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Abstract. Spectral tetris is a flexible and elementary method to derive unit norm frames
with a given frame operator having all of its eigenvalues ≥ 2. One important application of
this method is to construct fusion frames. We will give necessary and sufficient conditions
for a spectral tetris construction to give a fusion frame with prescribed eigenvalues for its
fusion frame operator and with prescribed dimensions for its subspaces. This answers one
of the major open problems in this area. We then generalize spectral tetris to use building
blocks of size larger than 2 × 2 to construct unit norm tight frames of redundancy smaller
then 2 and use it to derive non-equidimensional tight fusion frames having all eigenvalues
of the fusion frame operator equal to λ ∈ [1, 2).

1. Introduction

A fusion frame is a sequence of subspaces of a Hilbert space and a sequence of weights
so that the sequence of weighted orthogonal projections onto these subspaces sums to an
invertible operator on the space. Fusion frames were introduced in [5] (and refined in [7])
and quickly turned into an industry. The interest in fusion frames comes from their broad
application to problems in distributed processing, sensor networks and a host of other direc-
tions. Fusion frames provide resilience to noise and erasures silience to noise and erasures
due to, for instance, sensor failures or buffer overflows [1, 6, 8, 9]. which may be caused by
sensor failures or buffer overflows, as well as robustness to subspace perturbations [7] which
can happen because of imprecise knowledge of sensor network topology. For fusion frame
applications, we generally need extra structure on the fusion frame such as prescribing the
fusion frame operator or the dimensions of the subspaces - or both.

In this paper we address the question of how to efficiently construct fusion frames with
prescribed dimensions of the subspaces and prescribed eigenvalues of the fusion frame opera-
tor. After reviewing some preliminaries we will in section 3 characterize for which sequences
of eigenvalues (λn)Nn=1 ⊆ [2,∞) and dimensions we can use the elementary spectral tetris
method to construct a fusion frame having those eigenvalues for its fusion frame operator and
having those dimensions for its subspaces and how to construct it. In section 4 we extend
spectral tetris to construct unit norm tight frames of redundancy smaller then 2, i.e. having
all eigenvalues of the frame operator equal to λ ∈ [1, 2). We then use this construction
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to derive non-equidimensional tight fusion frames with all eigenvalues of the fusion frame
operator equal to λ ∈ [1, 2), provided the dimension of the subspaces is bounded by some
constant dependent on the dimension of the ambient space and the sum of the dimensions
of the subspaces.

2. Preliminaries

2.1. Fusion Frames. The synthesis operator of a finite sequence {fm}Mm=1 ⊆ CN is F : CM →
CN given by

Fg =
M∑
m=1

g(m)fm,

i.e. F is the N ×M matrix whose mth-column is fm. The sequence {fm}Mm=1 is a frame if its
frame operator S = FF ∗ satisfies AI ≤ S ≤ BI for some positive constants A,B where I is
the identity on CN . It is a tight frame if A = B. In the case of a tight frame this constant
equals M/N and is also called the tight frame bound or the redundancy of the frame. A unit
norm tight frame is a tight frame {fm}Mm=1 for which ‖fm‖ = 1 for all m = 1, . . . ,M . Unit
norm tight frames provide Parseval-like decompositions in terms of nonorthogonal vectors
of unit norm. If {fm}Mm=1 is unit norm, the operators f 7→ 〈f, fm〉fm arising in the frame
operator

Sf =
M∑
m=1

〈f, fm〉fm

are rank-one orthogonal projections. Fusion frame theory is the study of sums of projections
with weights and of arbitrary rank. In particular, a sequence {Wk, vk}Kk=1 of subspaces of
CN is a fusion frame if the sequence {Pk}Kk=1 of orthogonal projections onto those subspaces
satisfies

AI ≤
K∑
k=1

v2kPk ≤ BI

for some positive constants A,B. It is a tight fusion frame if A = B. Here we will restrict
ourselfs to the case where all weights are equal to one. In this case, the fusion frame operator
is S =

