 times standard deviation (red line) and those

items smaller than the mean minus 2 times standard deviation (blue line).

The forth line is for the standard deviation of two types of items.
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We list the top 10 statistics selected by this procedure:

1. IMF 1: For the subseries consisting of local maxima, find all terms which

are greater than the mean plus two times standard deviation, then compute

the standard deviation.

2. IMF 1: For the subseries consisting of local maxima, find all terms which

are less than the mean minus two times standard deviation, then compute

the standard deviation.

3. IMF 1: Equally divide the series into K subseries, for each subseries find

all terms which are less than the mean minus two times standard deviation,

compute the standard deviation, then take the mean of these K standard

deviations.

4. IMF 1: Equally divide the series into K subseries, find local maxima of

each subseries, find all terms of local maxima which are greater than the

mean plus two times standard deviation, compute the standard deviation,

then take the mean of these K standard deviations.

5. IMF 1: Equally divide the series into K subseries, find local minima of

each subseries, find all terms of local minima which are greater than the

mean plus two times standard deviation, compute the standard deviation,

then take the mean of these K standard deviations .

6. IMF 2: Find all terms which are greater than the mean plus two times

standard deviation, then compute the standard deviation.

7. IMF 2: Equally divide the series into K subseries, for each subseries find all

terms which are greater than the mean plus two times standard deviation,

compute the standard deviation, then take the mean of these K standard

deviations.
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8. IMF 2: Equally divide the series into K subseries, find local maxima of

each subseries, find all terms of local maxima which are greater than the

mean plus two times standard deviation, compute the standard deviation,

then take the mean of these K standard deviations.

9. IMF 2: Equally divide the series into K subseries, find local minima of

each subseries, find all terms of local minima which are less than the mean

minus two times standard deviation, compute the standard deviation, then

take the mean of these K standard deviations.

10. Trend: Equally divide the series into K subseries, find local maxima

of each subseries, find all terms of local minima which are greater than the

mean plus standard deviation, compute the standard deviation, then take

the mean of these K standard deviations.

These 10 statistics that appear most frequently in the model all measure

the irregularity of the local amplitude. Take Statistics 1 and Statistics 7 as

the example. They are obtained as the following. To get Statistics 1, for

the first IMF F1, find the local maxima u and compute the mean m and

the standard deviation σ of u. Then we choose terms greater than m + 2σ

and find their standard deviation. To get Statistics 7, for the subseries of

the second IMF F2j, j = 1, . . . , K, compute the mean m2j and the standard

deviation σ2j of F2j. Then we choose terms greater than m2j + 2σ2j of F2j

and find their standard deviations. Then we compute the mean of K such

standard deviations. In the following figure we show the distribution of the

healthy people and CHF patients using these two statistics. From this figure

it is easy to see that healthy people and CHF patients are well separated.

Observing these two statistics, we find that both of them measure the
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Figure 3: CHF * vs Healthy ◦. The x-axis is Statistics 1 and the y-axis is

Statistics 7.

ability of the heart beat to become extremely slower than usual. Our result

shows that the strong adaptability of extremely slower heart beat might be

the irregularity that characterizes the healthy hearts.

3.4.1 Reliability of the top features

We have found that the most relevant features are statistics for the “outliers”,

i.e., those items larger than mean plus two times standard deviations, or items

less than mean minus two times standard deviations for IMFs. A natural

question arises: “Is this accidental?” This is equivalent to ask whether the

outliers taken into account are noise or informative.

In order to answer this question we further analyze these outliers. Firstly

we notice that the up and down fluctuations are not balanced for both healthy

people and CHF patients. The percentage of items larger than mean plus two

times standard deviation for healthy people is 2.84% and those items smaller

than the mean minus stand deviation is only 2.35%. For CHF patients the
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percentages are 2.49% and 2.17%, respectively. This observation is the first

evidence that outliers are not due to noise because otherwise they should be

balanced distributed. Moreover, recall for normal distribution the percentage

of one-side outliers outside the two times standard deviation is 2.28%. We

see the outliers for CHF is closer to it due to noise while those for healthy

people are much more and probably due to not only noise and hence are

informative.

To further confirm our conclusion, we do the following test: we calculate

the statistics for the items larger than the mean plus v times standard devia-

tion with the variable v changes from 0 to 2 and investigate their correlation

to the CHF disease. Here we consider three quartile of the 50 standard devia-

tions of these items in the 50 components. The correlation is plotted in Figure

4. From this analysis, we see the correlation increases with v. Such a trend

appears also in other statistics. This clear trend implies that the relevancy

between these statistics and the CHF disease is not accidental. Instead, we

should consider the outliers informative and their properties characterize the

essence difference between healthy people and CHF patients.

4 Conclusions and discussions

In this paper we developed a new approach for the analysis of the physio-

logical times series. The motivation comes from that the physiological times

series usually contains both deterministic and stochastic parts and they can

be represented by the low and high frequency components of the times se-

ries. Our new method uses an iterative filter to realize the decomposition
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Figure 4: Corrections of the statistics described in Section 3.4.1 with v vary-

ing from 0 to 2.

of the times series into high and low frequency components and study their

statistics. SVM-RFE is then used to select highly relevant features.

Our method is applied to analyze the heart beat interval time series for

CHF disease. The top features are found to measure the ability of heart to

beat extremely slowly. Healthy heart show strong ability which we conjecture

are due to the strong resilience to the environment and human activities.
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