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Abstract. As digital photography rapidly replacing the traditional film photography as
the photography of choice for all but a few devoted professionals, post image processing
of natural color photos such as denoising becomes increasingly an integral part of digital
photography. Although many denoising schemes have been designed, almost none specifi-
cally target natural color photos. Noise in natural color photos have special characteristics
that are substantially different from those that have been added artificially.

In this paper we propose the multiscale total variational method (MTV) for denoising.
Standing alone the MTV method is effective in denoising monochromatic images. However,
it demonstrates outstanding denoising capabilities for natural color images. Key to the
success is the understanding of the characteristics of digital noise in natural color images
as well as a non-traditional color space we have introduced specifically for the purpose.
An automatic stopping criterion is applied to each channel to prevent over processing.

1. Noise In Natural Color Photos

With the surging popularity of digital cameras, digital photography is rapidly replacing

the traditional film photography as the photography of choice for virtually all but a few

devoted professionals. In digital photography, post image processing is an integral part

for obtaining better images even for the casual picture takers. Post image processing is

especially important for people who are willing to go beyond point-and-shoot, and one of

the key steps in image processing is denoising.

All digital cameras today take color photos. (Some cameras allow for black-and-white

images, but these are converted from color images using in-camera firmwares.) Noise is

present in virtually all digital photos, and there are several sources for it. When light

(photons) strike the image sensor, electrons are produced. These “photoelectrons” give

rise to analog signals which are then converted into digital pixels by an Analog to Digital
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(A/D) Converter. The random nature of photons striking the image sensor is an important

source for noise. This type of noise, known as photon shot noise, is roughly proportional

to the square root of the signal level as a result of the Central Limit Theorem. Thus the

lower the signal is the higher the noise becomes relative to the signal. As a result noise in

color images can be very pronounced in images shot under low light conditions because the

signals must be amplified more. In general, noise level is very low for photos shot outdoor

using low ISO (ISO 100 or less). But with most consumer compact cameras noise becomes

visible at ISO 200, and it becomes unacceptable at ISO 400 or higher. With more advanced

and expensive digital SLRs noise remains low even at ISO 400, and becomes unacceptable

at ISO 1600 or higher. Noise is in general much worse under artificial lighting, especially

under fluorescent lighting. One of the important characteristics of digital noise is that they

are not uniform across all channels. For many digital cameras noise is concentrated in the

blue channel while the green and the red channels are relatively clean. For some, noise may

be more spread out. For most cameras, the green channel is usually less noisy than the blue

and the red channels . For photos taken under artificial lighting (without a flash), the blue

channel can be so noisy that it is often unrecognizable, see Figures 1 and 2.

Another significant source of noise is the so called leakage current. Semiconductor im-

age sensors work by converting energy from photons into electrical energy, in the form of

a current or voltage signal. Unfortunately thermal energy present in the semiconductor

can also generate an electrical signal that is indistinguishable from the optical signal. As

temperature increases, so does leakage current in the circuit. The effects of leakage current

are most apparent in long exposures in which the light signal is very low.

Modeling noise in digital color photos can be a difficult task. The photon shot noise

is clearly signal dependent and thus not uniform from pixel to pixel. Nearly all digital

cameras1 today use the so-called Bayer Pattern in their photo sensors, where half of their

pixels are used to capture the green channel and the other half are divided evenly to capture

the red and the blue channels. These partial data are then interpolated to complete the

RGB channels of a color photo. So unless we access the raw data (most consumer digital

cameras do not have this feature) it is clear that noise is not independent from pixel to

pixel in any channel. Most digital photos are in JPEG format, which degrade images

through quantization and artifacts. Furthermore, all cameras employ proprietary in-camera

1Sigma digital SLRs such as SD9 and SD10, which employ sensors by Feveon, are notable exceptions.
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Figure 1. The original natural color image without artificial noise. Noise
is not obvious due to limitation on the size of the display.

sharpening, denoising and anti-aliasing. These factors combine to make effective modeling

of noise, at least in the images taken by consumer cameras exported in JPEG format,

virtually impossible. For this reason, any noise model assuming independent and identically

distributed noise from pixel to pixel can be unrealistic. Visual inspections clearly show that

noise in natural images appears far more “blotchy” than the usual Gaussian i.i.d. type of

artificially added noise.

