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Abstract

Degenerate Unmixing Estimation Technique (DUET) is a technique for blind source separation

(BSS). Unlike the ICA based BSS techniques, DUET is a time-frequency scheme that relies on the so-

called W-disjoint orthogonality (WDO) property of the source signals, which states that the windowed

Fourier transforms of different source signals have statistically disjoint supports. In addition to being

computationally very efficient, one of the advantages of DUET is its ability, at least in some cases, to

separate n ≥ 3 source signals using only two mixtures. However, DUET is prone to phase wrap-around

aliasing, which often leads to incorrectly separated sources with artifacts and distortions. This weakness

severely limits the effectiveness of WDO and DUET as a robust tool for BSS. In this paper we present a

method for correcting the phase wrap-around aliasing for WDO based techniques such as DUET using

over-sampled Fourier transform and modulo arithmetic. Experimental results have shown that this phase

aliasing correction method is very effective, yielding a highly robust blind source separation for speech

mixtures.

Index Terms

Blind source separation (BSS), W-disjoint Orthogonality (WDO), Degenerate Unmixing Estimation

Technique (DUET), convolutive mixtures, over-sampled Fourier transform, phase wrap-around aliasing.

I. INTRODUCTION

Blind source separation (BSS) is a major area of research in signal processing with a vast literature.

It aims to separate source signals from their mixtures without assuming detailed knowledge about the
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sources and the mixing process. A major focus of BSS is the separation of audio signals. The basic

setup for BSS in audio has n audio sources S1(t), . . . , Sn(t) and m mixtures X1(t), . . . , Xm(t), with

the model

Xk(t) =
n∑
i=1

Nk,i∑
j=1

ak,i,jSi(t− dk,i,j), k = 1, . . . ,m (I.1)

where ak,i,j are the mixing coefficients and dk,i,j are the delays as a result of reverberations. In BSS

these coefficients are unknown. With the presence of reverberations we often refer the mixtures Xk in

(I.1) as convolutive mixtures. The anechoic model assumes no reverberation in the mixtures, and thus it

yields a much simpler model

Xk(t) =
n∑
i=1

ak,iSi(t− dk,i), k = 1, . . . ,m. (I.2)

The bulk of the studies in BSS employ the independent component analysis (ICA) model, where the

source signals Sk, modeled as random variables, are assumed to be independent, see the surveys [4],

[9] and the references therein for more details. Under the ICA model, many techniques such as Joint

Approximate Diagonalization Eigenmatrices (JADE) [3] and Information Maximization (Infomax) [2], [5]

along with their refinements have been developed (e.g. [6], [8]). These techniques use the kurtosis or the

information optimizations to find the mixing coefficients and the delays. In many cases they yield excellent

results: Clean separation with negligible distortion. They also have some limitations. For example, in the

ICA model the sources must be non-Gaussian. When 4th order statistics are used, small perturbations to

the tail part of the distribution can yield large errors, which makes kurtosis based techniques less robust.

With information optimization based algorithms there is often no guarantee that the iterative schemes

converge to the global optimum. In fact for many schemes there is not even any guarantee that they

converge at all. Thus the performance of these schemes can vary significantly from one set of data to

another. There have been many attempts to address these problems (see e.g. [9], [14], [11], [12]), with

varying degrees of success.

A different approach to BSS uses the time-frequency orthogonality property of the source signals, the

so-called W-Disjoint Orthogonality (WDO) [10], [16], [17]. One of the advantages of WDO is that it

can be used for BSS in the degenerative setting where there are more source signals than mixtures, i.e.

n > m. The Degenerate Unmixing Estimation Technique (DUET) allows for the reconstruction of many

sources from only two mixtures under the WDO assumption. DUET is also extremely fast, making it

very suitable for both batch and dynamic source separation. There is an extensive literature on BSS using

WDO, DUET as well as related schemes, some additional ones can be found in [21], [1], [20], [19], [7],