∑K
k=1 Pk. If {fk,d}Dk

d=1 is an orthonormal basis of the range of Pk then

Sf =
K∑
k=1

Pkf =
K∑
k=1

Dk∑
d=1

〈f, fk,d〉fk,d

for all f ∈ CN . This shows that every fusion frame arises from a traditional frame that
satisfies additional orthogonality requirements. To be precise, a sequence {fk,d}K Dk

k=1,d=1 ⊆ CN

generates a fusion frame {Wk}Kk=1 with dimWk = Dk for k = 1 . . . , K if {fk,d}K Dk
k=1,d=1 is a

frame for CN and {fk,d}Dk
d=1 is orthonormal for k = 1 . . . , K.
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2.2. Spectral Tetris. The term Spectral Tetris refers to the first systematic construction
of unit norm tight frames. This construction was introduced in [4] to generate unit norm
tight frames in RN for any dimension N and any number of frame vectors M provided that
M ≥ 2N . The paper [4] provides a complete characterization of triples (N,K, d) for which
equal-dimensional tight fusion frames in RN exist. Here K is the number of fusion frame
subspaces and d is their dimension. For most of the triples (N,K, d) the authors developed
an elegant and simple algorithm to produce such tight fusion frames.

An extension to the construction of unit norm frames having a desired frame operator
with eigenvalues (λn)Nn=1 ∈ [2,∞) satisfying

∑N
n=1 λn = M was then introduced in [2]. For

convinience we review this construction in figure 2.2 and will refer to it as the spectral tetris
construction (STC). In STC, as in the rest of this paper, {en}Nn=1 denotes the sequence of
standard unit vectors of CN . A construction for equi-dimensional fusion frames having those
eigenvalues for their fusion frame operator is given in [2]. The sufficient condition for this

construction to work is that the dimension d of the subspaces satisfies
∑N

n=1 λn = dK where
K is the number of subspaces and that the sequence of eigenvalues is bounded by K − 3.

In this paper we want to use spectral tetris to construct fusion frames with given fusion
frame operator and subspaces of not necessarily equal dimensions. We will say that a (fusion)
frame has certain eigenvalues if its (fusion) frame operator has these eigenvalues.

Definition 2.1. A frame constructed via the spectral tetris construction STC is called a
spectral tetris frame. A fusion frame {Wk}Kk=1 is called a spectral tetris fusion frame if

there is a partition of a spectral tetris frame {fk,d}K Dk
k=1,d=1 such that {fk,d}Dk

d=1 is an orthonor-
mal basis for Wk for every k = 1, . . . , K.

Aside from the fact that spectral tetris frames are easy to construct, their major advantage
for applications is the sparsity of their synthesis matrices in terms of the number of non zero
entries. This sparsity is dependend on the ordering of the given sequence of eigenvalues for
which STC is performed. Note that the original form of the algorithm in [2] assumes the
sequence of eigenvalues to be in decreasing order. This assumption, however, was made only
for classification reasons, and it is easily seen that it can be dropped. The sparsest synthesis
matrices are achieved if the sequence of eigenvalues (λn)Nn=1 is ordered blockwise, i.e. if for
any permutation π of {1, . . . , N} the set of partial sums {

∑s
j=1 λj : s = 1, . . . , N} contains

at least as many integers as the set {
∑s

j=1 λπ(j) : s = 1, . . . , N}. It has been shown in [3] that
spectral tetris frames are optimally sparse in the sense that given M ≥ 2N and a sequence of
eigenvalues (λn)Nn=1 ⊆ [2,∞), the synthesis matrix of the spectral tetris frame having these
parameters is sparsest in the class of all synthesis matrices of unit norm frames that have
these parameters, provided STC is run for the sequence (λn)Nn=1 rearranged to be ordered
blockwise. Note that for unit norm tight frames all eigenvalues are equal so questions of
rearranging the order of the eigenvalues does not arise.

3. Fusion frames with prescribed eigenvalues ≥ 2 and prescribed dimensions

Let M ≥ N be natural numbers and (λn)Nn=1 ⊆ [2,∞) such that
∑N

n=1 λn = M . Given a
sequence of dimensions we ask the question of whether and how we can find a fusion frame
for RN whose subspaces have those prescribed dimensions and whose fusion frame operator
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STC: Spectral Tetris Construction

Parameters:
• Dimension N ∈ N.
• Number of frame elements M ∈ N.
• Eigenvalues (λn)Nn=1 ≥ 2 such that

∑N
n=1 λn = M .

Algorithm:
1) Set k := 1.
2) For j = 1, . . . , N do
3) Repeat
4) If λj < 1 then

5) fk :=
√

λj
2
· ej +

√
1− λj

2
· ej+1.

6) fk+1 :=
√

λj
2
· ej −

√
1− λj

2
· ej+1.

