
MULTISCALE TOTAL VARIATION AND MULTISCALE ANISOTROPIC
DIFFUSION ALGORITHMS FOR IMAGE DENOISING

TONY CHAN, YANG WANG, AND HAOMIN ZHOU

Abstract. As digital photography rapidly replacing the traditional film photography
as the photography of choice for all but a few devoted professionals, post processing to
enhance images such as denoising becomes increasingly an integral part of digital photog-
raphy. In this paper we propose the multiscale total variation (MTV) and the multiscale
anisotropic diffusion (MAD) algorithms for denoising. Both methods offers more flexibility
than the classical TV method and the related anisotropic diffusion method. We shall dis-
cuss the algorithms as well as their implementation in details. An advantage of the MTV
and the MAD methods is that an automatic stopping criterion can easilt be implemented
to prevent over-processing of an image. We also raise several mathematical questions.

1. Introduction

The advent of digital imaging technologies such as digital cameras, video recorders and

medical imaging devices such as MRI has changed our ways of life. Today technologies

continue to evolve. The digial cameras and medical imgaing devices such as MRI continue

to improve in terms of resolution and performance. On the other hand, as technologies

continue to improve, consumers and patients come to expect ever more in terms of image

quality. Ironically what we expect in technologies can often be contradictory. For example,

as we demand more resolution in images more pixels must be packed into a sensor of a given

size, which will lead to more noise in captured images. Thus to meet the expectations image

denoising becomes an important challenge in digital photography and medical imaging.

Noise in images can present problems depending on the applications. For medical images

noise can mask and blur important but subtle features in the images; for photography noise

is a nuisance in terms of visual effect, and can ruin an otherwise memorable shot. Denoising
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of an image, however, poses challenges of its own. Most cameras have built-in denoising

algorithms that often perform very poorly with soft edges and smeared out details. Post

processing denoising can be more effective, but similar problems remain.

Denoising methods for monochramatic images can essentially be classified into four cat-

egories: neighborhood filters, frequency domain methods, variational PDE based methods

and non-local methods. The most commonly used neighborhood filters include blurring

filters, median filter or variations of it, and others such as the filters described in [32, 33].

Neighborhood filters are easy to implement and fast, and in some applications they can be

effective, although in general their effectiveness is limited. In frequency domain methods

a wavelet, DCT or other type of transformations is first performed. A filter is then ap-

plied to the transformation. The most common frequency domain method is the wavelet

thresholding. The wavelet thresholding method assumes that noise appear in the wavelet

transformation as small nonzero coefficients in the high frequency range and sets them to

zero. The wavelet thresholding method is very effective in removing noise, and very fast. It

is still perhaps the best “quick and dirty” denoising scheme. However, it suffers from Gibbs

oscillations at discintinuities. These oscillations can be reduced, although not eliminated,

by using soft wavelet thresholing [16, 17] and translational invariant wavelet thresholding

[13]. Other generalizations use curvelets [3] and framelets [7]. In particular the method of

iterating soft thresholded images using framelet representations in [7] is effective in remov-

ing the Gibbls oscillations. Methods that are not PDE based and do not fit the description

of the other two, including some statistical methods, can be classified as non-local denoising

methods, see e.g. [2, 31, 20, 25]. These methods are typically slower, and some of them

assume certain statistical properties are known. Given the right images, non-local methods

can yield excellent results. A particular kind of non-local method, developed in [2], works

well for images with repeat patterns or large homogeneous areas, see also [20, ?, ?, ?]. But

in our tests on general images the success is more limited.

In this paper we propose the multiscale total variation (MTV) algorithm for image de-

noising, which has its root in the classical total variation (TV) scheme pioneered by Rudin,

Osher and Fatemi [26]. Before discussing in details of the MTV algorithm we first describe

denoising based on variational principles and PDE techniques. We start with a standard
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noisy monochromatic image model

(1.1) z(x) = u0(x) + n(x),

where z(x), u0(x) and n(x) are real valued functions defined on Ω ⊂ R2, where Ω is a

finite domain such as a rectangle. The function u0(x) denotes the underlying noise-free

image, z(x) the observed image, and n(x) the noise. In our general model, we assume that

z(x), u0(x) and n(x) are in some space of functions F , such as L2(Ω) or C1(Ω). With a

variational PDE based denoising method, the denoised image is the minimizer of certain

energy functional E(u). Typically E(u) can be written as

(1.2) E(u) = D(u, z) +R(u),

where D(u, z) denotes the “distance” between u and observed image z, and R(u) is a regu-

larization term that smoothes out the image. The idea of using variational method described

here has been around for some time. In most cases the distance D(u, z) is taken to be the

L2 distance D(u, z) =
∫

Ω(u− z)2. Earlier efforts focused on least square based functionals

R(u)’s such as ‖∆u‖22, ‖∇u‖22 and others. While noise can be effectively removed, these

regularization functionals penalize discontinuity, resulting in soft and smooth reconstructed

images, with subtle details lost. This is not acceptable in digital photography, as photogra-

phers often place premium emphasis on sharpness. The innovation of the total variational

(TV) scheme by Rudin, Osher and Fatemi [26] is to set R(u) to be the total variation∫
Ω |∇u| of u. With the total variation regularizer, extensive studies have shown that it does

not penalize edges in u, thus it allows for sharper reconstructions, see e.g. [1, 6, 9, 15].