[13], [18].
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However, WDO and DUET are not without flaws. The setup of DUET is in an anechoic model, which

raises questions about its effectiveness in a typical echoic setting. Our experiments seem to indicate

that it handles echoic environment quite well, although more mathematical analysis is needed to better

understand this. Another major flaw of DUET is the phase wrap-around aliasing. As we shall see, in

DUET the time-frequency decompositions of the blind source estimates depend on attaining correctly

certain phase values from the windowed Fourier transform of the mixtures. But because the phase values

are bounded in the interval (−π, π] correct phase values often cannot be obtained given the phase wrap-

around aliasing. This means whenever wrap-around occurs the phase values are incorrect. This failure

leads to incorrect time-frequency decompositions in DUET (even though the mixing coefficients and

delays may be accurately estimated from low frequency content of the mixtures). Depending on the

severity of the problem it can often lead to poor results in the form of uncleanly separated sources

with distortion and artifacts. For WDO based BSS techniques such as DUET to work consistently the

microphones must be placed very close together (say within 2-5 centimeters).

The main contribution of this paper is to provide a phase wrap-around aliasing correction method. This

method will allow us to greatly improve the accuracy and performance of WDO based BSS techniques

even with phase wrap-around. The key ingredients for this phase aliasing correction method are the over-

sampled Fourier transform and simple modulo arithmetic. Incorporating this phase aliasing correction

mechanism to DUET yields high quality separation of source signals in real world audio mixtures, and

furthermore as we demonstrate it is extremely robust.

II. W-DISJOINT ORTHOGONALITY AND DUET

Given a windowing function W (t) and a function f(t), the windowed Fourier transform of f with

window W is defined by

f̂W (ω, τ) :=
∫

R
W (t− τ)f(t)e−iωt dt. (II.3)

We call two functions S1(t) and S2(t) W-disjoint orthogonal if the supports of the windowed Fourier

transforms of ŜW1 (ω, τ) and ŜW2 (ω, τ) are disjoint. In other words we have

ŜW1 (ω, τ) · ŜW2 (ω, τ) = 0 (II.4)

for all ω and τ . If any two functions in S1(t), . . . , Sn(t) satisfy the WDO property then we say

S1(t), . . . , Sn(t) satisfy the WDO property.

There is strong evidence that W-disjoint orthogonality is satisfied approximately for a large class of

window functions W when the source functions Si are speeches by different individuals, see e.g. [17].
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The success of DUET is also a strong indirect evidence that WDO holds for speech and some other

forms of audio signals. To see how WDO leads to DUET consider the anechoic model (I.2) with m = 2

and the constant window function W (t) = 1. In this anechoic model we have

X1 =
∑n

k=1 a1kSk(t− d1k),

X2 =
∑n

i=k a2kSk(t− d2k).

Note that by normalization we may without loss of generality assume that all a1k = 1 and d1k = 0. Thus

we have
X1 =

∑n
k=1 Sk(t)

X2 =
∑n

k=1 akSk(t− dk).
(II.5)

With W (t) = 1 we have

X̂W
1 (ω, τ) =

∑n
k=1 Ŝ

W
k (ω, τ),

X̂W
2 (ω, τ) =

∑n
k=1 ake

−idkωŜWk (ω, τ).

Now assume that the source functions Sk(t) satisfy the WDO property. It follows that for any given ω

the function

F (ω, τ) :=
X̂W

2 (ω, τ)

X̂W
1 (ω, τ)

(II.6)

can only take values in the finite set {ake−idkω : 1 ≤ k ≤ n}. This observation forms the basis for

DUET. More precisely, define the amplitude-phase function

Λ(ω, τ) :=
(
|F (ω, τ)|,−ω−1Θ(F (ω, τ))

)
, (II.7)

where Θ(z) denotes the angle of z, −π < Θ(z) ≤ π. Assume there is no phase wrap-around in

Θ(F (ω, τ)). Then the function Λ only takes values in the finite set {(ak, dk) : 1 ≤ k ≤ n}. We

may now compute each ŜWk (ω, τ) via the following assignment algorithm

ŜWk (ω, τ) =

 X̂W
1 (ω, τ) if Λ(ω, τ) = (ak, dk)

0 otherwise.