7) k := k + 2.
8) λj+1 := λj+1 − (2− λj).
9) λj := 0.

10) else
11) fk := ej.
12) k := k + 1.
13) λj := λj − 1.
14) end.
15) until λj = 0.
16) end.

Output:
• Frame {fk}Mk=1.

Figure 1. The STC algorithm for constructing a frame with a desired frame operator.

has the eigenvalues (λn)Nn=1. We will characterize whether there is a spectral tetris fusion
frame having these eigenvalues and dimensions.

To get started, consider the following example of integer eigenvalues. Let (λn)7n=1 =
(4, 3, 3, 3, 2, 1, 1). Given this sequence of eigenvalues the spectral tetris frame in C7 consists
only of standard unit vectors:

S = {e1, e1, e1, e1, e2, e2, e2, e3, e3, e3, e4, e4, e4, e5, e5, e6, e7}.

The question we are asking above now takes the following form. We want to partition S
into sets of pairwise orthonormal vectors, i.e. each set of the partition should not have more
than one copy of any standard unit vector. What sizes can these sets have? We start by
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considering the partition S =
⋃4
n=1 Pn, where

P1 = {e1, e2, e3, e4, e5, e6, e7},
P2 = {e1, e2, e3, e4, e5},
P3 = {e1, e2, e3, e4},
P4 = {e1}.

The sets of this partition have the sizes 7, 5, 4 and 1. To get a different partition we can not
take any vector out of Pi and put it into Pj if i > j as this would destroy the orthonormality
of the sets. But we can take certain vectors out of Pi and put them into Pj if i < j
without destroying the orthonormality of the sets. Doing so we can for example easily find
a partition into orthonormal sets of the sizes 5, 5, 4 and 2. But it is not possible to find a
partition into orthonormal sets of the sizes 7, 6, 3 and 1. The sequence 7, 5, 4, 1 majorizes
the sequences of sizes of orthonormal sets which we can partition S into. Let us recall the
notion of majorization. Given a = (an)Nn=1 ∈ RN , denote by a↓ ∈ RN the vector obtained
by rearranging the coordinates of a in decreasing order. If (an)Nn=1, (bn)Nn=1 ∈ RN , we say
(an)Nn=1 majorizes (bn)Nn=1, denoted by (an)Nn=1 � (bn)Mn=1, if

∑m
n=1 a

↓
n ≥

∑m
n=1 b

↓
n for all

m = 1, . . . , N − 1 and
∑N

n=1 an =
∑N

n=1 bn.
We can use the idea of the above example to construct spectral tetris fusion frames in the

general case of real eigenvalues as the spectral tetris frames for real eigenvalues consisting
only of standard unit vectors or linear combinations of two standard unit vectors. As above
we will determine a sequence of numbers depending on the given eigenvalues (λn)Nn=1 and
check whether or not this sequence majorizes the given sequence of dimensions. As in the
example the sequence we are going to determine will be the sequence of dimensions of a
certain fusion frame for RN having the eigenvalues (λn)Nn=1. We now introduce this fusion
frame.

Definition 3.1. Let M ≥ N be natural numbers and (λn)Nn=1 ⊆ [2,∞) such that
∑N

n=1 λn =
M . The fusion frame constructed by the algorithm RFF presented in figure 2 is called the
reference fusion frame for the eigenvalues (λn)Nn=1.

Note that if (Vi)
t
i=1 is the reference fusion frame for (λn)Nn=1 and (fi)

M
i=1 is the frame RFF

constructs to span the subspaces of (Vi)
t
i=1, then by construction the following holds:

∀1 ≤ i ≤ j ≤ t ∀ fk ∈ Vi ∃ fl ∈ Vj : supp fk ∩ supp fl 6= ∅. (1)

Further note that if (λn)Nn=1 is ordered blockwise and has reference fusion frame (Vn)tn=1 then

(dimVn)tn=1 � (dimUn)sn=1, (2)

where (Un)sn=1 is the reference fusion frame for (λπ(n))
N
n=1 with π being a permutation of

{1, . . . , N} and the shorter tuple of dimensions is filled up with zeros to have tuples of the
same length.

We will now use the reference fusion frame for (λn)Nn=1 to decide whether or not a fusion
frame for RN with certain fusion frame operator and certain dimensions of the subspaces is
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RFF: Reference Fusion Frame

Parameters:

• Eigenvalues (λn)Nn=1 ⊆ [2,∞) such that
∑N

n=1 λn = M ∈ N.