This uneven distribution of noise poses some challenges. Excessively denoising the blue

channel can easily lead to color artifacts (such as color bleeding). A good denoising scheme

must take this into consideration. One viable solution to this problem is to work in another

color space rather than the RGB color space. A standard practice is to work in a color space

that separates the luminance and chrominance. Commonly used color spaces are CIELAB,

CIELUV and YCrCb. The YCrCb color space has the advange for being linear. It is the

color space used for JPEG and JPEG 2000. One of the innovations in this paper is to

design a new color space that effectively takes into account the distribution of noise. This

new color space offers superior performance in our tests.



4 YANG WANG AND HAOMIN ZHOU

Figure 2. A zoom-in (upper-left) of the color image in Figure 1 and its
RGB channels. Color noise is more evident. The red (upper-right) and
green (lower-left) channels are much cleaner than the blue (lower-right) chan-
nel.

2. Multiscale Total Variational Method for Denoising Monochromatic

Images

Denoising methods for monochramatic images are numerous, which include neighborhood

filters, frequency domain methods, variational PDE based methods and non-local methods.

Much has been made about the pros and cons of each method. It is perhaps safe to say
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that virtually every method has its advantages and disadvantages, and for different images

some methods may work better than others. In this study, we shall focus on a particular

denoising algorithm called Multiscale Total Variational method (MTV). The MTV method

is a variational PDE method using wavelet bases. It is an extension of the wavelet TV

method proposed in [13] and [30]. A detailed study of the MTV method can be found in

Chan, Wang and Zhou [11]. For self-containment we include a brief overview of variational

PDE based methods and the MTV method in this section.

We begin with a standard noisy monochromatic image model

(2.1) z(x) = u0(x) + n(x),

where z(x), u0(x) and n(x) are real valued functions defined on Ω ⊂ R
2, where Ω is a finite

domain such as a rectangle. The function u0(x) denotes the underlying image uncorrupted

by noise, z(x) the observed image, and n(x) the noise. In our general model, we assume

that z(x), u0(x) and n(x) are in some space of functions F , such as L2(Ω) or C1(Ω). With

a variational PDE based denoising method, the denoised image is the minimizer of certain

energy functional E(u). Typically E(u) can be written as

(2.2) E(u) = D(u, z) +R(u),

where D(u, z) is the fitting term that represents the “distance” between u and observed

image z, and R(u) is a regularization term that smoothes out the image. In most algo-

rithms the fitting term D(u, z) is taken to be the L2 distance D(u, z) =
∫

Ω
(u− z)2. Earlier

efforts focused on least square based functionals R(u)’s such as ‖∆u‖2
2, ‖∇u‖

2
2 and others.

While noise can be effectively removed, these regularization functionals penalize disconti-

nuity, resulting in soft and smooth reconstructed images, with subtle details lost. This is

not acceptable in digital photography, as photographers often place premium emphasis on

sharpness. The innovation of the total variational (TV) scheme by Rudin, Osher and Fatemi

[27] is to set R(u) to be the total variation
∫

Ω
|∇u| of u. With the total variation regularizer,

extensive studies have shown that it does not penalize edges in u, thus it allows for sharper

reconstructions, see e.g. [1, 6, 10, 16]. Among all the variational PDE based techniques, the

TV minimization scheme offers one of the better combinations of noise removal and feature

preservation. Since E(u) is convex the minimizer can be obtained by gradient flow, which
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amounts to time marching equation

(2.3) ut = ∇ ·
( ∇u

|∇u|

)

− λ(u− z) = 0, u(x, 0) = z(x).