The DUET reconstruction of the source signals Sk is now easily achieved from their windowed Fourier

transforms ŜWk (ω, τ) using standard techniques.

Although in practice the window function W is often taken to be a bell-shaped function such as the

Hamming window instead of a constant function, the above method for reconstructing the source signals

Sk as an approximation is still quite effective and often yields good results. Instead of taking exactly n

values {(ak, dk) : 1 ≤ k ≤ n}, the range of the amplitude-phase function Λ(ω, τ) is now concentrated

at these values. The histogram of Λ should shows n peaks at these points on the amplitude-phase plane.
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A clustering algorithm is used for assigning X̂W
1 (ω, τ) to each ŜWk (ω, τ) based on WDO. A simple yet

effective clustering algorithm is to first identify the n peaks in the histogram. They are assumed to be

the points {(ak, dk) : 1 ≤ k ≤ n}. Then for each (ω, τ) we assign X̂W
1 (ω, τ) to ŜWk (ω, τ) if (ak, dk) is

the closest to Λ(ω, τ).

The analysis above assumes that Θ(F (ω, τ)) = Θ(e−idkω) = −dkω. However, this is no longer true if

|dkω| > π as a result of phase wrap-around. Once this happens we may not obtain the correct assignment

and hence the correct reconstruction of the source signals.

III. PHASE WRAP-AROUND ALIASING CORRECTION FOR DUET

As we have mentioned, one of the major problems of DUET is the phase wrap-around, which results in

faulty assignments in computing the functions ŜWk (ω, τ). This may lead to poor separation of the source

signals as well as distortions and artifacts. We illustrate this problem with a simple example. Assume

that

X1 = S1(t) + S2(t), X2 = S1(t− 5) + S2(t+ 3).

The amplitude-phase function Λ(ω, τ) defined in (II.7) is now either (1,−ω−1Θ(e−i5ω)) or (1,−ω−1Θ(ei3ω)).

However, if |ω| > π
5 then Θ(e−i5ω) 6= −5ω because of the phase wrap-around and −π < Θ(z) ≤ π for

all z. Similarly, if |ω| > π
3 then Θ(ei3ω) 6= 3ω. Thus Λ(ω, τ) no longer takes only two values. Instead

the phase component of Λ(ω, τ) is virtually arbitrary when |ω| > π
3 , leading to faulty assignments in

the reconstruction. As we can see, the larger the di, the fewer percentage of assignments will be correct,

which leads to poorer separation. In the above example, only when |ω| < π
5 we can be sure that the correct

assignments are made. In other cases we might just as well toss a coin for each assignment. One solution

to avoid the wrap-around problem is to place the microphones very close so that the delays di are small.

There is frequently technical restrictions for doing so. For example, with 16kHz sampling frequency one

would need the microphones to be within 2.2 centimeters to ensure |di| ≤ 1. Depending on the models,

microphones often cannot be placed this close. For speech separation, since human speech has a rather

narrow frequency range, the 16kHz sampling frequency represents a considerable over-sampling. Thus

even with |dj | slightly greater than 1 the separation using DUET can still be quite good. However, as we

shall demonstrate in the next section, the performance of DUET deteriorate rather quickly as we move

the microphones further apart.

We propose a method for correcting the phase wrap-around problem. The key ingredient is a revised

amplitude-phase function that makes effective use of the continuity of the Fourier transform. Using the

continuity of Fourier transform to solve the aliasing problem in DUET was first proposed by Rickard in
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[15], although no experimental details were given there. Our approach differs slightly from that of [15] by

using modulo arithmetic and over-sampled Fourier frame expansion. Furthermore, we shall demonstrate

the effectiveness of our approach using extensive tests on synthetic mixtures as well as real life speech

recordings. The revised amplitude-phase function Λ(ω, τ), replacing the original amplitude-phase function

Λ(ω, τ), yields a much more accurate assignment scheme for obtaining ŜWk (ω, τ) from X̂W
1 (ω, τ), leading

to superior performance in DUET.