Algorithm:

1) Run STC for (λn)Nn=1 and get frame (fi)
M
i=1.

2) t = maxj=1,...,N |supp (fi(j))
M
i=1|

3) Si = ∅ for i = 1, . . . , t
4) k = 0
5) Repeat
6) k = k + 1
7) j = min{1 ≤ r ≤ t : supp fk ∩ supp fs = ∅ ∀fs ∈ Sr}
8) Sj = Sj ∪ {fk}
9) until k = M .

Output:

• Fusion frame (Vi)
t
i=1, where Vi = spanSi.

Figure 2. The RFF algorithm for constructing the reference fusion frame.

constructible via spectral tetris. In case it is constructible the proof describes an algorithm
to construct it.

Theorem 3.2. Let M ≥ N be natural numbers, (λn)Nn=1 ⊆ [2,∞) be ordered blockwise and

let (di)
D
i=1 ⊆ N such that

∑N
n=1 λn =

∑D
n=1 dn = M . Let (Vn)tn=1 be the reference fusion

frame for (λn)Nn=1. Then there exists a spectral tetris fusion frame (Wn)Dn=1 for RN with
dim Wn = dn for n = 1, . . . , D and eigenvalues (λn)Nn=1 if and only if

D ≥ t and (dimVn)Dn=1 � (dn)Dn=1, (3)

where (dimVn)Dn=1 = (dimV1, . . . , dimVt, 0, . . . , 0).

Proof. Let (λn)Nn=1 be in some fixed order, not necessarily ordered blockwise. We prove that
in this case (3) characterizes whether or not a fusion frame with the eigenvalues (λn)Nn=1 and
dimensions (dn)Dn=1 is constructible from the spectral tetris frame for this ordering of the
eigenvalues. The claim of the theorem then follows from the observation made in (2).

We first show how to iteratively construct the desired fusion frame (Wn)Dn=1 in case (3)
holds. For i = 1, . . . , t let W 0

i = Si, where t and Si for i = 1, . . . , t are given by RFF
for (λn)Nn=1. We add empty sets if necessary to obtain a collection (W 0

i )Di=1 of D sets. If∑D
i=1 ||W 0

i | − di| = 0 then the sets (W 0
i )Di=1 span the desired fusion frame. Otherwise,

starting from (W 0
i )Di=1 we will construct the spanning sets of the desired fusion frame. Let

m = max
{
j ≤ D : dj 6= |W 0

j |
}
.
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Note that
∑m

i=1 |W 0
i | =

∑m
i=1 di by the choice of m and

∑m−1
i=1 |W 0

i | >
∑m−1

i=1 di by assumption
(3). Therefore dm > |W 0

m| and there exists

k = max
{
j < m : |W 0

j | > dj
}
.

Notice that |W 0
m| < dm ≤ dk < |W 0

k | implies |W 0
m| + 2 ≤ |W 0

k |. If there is some element
w ∈ W 0

k which has disjoint support from every element in W 0
m define {W 1

i }Di=1 by

W 1
i =


W 0
k \ {w} if i = k,

W 0
m ∪ {w} if i = m,

W 0
i else.

(4)

Now suppose there is no such element in W 0
k . Pick any w1 ∈ W 0

k . Next choose all the
elements from W 0

m whose support intersect the support of w1. Next choose all elements
from W 0

k whose support intersect the support of some element chosen so far. Continue by
choosing all elements from W 0

m whose support intersect the support of some element chosen
so far. Continue until you can not choose an element anymore. Let S1 be the set of the
chosen elements. No element of S1 has a support which intersects the support of any element
of (W 0

k ∪W 0
m) \S1. As |W 0

m|+ 2 ≤ |W 0
k |, there exists some w2 ∈ (W 0

k ∪W 0
m) \S1. Construct

S2 by the same procedure as above with w2 ∈ (W 0
k ∪W 0

m) \ S1 instead of w1 ∈ W 0
k . If there

is some element w3 ∈ (W 0
k ∪W 0

m) \ (S1 ∪ S2) continue to construct S3 in the above fashion.
In this way we construct sets S1, . . . , Sr, say, until we used up all the elements of W 0

k ∪W 0
m.

For i = 1, . . . , r the number of elements in Si chosen from W 0
k and W 0

m differs by at most
one, as the elements of W 0

k , respectively W 0
m, have pairwise disjoint supports of sizes 1 or 2.