The end result u(x, T ), if T is large enough, will have noise removed or reduced. One of

the problems is that when (2.3) is left running for too long a denoised image will tend to

become a cartoon-like piecewise constant image, wiping out all subtle details [23, 25]. With

a more gentle run, one may not remove enough noise. For optimal results it is important

to have an automatic stopping criterion. This is difficult to do. Although there are some

attempts in this direction [20, 24, 31], some properties of the noise (such as the variance)

are assumed to be known, which is not entirely realistic for natural color photos.

A modified version of the TV denoising scheme based on wavelets was introduced in Chan

and Zhou [13]. Using this scheme, Wang and Zhou [30] devised an automatic stopping

criterion. This criterion works surprisingly well in experiments, see [30] for a detailed

discussion. Let {ψj : j ∈ I} be an orthonormal or biorthonormal wavelet basis for L2(Ω)

such as those found in [15, 28]. In practice, we have always used the biorthonormal 7-9

wavelet basis as our basis {ψj}. (The conventional notation uses two sub-indices to denote

a wavelet basis. Here we use only one for brevity. There should not be any confusion.) Now

expand the observed image function z(x) using the basis {ψj(x)},

z(x) =
∑

j∈I

αjψj(x).

Let

(2.4) u(x,β) :=
∑

j∈I

βjψj(x)

where β = (βj). In the wavelet TV scheme the fitting term D(u, z) is set as

D(u, z) :=
∑

j∈I

λ(βj − αj)
2,

where λ > 0 while the term R(u) remains to be the total variation. In [11] the Multiscale

Total Variation (MTV) method was introduced, where the fitting term is modified to be

(2.5) D(u, z) :=
∑

j∈I

λ(βj − αj)
2.

In this paper we propose a new method based on the wavelet TV denoising scheme. The

key feature is that λj decreases as the scale becomes more localized. More precisely, we

use smaller values λj for high frequency terms and larger values for lower frequency terms.
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Figure 3. Some comparisons using artificial noise. The orginal image
(upper-left) is added with Gaussian white noise (upper-right). The standard
TV denoised image (lower-left) has more noisy residual than the wavelet TV
denoised image (lower-right). Both are obtained with same number of iter-
ations.

In recogniztion that the cartoon-like tendency in the standard TV method can be a result

of excessive diffusion of low frequency features in an images, this will help concentrating

the diffusion more on high frequency features where the noise resides. Our tests illustrate

that the MTV method is highly effective, particularly for denoising natural color images.

Comparing to the standard TV or wavelet TV method, the MTV method requires fewer
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number of iterations to obtain comparable or better results, see [11]. As in the classical TV

case, the energy

(2.6) EMTV (u, z) :=
∑

j∈I

λj(βj − αj)
2 +

∫

R2

|∇xu(x,β)| dx.

with u = u(x,β) is also convex. The minimizer satisfies the Euler-Lagrange equation

(2.7) −

∫

R2

∇x ·

(

∇xu

|∇xu|

)

ψj(x)dx+ 2λj(βj − αj) = 0.

Thus its minimizer can be solved using gradient flow via setting β = β(t) = (βj(t)) and

solving the following time evolution equation

(2.8)
∂βj

∂t
=

∫

R2

∇x ·

(

∇xu

|∇xu|

)

ψj(x)dx− 2λj(βj − αj), (βj(0)) = (αj).

The automatic stopping criterion in [30] for the wavelet TV method is easily applicable for

the MTV method.

One may ask what is the advantage in using the MTV method. As we shall see, one

of the innovations in this study is the creation of a new color space, which is adaptively

modified from the standard YCrCb color space. To ensure quality output it is vital that

the Y-channel is kept sharp. The MTV algorithm maintains sharpness in an image like

the standard TV method, but has the additional advantage that it does not cartoonize an

image, making it well suited for color images.