Assume that WDO holds for the source signals S1, . . . , Sn. Consider at a point ω = ω0. Our approach

relies on an assumption of continuity: if we have X̂W
1 (ω0, τ) = ŜWk (ω0, τ) then more likely we also have

X̂W
1 (ω0 + ε, τ) = ŜWk (ω0 + ε, τ) when ε > 0 is small. Like the WDO, the validity of this assumption

needs to be further analyzed mathematically. Indirect evidence for its validity can be seen from the

improvement of our phase aliasing correction provides for DUET, which we present in the next section.

Let us set ε = 2π/M where M is a large positive integer. Hence the function F (ω, τ) defined by (II.6)

satisfies

F (ω0, τ) = ake
−idkω0 , F (ω0 + ε, τ) = ake

−idk(ω0+ε).

Now
−dkω0 −Θ(F (ω0, τ)) ≡ 0 (mod 2π),

−dk(ω0 + ε)−Θ(F (ω0 + ε, τ)) ≡ 0 (mod 2π).

It follows that

dkε ≡ Θ(F (ω0, τ))−Θ(F (ω0 + ε, τ)) (mod 2π).

With ε = 2π
M we have

dk ≡
M

2π

(
Θ(F (ω0, τ))−Θ(F (ω0 +

2π
M
, τ))

)
(mod M ).

Note that once we know the bound for dk this uniquely determines dk when M is sufficiently large. An

alternative but equivalent perspective is that under the assumption of continuity, −dk is the derivative

of Θ(F (ω, τ)) (after the obvious correction of aliasing discontinuity) with respect to ω. Finding dk via

(III.8) amounts to computing −∂Θ(F (ω0, τ))/∂ω by first order forward difference, i.e.

dk ≡ D1(ω, τ, ε) :=
1
ε

(
(Θ(F (ω0, τ))−Θ(F (ω0 + ε, τ))

)
(mod M ) (III.8)

with ε = 2π
M . This forward difference yields only a first order approximation of the derivative. So

naturally we may also consider higher order differences to approximate the derivative for potentially

better performace. One candidate is the second order difference

dk ≡ D2(ω, τ, ε) :=
1
2ε

(
Θ(F (ω0 + ε, τ))−Θ(F (ω0 − ε, τ)

)
(mod M ) (III.9)
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and the five-point approximation

dk ≡ D3(ω, τ, ε) :=
1

12ε

(
−Θ(F (ω0+2ε, τ))+8Θ(F (ω0+ε, τ))−8Θ(F (ω0−ε, τ))+Θ(F (ω0−2ε, τ)

)
(mod M ).

(III.10)

The modified amplitude-phase function Λ(ω, τ) is now defined by

Λ(ω0, τ) :=
(
|F (ω0, τ)|, D(ω0, τ, ε)

)
, (III.11)

with ε = 2π
M and D can be any of the derivative approximation functions such as D1, D2, D3 defined

above.

Of course, in practice one uses discrete windowed Fourier transforms, which are computed via FFT.

Assume that the size of window (the support of the window function W in this case) is N . Then the

variable ω takes on values 2πm
N where −N

2 < m ≤ N
2 in DUET. With our method, the FFT is being

replaced with an over-sampled FFT. Instead of computing FFT on the size N data gτ (t) := W (t−τ)Xi(t)

we compute the M -point FFT of g̃τ (t) that we obtain by padding M −N zeros to gτ (t). The integer M

is substantially larger than N . We choose M = pN for some integer p ≥ 1. A good balance between

performance and computational demand (mainly memory demand) is 3 ≤ p ≤ 5. The over-sampled

discrete Fourier transform is equivalent to the harmonic frame transform familiar to the study of tight

frames. With the over-sampled FFT the variable ω now takes on values 2πm
pN where −pN

2 < m ≤ pN
2 .