As |W 0
m| + 2 ≤ |W 0

k | there is a set Sj that contains one element more from W 0
k then from

W 0
m. Define {W 1

i }Di=1 by

W 1
i =


(W 0

k ∪ Sj) \ (Sj ∩W 0
k ) if i = k,

(W 0
m ∪ Sj) \ (Sj ∩W 0

m) if i = m,

W 0
i else.

(5)

In both of the above cases we have defined {W 1
i }Di=1 such that

D∑
i=1

||W 1
i | − di| <

D∑
i=1

||W 0
i | − di|.

Note that {W 1
i }Di=1 satisfies (3) in the sense that (|W 1

n |)Dn=1 � (dn)Dn=1. Thus if the sets
of {W 1

i }Di=1 do not span the desired fusion frame, we can repeat the above procedure with

{W 1
i }Di=1 instead of {W 0

i }Di=1 and get {W 2
i }Di=1 such that

∑D
i=1 ||W 2

i |−di| <
∑D

i=1 ||W 1
i |−di|.

Continuing in this fashion we will, say after repeating the process l times, arrive at {W l
i }Di=1

such that
∑D

i=1 ||W l
i |−di| = 0, i.e. the sets of {W l

i }Di=1 span the desired fusion frame (Wn)Dn=1.
It remains to show that (3) is a necessary condition. Suppose there is a spectral tetris

fusion frame (Wn)Dn=1 such that dimWn = dn for n = 1, . . . , D and suppose D ≥ t but the
majorization condition is not satisfied. Let

m = min

{
k :

k∑
n=1

dimVn <

k∑
n=1

dn

}
.
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Note that
∑D

n=1 dimVn =
∑D

n=1 dn, thus m < t. Let Sn be the union of the supports of the
frame vectors that span Vn. Then Si ⊆ Sj whenever i ≥ j. By the choice of m we need
all the frame vectors spanning V1, . . . , Vm to span W1, . . . ,Wm but they do not suffice. At
least one vector from Vm+1, . . . , Vt is needed. But as the sets Sn are in decreasing order, this
contradicts the fact that W1, . . . ,Wm are orthonormal sets. For essentially the same reason
we can not have D < t. �

Note that in the trivial case of integer eigenvalues we can run STC whenever all given
eigenvalues are ≥ 1 to get the following corollary.

Corollary 3.3. If (λn)Nn=1, (di)
D
i=1 ⊆ N such that

∑N
n=1 λn =

∑D
n=1 dn = M ∈ N, where

M ≥ N , then a spectral tertis fusion frame with eigenvalues (λn)Nn=1 and dimensions (dn)Dn=1

exists if and only if D ≥ maxi=1,...,N λi and (an)Dn=1 � (dn)Dn=1, where an = max{r : λr ≥ n}
for n = 1, . . . ,maxi=1,...,N λi and (an)Dn=1 = (a1, . . . , amaxi=1,...,N λi , 0, . . . , 0).

Proof. Note that in this case RFF produces the output t = maxi=1,...,N λi and dimVi = ai
for i = 1, . . . , t. �

4. Spectral tetris for unit norm tight fusion frames of redundancy < 2

Given J ∈ N, let ω = exp(2πi
J

). We define the discrete Fourier transform (DFT) matrix in
CJ×J by

DJ =
(
ωik
)J−1
i,k=0

.

Note that we do not normalize DJ by the factor 1/
√
J to make its rows and columns have

norm one. Instead every entry of DJ has absolut value one. Further note that the rows of
DJ are pairwise orthogonal vectors.

The algorithm DFTST introduced in figure 3 is a variation of spectral tetris. It uses
scaled J×J DFT-matrices to construct M -element unit norm tight frames for CN in the case
N < M < 2N . Here J is the uniquely determined natural number for which J

J−1 <
M
N
≤ J−1

J−2 .
Note that this implies J ≥ 3. Before stating our main Theorem 4.2 about DFTST we will
demonstrate in the following example what DFTST essentialy does.

Example 4.1. Let N = 4 and M = 7. Then J = 3 and DFTST will construct the synthesis
matrix of a 7-element unit norm tight frame in C4 by using scaled copies of the DFT matrix
D3. We start to build the synthesis matrix from the upper left corner. In lines 3) to 7) of
the algorithm we determine whether there still have to be built 3 more columns, which is the
case. Thus K = 3, ω = exp(2πi

3
) and we start by building the first 3 columns using lines 9)

until 21) of the algorithm. Line 10) tells us to start by putting the first row of D3, scaled so
that this row square sums to the desired tight frame bound 7/4.