3. Color Space and Automatic Stopping Criterion

One may argue that color images are no different from three monochromatic images once

we consider the three channels separately, and therefore to denoise a color photo one only

needs to denoise the three monochromatic channels separately. This view, however, misses

some important subtle characteristics in naturally captured color images that, when fully

utilized, yield superior results. To denoise color photos we must first understand the nature

of the noise in these images, and take full advantages of all available informations.

The most commonly used color space is the RGB color space. In the RGB color space

we denoise each of the three channels to complete the denoising of the color image. This

approach yields unsatisfactory results, particularly for images taken under artificial lighting

where the blue channel can be excessively noisy, or under low lighting using high ISO where

both the blue and the red channels can be noisy. A better way is to separate the luminance
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Figure 4. The Y (left) and Cr (right) channels of the natural color image
shown in Figure 2

from the chrominance. There are a few ways one can achieve this. One way is to use the

LAB color space, which is nonlinear against the RGB color space. Another choice is the

YCrCb color space. Given that YCrCb is a linear transformation of RGB it is widely used

in applications such as color video and JPEG compression of color images. The advantage

of separating luminance from chrominance is that human vision is typically less sensitive to

diffusions in chrominance. This is illustrated in Figures 4, 5 and 6. Figure 4 and the left

on Figure 5 show the YCrCb channels of the natural color image displayed in Figure 2. We

then performed a rather destructive wavelet thresholding on the chrominance channels Cr

(on the right of Figure 5) and Cb (on the left of Figure 6). The right on Figure 6 shows the

re-composed color image. As one can see, there is very little discernable difference between

the two color images. This robustness against diffusion in the chrominance does not extend,

however, to the luminance channel Y. In fact, even a tiny blurring in the luminance channel

will be immediately visible in the re-composed color image. Given these characteristics of the

luminance-chrominance decomposition, we would want to be more aggressive in denoising

the chrominance channels while less so in denoising the luminance channel.

The problem with the standard luminance-chrominance decomposition, such as LAB and

YCrCb, is that the luminance is “contaminated” by the blue and the red channels, where

noise is most likely to concentrates as pointed out earlier. As a result the luminance channel
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Figure 5. The Cb channel (left) of the natural color image shown in Figure
2. Using wavelet thresholding to severely blur the chrominance Cr channel
(right), in which most of the details are removed.

Figure 6. The other chrominance channel Cb (left) is also severely blurred
by wavelet thresholding. While the re-composed color image (right) after
blurring the CrCb channels seems to be a reasonable approximation to the
original one.

can be somewhat noisy, and therefore substantial denoising will often have to be performed

on it. This can adversely affect the quality of the denoised color image. To get around
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this problem we introduce a new color space, the adaptive modified YCrCb color space

(m-YCrCb color space). In the m-YCrCb space, the “luminance” channel is also a linear

combination of the RGB channels, but the weights are determined adaptively depending on

how noisy the red and the blue channels are. More precisely, the m-YCrCb color space is

obtained via the following linear transform from the RGB color space:

Ym = (1 − αR − αB)G+ αRR+ αBB,

Crm = (R − Y )/1.6,

Cbm = (B − Y )/2,

where Y is still the “luminance” in the standard YCrCb color space, weights αR, αB are

determined the noise level of the red and blue channels. We impose the condition that

αR + αB ≤
1

3

So that the “luminance” channel Ym is primarily from the green channel as usual. However,

if one or both of the red and blue channels are nosiy as measured using high frequency

wavelet coefficients similar to the one used in the automatic stopping criterion, the weights

will be adjusted to minimize the exposure of the Ym channel to noise. In general, if noise is

concentrated in the blue channel then taking αR = 1/3 and αB = 0 works very well.

(SHALL WE ADD A COMMENT HERE TO COVER THE CASE THAT THE GREEN

CHANNEL CONTAINS THE MOST NOISE, WE WILL COMPUTE THE LUMINANCE

BY RED AND BLUE).