Among all the variational PDE based techniques, the TV minimization scheme offers one

of the better combinations of noise removal and feature preservation.

It is easy to show that the TV minimization scheme leads to solving the PDE

(1.3) ∇ ·
( ∇u
|∇u|

)
− λ(u− z) = 0.

But in practice, one introduces the time variable t and solve for u(x, t) by time-marching

the equation

(1.4) ut = ∇ ·
( ∇u
|∇u|

)
− λ(u− z) = 0, u(x, 0) = z(x).

The end result u(x, T ), if T is large enough, will have noise removed or reduced. In essence

the time-marching by (1.4) is to use gradient flow to minimize the energy E(u). An impor-

tant attribute of the TV minimization scheme is that it takes the geometric information
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of the original images into account, in that it does not penalize edges. On the contrary,

significant edges are sharpened. This is similar to the anisotropic diffusion methods, see [?].

See also [28] and the references therein.

2. Multiscale Total Variational Method for Image Denoising

The TV minimization scheme has its own weaknesses. It is well known that when (2.4)

is left running for too long a denoised image will tend to become a cartoon-like piecewise

constant image, wiping out all subtle details [22, 24]. With a more gentle run, one may not

remove enough noise. For optimal results it is important to have an automatic stopping

criterion. This is difficult to do. Although there are some attempts in this direction [19, 23,

30], some properties of the noise (such as the variance) are assumed to be known, which is

not entirely realistic for natural color photos.

A modified version of the TV denoising scheme based on wavelets was introduced in Chan

and Zhou [12]. Using this scheme, Wang and Zhou [29] devised an automatic stopping

criterion for the time-marching process (2.4). This criterion works surprisingly well in

experiments, see [29] for a detailed discussion. In this paper we propose a couple of new

methods based on the wavelet TV denoising scheme. The cartoon-like tendency in the

standard TV method is a result of excessive diffusion of low frequency features in an images.

The new methods, which we call Multiscale Total Variation (MTV) and the Multiscale

Anisotropic Diffusion (MAD) algorithms, will concentrate the diffusion on high frequency

features where the noise resides. Our tests illustrate that the MTV and the MAD methods

are highly effective. Comparing to the standard TV or wavelet TV method, the two methods

require fewer number of iterations to obtain comparable or better results. Figure ?? shows

some comparisons.

To see how MTV and MAD algorithms work, let {ψj : j ∈ I} be an orthonormal or

biorthonormal wavelet basis for L2(Ω) such as those found in [14, 27]. So we may expand

any f(x) as

f(x) =
∑
j∈I

cjψj(x),

for some real (cj). In practice, we have always used the biorthonormal 7-9 wavelet basis as

our basis {ψj}. (The conventional notation uses two sub-indices to denote a wavelet basis.

Here we use only one for brevity. There should not be any confusion.) Now expand the
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observed image function z(x) using the basis {ψj(x)},

z(x) =
∑
j∈I

αjψj(x).

Let

(2.1) u(x,β) :=
∑
j∈I

βjψj(x)

where β = (βj). Now we set the distance functional D(u, z) to be

(2.2) D(u, z) :=
∑
j∈I

λj(βj − αj)2,

where λj > 0. The key feature is that λj decreases as the scale becomes more localized.

More precisely, we use smaller values λj for high frequency terms and larger values for lower

frequency terms. The term R(u) remains to be the total variation. Thus the MTV method

is to find the minimizer of the energy functional

(2.3) EMTV (u, z) :=
∑
j∈I

λj(βj − αj)2 +
∫

R2

|∇xu(x,β)| dx.

where u = u(x,β). The idea is that since λj are smaller for high frequency terms the

smoothing is done mostly on high frequency features. The goal of denoising is to minimize

F (u, z) and find the minimizer u∗ := u(x,β∗) such that

(2.4) EMTV (u∗, z) = min
β

EMTV (u, z).

One can use simple calculus of variation to obtain the derivative of the objective functional

(2.3). For u = u(x,β) where β = (βj),

∂EMTV (u, z)
∂βj

=
∫

R2

∇xu
|∇xu|

· ∇xψjdx+ 2λj(βj − αj)

= −
∫

R2

∇x ·
[
∇xu
|∇xu|

]
ψjdx+ 2λj(βj − αj).

Then the Euler-Lagrange equation for the model is

(2.5) −
∫

R2

∇x
(
∇xu
|∇xu|

)
ψj(x)dx+ 2λj(βj − αj) = 0.

Alternatively, let µj = (2λj)−1. We may rewrite (2.5) as

(2.6) −µj
∫

R2

∇x
(
∇xu
|∇xu|

)
ψj(x)dx+ (βj − αj) = 0.