√
7
12

√
7
12

√
7
12

? ? ? ?

? ? ? ? ? ? ?
? ? ? ? ? ? ?
? ? ? ? ? ? ?

 .
Next, in the inner repeat loop of the algorithm, we check whether we can put the second row
of D3, scaled to square sum to 7/4, below the first row whithout exceeding the column norm
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DFT Spectral Tetris (DFTST)

Parameters:

• Dimension N ∈ N.
• Number of frame elements M ∈ N, where N < M < 2N .
• J ∈ N such that J

J−1 <
M
N
≤ J−1

J−2 .

Algorithm:

1) m = 0, n = 1, λ = 0
2) Repeat
3) If J < M −m then
4) K = J
5) else
6) K = M −m
7) end.
8) w = exp(2πi

K
)

9) For r = m+ 1, . . . ,m+K do

10) fr =
√

M−Nλ
NK

· en
11) k = 1
12) Repeat
13) If 1− ‖fr‖2 ≥ M

NK
then

14) fr = fr +
√

M
NK
· ωk(r−m−1) · en

15) else

16) fr = fr +
√

1− ‖fr‖2 · ωk(r−m−1) · en
17) end.
18) k = k + 1
19) n = n+ 1
20) until ‖fr‖ = 1.
21) end.
22) m = m+K

23) λ =
∑m+K

r=1 |fr(n− 1)|2
24) until m = M .

Output:

• Unit norm tight frame {fi}Mi=1 ∈ CN .

Figure 3. The DFT Spectral Tetris algorithm for constructing a unit norm
tight frame of redundancy < 2.

of 1 for the desired synthesis matrix. Here this is not the case and so we scale the second
row of D3 such that the column norm of the first 3 columns of the synthesis matrix is 1 when
setting the remaining entries of the first 3 columns to be zero. Note that scaling the rows of
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D3 does not affect their orthogonality and that at this point the second row of the synthesis
matrix square sums to less than the desired 7/4.

√
7
12

√
7
12

√
7
12

? ? ? ?√
5
12

√
5
12
· ω

√
5
12
· ω2 ? ? ? ?

0 0 0 ? ? ? ?
0 0 0 ? ? ? ?

 .
Having constructed the first three columns, we run the outer repeat loop of the algorithm
again, checking first whether we have 3 more columns to be constructed, which again is the
case. The first row of the synthesis matrix already square sums to 7/4 and therefore must
have zeros as the remaining entries.

√
7
12

√
7
12

√
7
12

0 0 0 0√
5
12

√
5
12
· ω

√
5
12
· ω2 ? ? ? ?

0 0 0 ? ? ? ?
0 0 0 ? ? ? ?

 .
Line 10) of the algorithm tells us to scale the first row of D3 so that, after putting it behind
the last DFT row we used, this row of the synthesis matrix square sums to the desired 7/4.

√
7
12

√
7
12

√
7
12

0 0 0 0√
5
12

√
5
12
· ω

√
5
12
· ω2

√
2
12

√
2
12

√
2
12

?

0 0 0 ? ? ? ?
0 0 0 ? ? ? ?

 .
Lines 12) to 20) of the algorithm tell us again in which way to put scaled versions of the
rows of D3. 

√
7
12

√
7
12

√
7
12

0 0 0 0√
5
12

√
5
12
· ω

√
5
12
· ω2

√
2
12

√
2
12

√
2
12

?

0 0 0
√

7
12

√
7
12
· ω

√
7
12
· ω2 ?

0 0 0
√

3
12

√
3
12
· ω2

√
3
12
· ω4 ?

 .

Now rows 2 and 3 of the synthesis matrix are finished.

√
7
12

√
7
12

√
7
12

0 0 0 0√
5
12

√
5
12
· ω

√
5
12
· ω2

√
2
12

√
2
12

√
2
12

0

0 0 0
√

7
12

√
7
12
· ω

√
7
12
· ω2 0

0 0 0
√

3
12

√
3
12
· ω2

√
3
12
· ω4 ?