Since these data are redundant, for the reconstruction of the source signals in DUET only a portion of

the data where ω = 2πpm
pN = 2πm

N for −N
2 < m ≤ N

2 are needed. The modified amplitude-phase function

Λ(ω, τ) defined in (III.11) now utilizes the over-sampled FFT in place of the Fourier transform.

IV. EXPERIMENTAL RESULTS

We present several experimental examples using both synthetic mixtures and real world recordings.

All our real recordings were done in ordinary rooms with moderate reverberations. Although in theory

DUET is based on anechoic model only, it actually works in practice for echoic settings. In fact, after

addressing the phase wrap-around aliasing using our method it is an extremely robust technique for audio

BSS.

Example 1. We first show the result using synthetic mixtures. The two source signals S1, S2 are two

downloaded radio recordings at 16kHz sampling rate. They are artificially mixed using

X1(t) = S1(t) + S2(t), X2(t) = 0.9S1(t− 8) + 1.1S2(t+ 10).
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Fig. 1. Histograms of Λ(ω, τ) (left) and Λ(ω, τ) (right) from artificial mixtures of two speech sources. With phase aliasing

correction the histogram on the left shows two sharp peaks at the desired locations. However, without the correction the histogram

on the right has at least three peaks, with the peak in the middle being an artifact of the wrap-around aliasing.

Figure 1 shows that using the phase aliasing correction the histogram of the amplitude-phase function

Λ(ω, τ) has two very clear peaks at the desired locations, while the histogram of the original amplitude-

phase function Λ(ω, τ) without phase aliasing correction looks rather ambiguous, with a large “mountain”

in between the two correct peaks.

Example 2. Here we have a real recording of mixed speeches by two speakers. The two mixtures are

recorded in a medium sized room with moderate amount of reverberation. A pair of inexpensive omni-

directional microphones (about $13 apiece) are used for the recording, and they are placed 12cm apart.

Using the phase aliasing correction the histogram of the amplitude-phase function Λ(ω, τ) (Figure 2 left)

shows two very clear peaks. The separated signals have very little distortion and artifacts. The mixtures

and the separated signals are plotted in Figure 3. On the other hand, without the phase aliasing correction

the histogram of the amplitude-phase function Λ(ω, τ) (Figure 2 right) shows three peaks, in which the

largest peak in the middle is a false one. The separated signals show distortion and artifacts.

One may have noticed that the two peaks in this example are no longer as sharp as the two peaks in

the previous example. Actually, a huge difference between real recordings and artificial mixtures is that

in real recordings the peaks are not nearly as sharp, even when the recording is done in an anechoic

environment. Reverberations will further reduce the sharpness of the peaks. However, our tests have

shown that for two-speaker mixtures, when the phase wrap-around aliasing correction is used, even with

strong reverberation and inexpensive microphones the algorithm works very well, and it is surprisingly

robust. In fact, when the microphones are placed between 5cm to 25cm, we have not had any failures.

Example 3. Here we show the result from a degenerative case, where we have two mixtures of three

speech sources. The mixtures are created artificially via the following formula:

X1(t) = S1(t) + S2(t) + S3(t), X2(t) = 1.1S1(t+ 4) + S2(t) + 0.9S3(t+ 9).
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Fig. 2. Histograms of Λ(ω, τ) (left) and Λ(ω, τ) (right) from a real recording.
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Fig. 3. Top two plots: real recording of two-speaker mixtures. Bottom two plots: separated sources using DUET with phase

aliasing correction.