In practice, rather than solving the Euler-Lagrange equation (2.5) or (2.6) directly for

denoising, we introduce an artificial time parameter t and time-march the image using
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gradient flow. More precisely, set β = β(t) = (βj(t)). With the Euler-Lagrange equation

(2.5) we solve the following time evolution equation

(2.7)
∂βj
∂t

=
∫

R2

∇x ·
(
∇xu
|∇xu|

)
ψj(x)dx− 2λj(βj − αj), (βj(0)) = (αj).

Alternatively, with equation (2.6) we solve the time evolution equation

(2.8)
∂βj
∂t

= µj

∫
R2

∇x ·
(
∇xu
|∇xu|

)
ψj(x)dx− (βj − αj), (βj(0)) = (αj).

Mathematically, the minimizer for the energy given by (2.3) is the steady state of either

(2.7) or (2.8). However, we often stop the process before the actual minimizer is attained

because, depending on the parameter λj the actual minimizer can be overly smoothed while

noise might be effectively removed long before that. When the process stops before achieving

the steady state, the two time-marching algorithms (2.7) and (2.8) are in fact two different

flows. The results are subtly different as a result.

For simplicity we shall refer the algorithm given by (2.7) as MTV and the algorithm

given by (2.8) as multiscale anisotropic diffusion (MAD). One very interesting phenomeon

we have observed is that the best parameters (λj) for the MTV scheme for a given image do

not necessarily correspond to the best parameters (µj) for the MAD scheme for the same

image. In other words, while (λj) may be good for the MTV scheme, (µj) with µj = (2λj)−1

may not be good for the MAD scheme. In fact, as we show later, the best (µj) for the MAD

scheme may have the opposite characteristics as (2λj)−1. This finding is very surprising,

and we do not have a complete explanation from the mathematical point of view. However,

it does indicate that the denoising process using the time evolution equations stops before

a steady state is reached in general. Another interesting phenomenon we have observed is

that the MAD scheme seems to work better than the MTV scheme in general, often reaching

a comparable level of noise removal with fewer steps. Some comparisons are given in the

examples. Note that the automatic stopping criterion in [29] for the wavelet TV method is

easily applicable to both MTV and MAD algorithms.

Another modification to the MTV and MAD algorithms is to allow the parameters λj
and µj to depend on αj . Rudin [?] has observed that the wavelet soft thresholding scheme

can be improved by fixing some of the largest coefficients in the wavelet expansion. Both

MTV and MAD algorithms can also be improved by allowing the parameters λj and µj to

depend on αj , as shown in our test.
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3. Automatic Stopping Criterion and Examples

As we have stated earlier, one of the advantages of MTV and MAD algorithms is that

there is an effective automatic stopping criterion to stop the time evolution equations (2.7)

and (2.8), and thus prevent the over processing of an image. This automatic stopping

criterion was first proposed in [29]. For self-containment we now describe our automatic

stopping criterion for the denoising scheme with the wavelet basis {ψj : j ∈ I}. (The

conventional notation for wavelet bases use two or more indices, such as {ψjk}. In this

paper we only use one index for conciseness, and there should not be any confusion.) Like

in the wavelet hard thresholding scheme, we first choose a threshold ρ > 0. Let Jρ = {j ∈
ID : |βj(0)| = |αj | ≤ ρ}, where ID ⊂ I is the index set corresponding to the diagonial

portion of the highest frequency wavelet coefficients. Intuitively speaking, as in the wavelet

hard thresholding scheme, the coefficients {βj(0) : j ∈ Jρ} will indicate how noisy the

image is. In a noise-free image these wavelet coefficients will mostly be very close to 0. But

in a noisy image they will be mostly not close to zero. Define µ(t) = 1
|Jρ|
∑

j∈Jρ |βj(t)|. So

µ(t) measures the noise in the image at time t. The key idea is that an automatic stopping

criterion of the time evolution can be designed by measuring the reduction in the value µ(t)

from the orginal value µ(0).

In [29] we have described two different automatic stopping criteria, the relative criterion

and the absolute criterion. Both of these can be adopted to the MTV and MAD scheme.

For the relative automatic stopping criterion, we consider µ(t)/µ(0). We will stop the time

evolution whenever this value goes below a threshold b. For example, we may set b = 0.1.

This threshold intuitively says that we stop the time evolution when we have reduced noise

by 90%. For the absolute automatic stopping criterion, we stop the time evolution if µ(t)

drops below a threshold c. Since in a noise-free image we expect µ(t) to be very close to

zero, it is reasonable to set an absolute threshold for µ(t) to achieve a desired denoising

effect.

In the actual implementation the value ρ does not seem to affect the automatic stopping

time sensitively. We usually take ρ = 2
|ID|

∑
j∈ID |αj |. Both the relative criterion and the

absolute criterion work well, although we typically use the relative criterion. For an image

with moderate noise we set the threshold b to be between 0.05 and 0.1. In more noisy cases

such as the one in Figure ??, we use smaller threshold b around 0.03. It should be pointed
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out that we have tested the automatic stopping time criterion on a number of noisy color

images as well as monochromatic medical images. The thresholds for optimal performance

stayed remarkably consistent. This is an important attribute for batch processing medical

images.
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