 .
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We again check whether or not we have construct 3 more columns, which this time is not
the case. Only one more column has to be constructed so we follow the above steps this time
using D1 instead of D3 to obtain the synthesis matrix

√
7
12

√
7
12

√
7
12

0 0 0 0√
5
12

√
5
12
· ω

√
5
12
· ω2

√
2
12

√
2
12

√
2
12

0

0 0 0
√

7
12

√
7
12
· ω

√
7
12
· ω2 0

0 0 0
√

3
12

√
3
12
· ω2

√
3
12
· ω4 1

 .

We can think of the structure of the synthesis matrix constructed via DFTST as consisting
of blocks which arise from DFT-matrices whose rows have been scaled by appropriate factors.
If M,N and J are as in DFTST and J divides M , then it is built from M

J
blocks of size

J × J . If J does not divide M , the synthesis matrix is built of bM
J
c blocks of size J × J and

one block of size (M − bM
J
cJ)× (M − bM

J
cJ) in the lower right corner.

Theorem 4.2. Let M,N ∈ N such that N < M < 2N . Then DFTST constructs a unit
norm tight frame (fm)Mm=1 ∈ CN with the property that 〈fm, fm′〉 = 0 whenever m−m′ ≥ 2J ,
where J

J−1 <
M
N
≤ J−1

J−2 .

Proof. We first show that while being in the case of line 3) of DFTST, i.e. while K = J , the
columns that are constructed have maximum of their support, denoted by s, smaller or equal
to N . This ensures the inner repeat loop terminates before exceeding the dimension of the
columns. Indeed, assume s > N , and let n0, respectively m0, be the value of n, respectively
m, at the beginning of the outer repeat loop that we are in, we get

M∑
m=1

N∑
n=1

|fm(n)|2 =

m0∑
m=1

N∑
n=1

|fm(n)|2 +

m0+J∑
m=m0+1

N∑
n=1

|fm(n)|2 =

m0∑
m=1

1 +

m0+J∑
m=m0+1

N∑
n=1

|fm(n)|2

< m0 +

m0+J∑
m=m0+1

1 = m0 + J < M

while interchanging the order of summation yields
N∑
n=1

M∑
m=1

|fm(n)|2 =

n0−1∑
n=1

M∑
m=1

|fm(n)|2 +
M∑
m=1

|fm(n0)|2 +
N∑

n=n0+1

M∑
m=1

|fm(n)|2

=

n0−1∑
n=1

M

N
+ λ+ J

(
M −Nλ
NJ

)
+

N∑
n=n0+1

J
M

NJ
=
NM

N
= M,

a contradiction.
We next show that, still being in the case of line 3), the inner repeat loop does not run

more than J − 1 times, i.e. it terminates before or exactly when we have used up all the
rows of DJ . For this it suffices to show that

1− M −Nλ
NJ

− (J − 2)
M

NJ
≤ M

NJ
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and thus we have to show (N −M)J +Nλ < 0. And indeed, using λ < M
N
≤ J−1

J−2 we have(
1− M

N

)
J + λ ≤

(
1− M

N

)
J +

M

N
= J +

M

N
(1− J) ≤ J +

(J − 1)(1− J)

J − 2
< 0,

where we used the fact that J ≥ 3.
Eventually DFTST will enter the case of line 5) and this will be the last time the outer

repeat loop of the algorithm runs. In this last run the final M−m0 columns fm0+1, . . . , fM of
the synthesis matrix are constructed and we have to show that the maximum of the support
of these vectors, which we denote by N0, equals N , that their support has size of at most
M−m0 and that the last row of the synthesis matrix has norm M/N . We first show N0 = N .
Indeed, supposing N0 < N yields

M =
M∑
m=1

1 =
M∑
m=1

N∑
n=1

|fm(n)|2 =
N∑
n=1

M∑
m=1

|fm(n)|2 = N0
M

N
< M,

a contradiction. Assuming N0 > N implies

M = N
M

N
=

N∑
n=1

M∑
m=1

|fm(n)|2 =
M∑
m=1

N∑
n=1

|fm(n)|2 <
M∑
m=1

1 = M,

again a contradiction. Next we show that the last row of the constructed synthesis matrix
has norm M/N . To see this, note that

M =
M∑
m=1

1 =
M∑
m=1

N∑
n=1

|fm(n)|2 =
N∑
n=1

M∑
m=1

|fm(n)|2

=
N−1∑
n=1

M∑
m=1

|fm(n)|2 +
M∑
m=1

|fm(N)|2 = (N − 1)
M

N
+

M∑
m=1

|fm(N)|2,

and thus indeed
M∑
m=1

|fm(N)|2 =
M

N
.