Again, using phase aliasing correction the histogram of the amplitude-phase function Λ(ω, τ) has three

very sharp peaks at the desired locations (Figure 4 left), while the histogram of the original amplitude-

phase function Λ(ω, τ) without phase aliasing correction looks more ambiguous (Figure 4 right). Indeed,

the ability to separate more than two sources from only two mixtures is one of the great strengths of

DUET. In our tests involving three sources, DUET (with or without phase aliasing correction) separates

out consistently one source, very often two sources, and only occasionally all three sources. It is possible

that others have different experiences. One possible remedy for this problem is using more than two

microphones, and modifying DUET so that such additional information can be utilized to improve the

separation performance. Such an algorithm was proposed in [18], and it was demonstrated that having
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Fig. 4. Histograms of Λ(ω, τ) (left) and Λ(ω, τ) (right) from artificial mixtures of three speech sources. With phase aliasing

correction the histogram on the left shows three sharp peaks at the desired locations. Without the correction the histogram on

the right is much more ambiguous.

more mixtures indeed improves the quality of separated sources significantly.

Example 4. In the above examples, we observed that our phase aliasing correction technique results in

significantly improved separation in isolated examples. Next, we run an extensive test on a large number

of synthetic mixtures. We generated mixtures X1(t) = S1(t)+S2(t), X2(t) = S1(t+d1)+0.98S2(t+d2)

where S1 and S2 are 10-second speech signals obtained from downloaded radio recordings, sampled at 16

kHz. In these mixtures, we fixed d2 = −2 and we varied d1 from 1 to 60. From each mixture, we computed

the estimated sources Sj (i) using DUET (no phase aliasing correction), and (ii) using the proposed phase

aliasing correction method with the derivative estimators D1, D2, D3 shown in (III.8),(III.9), and (III.10),

each with no over-sampling rates p = 1 (i.e., no oversampling), p = 3, and p = 5. In each case we repeated

the experiment with 10 different source pairs S1 and S2, and compute the resulting signal-to-noise-ratio

via

SNRj = 20 log10

(
‖Sj‖2/‖Sj − Sj‖2

)
, j = 1, 2.

The average SNR corresponding to each method is reported in Figure 6 and Figure 7.

Assuming that the speed of sound is c = 343m/s, one sample delay corresponds to a microphone

distance no less than 2.14cm. Furthermore, note that, assuming the speech signals have a bandwidth of 8

kHz, their Fourier transforms will be full band when sampled at 16 KHz (which is indeed the case – see

Figure 5). In this case, phase aliasing will occur whenever the time delays dj are greater than 1 sample.

Indeed, as seen, e.g., in Figure 6, the separation performance of DUET (where no phase wrap aliasing

correction is done) deteriorates rapidly for both sources when d1 is increased from 1 to 60. In fact, for

d1 > 7, the estimated mixtures have very poor quality, and are sometimes unintelligible. With phase

aliasing correction, on the other hand, the performance improves significantly (almost by 6 dB) , and

even when d1 = 60, which corresponds to a microphone distance of more than 128cm, both estimated
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Fig. 5. FFT of a sample speech signal that was used in Experiment 4.
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Fig. 6. Average SNR for the estimated source S1 over 10 experiments per data point. We implemented the phase aliasing

correction method with over-sampling rates p = 1, 3, 5. “Diff=0” in the legend means that the derivative estimates were obtained

via (III.8).

sources are intelligible and still without any major artifacts.

We finish this section by commenting on the effect of oversampling and the use of higher order

derivative estimates. As seen in Figure 6, for relatively small values of d1, e.g., d1 < 10, oversampling

bears no benefit (in fact the SNR values corresponding to p > 1 are slightly lower when d1 is in this range).

On the other hand, if the microphone distance is large, i.e., when d1 > 20, the separation performance

improves by almost 2 dB when we use p = 3 or p = 5 (no major difference in performance for these

two values of p, so we propose to use p = 3 as this is computationally less expensive). Finally, using

higher-order derivative estimates do not seem to make a significant difference in separation performance,

see Figure 7.