To denoise a color image we perform the MTV denoising scheme on each of the three

channels Ym, Crm, and Cbm. An automatic stopping criterion is applied in the MTV

scheme. Since the luminance channel in the m-YCrCb color space no longer contains any

part of the blue channel it is usually much cleaner. The automatic stopping criterion,

which we describe in details below, will stop the process for the Ym channel after only a few

iterations. The denoising of the Crm channel also takes only a few iterations for the very

same reason. The process takes much longer in general for the Cbm channel, in which noise

is concentrated.

We now describe our automatic stopping criterion for the MTV denoising scheme with

the wavelet basis {ψj : j ∈ I}. Again we remark that the conventional notation for wavelet

bases use two or more indices, such as {ψjk}. In this paper we only use one index for
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conciseness, and there should not be any confusion. Like in the wavelet hard thresholding

scheme, we first choose a threshold ρ > 0. Let Jρ = {j ∈ ID : |βj(0)| = |αj | ≤ ρ}, where

ID ⊂ I is the index set corresponding to the diagonial portion of the highest frequency

wavelet coefficients. Intuitively speaking, as in the wavelet hard thresholding scheme, the

coefficients {βj(0) : j ∈ Jρ} will indicate how noisy the image is. In a noise-free image

these wavelet coefficients will mostly be very close to 0. But in a noisy image they will be

mostly not close to zero. Define µ(t) = 1

|Jρ|

∑

j∈Jρ
|βj(t)|. So µ(t) measures the noise in the

image at time t. The key idea is that an automatic stopping criterion of the time evolution

can be designed by measuring the reduction in the value µ(t) from the orginal value µ(0).

In [30] we have described two different automatic stopping criteria, the relative criterion

and the absolute criterion. Both of these can be adopted to the MTV scheme. For the

relative automatic stopping criterion, we consider µ(t)/µ(0). We will stop the time evolution

whenever this value goes below a threshold b. For example, we may set b = 0.1. This

threshold intuitively says that we stop the time evolution when we have reduced noise by

90%. For the absolute automatic stopping criterion, we stop the time evolution if µ(t) drops

below a threshold c. Since in a noise-free image we expect µ(t) to be very close to zero, it

is reasonable to set an absolute threshold for µ(t) to achieve a desired denoising effect.

In the actual implementation the value ρ does not seem to affect the automatic stopping

time sensitively. We usually take ρ = 2

|ID|

∑

j∈ID
|αj |. Both the relative criterion and the

absolute criterion work well, although we typically use the relative criterion. For an image

with moderate noise we set the threshold b to be between 0.05 and 0.1. In more noisy cases

such as the one in Figure 2, we use smaller threshold b around 0.03. It should be pointed

out that we have tested the automatic stopping time criterion on a number of noisy color

images as well as monochromatic medical images. The thresholds for optimal performance

stayed remarkably consistent. This is an important attribute for batch processing medical

images.

4. Examples

In this section we compare various denoising schemes using the noisy color image shown

in Figure 2. These schemes include the wavelet hard thresholding, the wavelet soft thresh-

olding, and MTV . We first compare the denoising on the RGB color space in Figures 7 and
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Figure 7. The denoised images by wavelet hard (left) and soft (right)
thresholdings in the RGB space. Either noticable noise still exists due to
high noise in blue channel, or the image is excessively smeared.

8. As one can see, given the severity of the noise in the blue channel none of them has per-

formed well, at least not well enough to be a serious tool practically in digital photography.

We next show the denoising results on the m-YCrCb space (Figure 9). Clearly in the new

color space there is a rather substantial improvement in perfromance. The reconstructed

blue channel is perhaps the best indicator of the effectiveness of the denoising. The MTV

method yields a superb reconstructed blue channel that is essentially noise free with all

details maintained.
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