Finally suppose the support of fM , which coinsides with the support of the other columns
constructed in this run of the outer repeat loop, is of size s > M −m0. Then

N∑
n=1

|fM(n)|2 ≥ s · M

N(M −m0)
≥ M

N
> 1

in contrdiction to the fact that fM was constructed to have norm 1.
Having shown the above about DFTST, it is now easy to check that the synthesis matrix

it produces is that of a unit norm tight frame: It is clear by construction that each frame
vector has norm one. The rows of the synthesis matrix are pairwise orthogonal since they
are made of multiples of rows of DFT matrices, thus the frame operator of the constructed
frame has zero entries off of its diagonal. The powers of ω coming up in the construction of
the columns have absolut value 1. Therefore, rows of the synthesis matrix that are defined
entirely within one run of the outer repeat loop have entries that square sum to K · M

NK
= M

N
.
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The same holds for rows that are defined using two consecutive runs of the outer repeat loop.
Their entries square sum to

λ+K · M −Nλ
NK

=
M

N
.

Thus the frame operator of the constructed frame is M
N
I. To see the orthogonality property

of the columns stated in the theorem we note the following. A column constructed in a
certain run of the outer repeat loop has disjoint support from any column constructed in a
run of the outer repeat loop that did not directly precede or follow it. In every run of the
outer repeat loop, at most J vectors are constructed, which therefore yields the orthogonality
statement of the theorem. �

We now show how to use the unit norm tight frames constructed via DFTST to construct
non-equidimensional tight fusion frames. We can do this as long as the desired dimensions
of the subspaces stay below a certain bound by making use of the fact that a lot of the frame
vectors constructed via DFTST have disjoint support. We first need a technical lemma.

Lemma 4.3. Let M,L ∈ N such that L < M . Then there exists a permutation π of
{1, . . . ,M} such that for all k, l ∈ {1, . . . ,M} with 0 < |k − l| ≤ bM

L
c − 1 we have |π(k) −

π(l)| ≥ L.

Proof. Let [1], . . . , [L] be the partition of (1, . . . ,M) into cosets modulo L. These cosets
have either bM

L
c or bM

L
c + 1 elements. Write each coset as an increasing sequence, say

[s] = (as,1, as,2, . . . , as,ns), and let

(r1, . . . , rM) := (aL,1, . . . , aL,nL
, aL−1,1, . . . , aL−1,nL−1

, . . . , a1,1, . . . , a1,n1).

Define π by π(i) = ri for i = 1, . . . ,M . Let k, l as in the assumption of the lemma and
assume as we may that k < l. If π(k) and π(l) belong to the same coset modulo L, then
|π(k) − π(l)| ≥ L. If not, there exists m ∈ {1, . . . , L − 1} such that π(k) ∈ [m + 1], say
π(k) = am+1,j and π(l) ∈ [m], say π(l) = am,i. As the cosets have at least bM

L
c elements, we

have i < j and thus

|π(k)− π(l)| = am+1,j − am,i > am+1,j − am+1,i ≥ L.

�

Now we can state and prove the corollary.

Corollary 4.4. If N < M < 2N and J ∈ N such that J
J−1 < M

N
≤ J−1

J−2 , then for all

(ki)
K
i=1 ⊂ N with

∑K
i=1 ki = M and ki ≤ bM2J c for i = 1, . . . , K, there exists a tight fusion

frame (Vl)
K
l=1 with dimVl = kl for l = 1, . . . , K.

Proof. Let {fm}Mm=1 be the unit norm tight frame constructed in Theorem 4.2 and consider
{fπ(m)}Mm=1 where π is the permutation of {1, . . . ,M} given in Lemma 4.3 for L = 2J . Let

R = bM
2J
c. Then for any m = 1, . . . ,M − R + 1 the vectors of the set {fπ(m+i)}R−1i=0 are

pairwise orthonormal by Theorem 4.2. Note that this set contains R elements. Thus we can
define

Vl = span
{
fπ(i+∑l−1

j=1 kj)
: i = 1, . . . , kl

}
for l = 1, . . . , K. �
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The new tools introduced in this paper should have broad application to other construction
problems for frames and fusion frames. We are exploring these currently possibilities.
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