V. CONCLUSION

DUET is a technique for blind source separation based on the W-disjoint orthogonality. It is a simple

and fast algorithm that can easily be used for dynamic separation of source signals from mixtures. A major

problem with DUET is the phase wrap-around aliasing that may lead to inaccurately separated sources
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Fig. 7. Average SNR for the estimated source S1 over 10 experiments per data point. We fix the over-sampling to p = 3

and compare different derivative estimates. “Diff=0,1,2” in the legend means that the derivative estimates were obtained via

(III.8),(III.9), and (III.10) respectively.

with distortions and artifacts. In this paper we have presented a method based on over-sampled FFT and

simple modulo arithmetic to effectively overcome the phase wrap-around aliasing. This substantially

improves the performance of DUET for blind source separation. Tests on real recordings of audio

mixtures in moderately echoic environments have shown extremely robust performance and excellent

source separation. One of the main advantages of DUET is that supreme results can be obtained for blind

audio separations by placing the the microphones for recordings very close together (as close as 3cm).

ACKNOWLEDGMENT

The authors would like to thank Radu Balan for very stimulating discussions on DUET and its recent

developments. The authors would also like to thank Ser Wee, Sean Wu and Na Zhu for their helpful

discussions. Yang Wang’s research is supported in part by the National Science Foundation, grants DMS-

0813750 and DMS-0936830. Yılmaz’s work was supported in part by a Natural Sciences and Engineering

Research Council of Canada Discovery Grant.

REFERENCES

[1] R. Balan and J. Rosca. Sparse source separation using discrete prior models. In Proceedings of Signal Processing with

Adaptative Sparse Structured Representations Workshop (SPARS05).

[2] A.J. Bell and T.J. Sejnowski. An information-maximization approach to blind separation and blind deconvolution. Neural

Computation, 7(6):1129–1159, 1995.

[3] J.F. Cardoso and A. Souloumiac. Blind beamforming for non Gaussian signals. IEE Proceedings F, 1993.

[4] S. Choi, A. Cichocki, H.M. Park, and S.Y. Lee. Blind source separation and independent component analysis: A review.

Neural Information Processing-Letters and Reviews, 6(1):1–57, 2005.

[5] A. Cichocki and S. Amari. Adaptive blind signal and image processing: learning algorithms and applications. Wiley,

2002.



IEEE TRANSACTION ON SIGNAL PROCESSING 13

[6] S.C. Douglas and M. Gupta. Scaled natural gradient algorithms for instantaneous and convolutive blind source separation.

In Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, Apr 2007, pp. II-637–II-640.

[7] E. Hoffmann, D. Kolossa, and R. Orglmeister. A Batch Algorithm for Blind Source Separation of Acoustic Signals Using

ICA and Time-Frequency Masking. Lecture Notes in Computer Science, 4666:480–487, 2007.

[8] A. Hyvärinen and E. Oja. A fast fixed-point algorithm for independent component analysis. Neural Computation, 9(7):1483–

1492, 1997.

[9] A. Hyvärinen and E. Oja. Independent component analysis: algorithms and applications. Neural Networks, 13(4-5):411–430,

2000.
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[18] R. Saab, Ö. Yılmaz, M. McKeown, and R. Abugharbieh. Underdetermined Anechoic Blind Source Separation via `q-

Basis-Pursuit with q < 1. IEEE Transactions on Signal Processing, 55(8):4004–4017, 2007.

[19] R. Sukegawa, S. Uchida, T. Nagai, and M. Ikehara. Blind source separation using correlation at neighboring frequencies.

In Proceedings of International Symposium on Intelligent Signal Processing and Communications, Dec 2006, pp. 451–454.

[20] M. Swartling, N. Grbic, and I. Claesson. Direction of arrival estimation for multiple speakers using time-frequency

orthogonal signal separation. In Proceedings of IEEE International Conference on Acoustic, Speech and Signal Processing,

May 2006, pp. IV-833–IV-836.
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