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1. Introduction

Let D be a finite subset of Zd. D tiles Zd if an only if Zd can be written as a disjoint

union of translates of D, i.e., there is a set C ∈ Zd such that every point v ∈ Zd can be

expressed uniquely as x + y with x ∈ D and y ∈ C. In symbols, D ⊕ C = Zd. D is called a

tile and C the translation set.

In this note we give a sufficient and necessary condition for a subset D of Z2 with car-

dinality 4 to tile Z2. We may assume that D is not contained in a straight line. If D is

contained in a line, then D can tile Z2 if and only if D can tile the set of integral points on

that line, and such a sufficient and necessary condition for D was first given by Newman in

[1]. In this not we prove the following result:

Theorem 1.1. Let D be a subset of Z2 with cardinality 4. Assume that D is not contained

in a line, and furthermore 0 ∈ D. Then a sufficient and necessary condition for D can not

tile Z2 is that there exists a 2× 2 matrix G so that

GD =
{(

0
0

)
,

(
1
0

)
,

(
0
1

)
,

(
1

p/q

)}
with p, q ∈ Z \ {0} and p + q ∈ 2Z + 1; In another words, D can not tile Z2 if and only if

D = {v1,v2,v3,v4} such that v2 − v1 = p
q (v4 − v3) for some p ∈ 2Z \ {0} and q ∈ 2Z + 1.

2. Proof of Theorem 1.1

Proposition 2.1. Let A be a finite subset of Zd. Then the following statements are equiv-

alent:

(i) There exists B ⊂ Zd such that A⊕ B = Zd.
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(ii) There exist a non-singular d × d matrix G with rational entries and D ⊂ Qd such

that (GA)⊕D is a lattice in Rd.

Proof. The direction (i) =⇒ (ii) is clear. Now we show the opposite direction. Assume

that (GA)⊕D is a lattice in Rd, i.e., (GA)⊕D = HZ2 for some d×d matrix H. Clearly H

is rational. We may assume that H is non-singular (otherwise there exists C ⊂ Qd so that

HZd ⊕ C = H̃Zd for some non-singular d× d raional matrix H̃ and (GA)⊕D⊕ C = H̃Z2).

Then (H−1GA) ⊕ (H−1D) = Zd. Choose an integer p so that E := pH−1G is an integral

matrix. Note that (EA)⊕ (pH−1D) = pZd and EA ⊂ Zd. It follows that Λ := (pH−1D) ⊂
Zd. Since p is an integer, there exists a finite set V ⊂ Zd so that (pZd)⊕V = Zd. Therefore

(EA)⊕Λ⊕V = Zd. Note that Zd = (EZd)⊕U for some finite set U ⊂ Zd with 0 ∈ U . We

have (EA)⊕Λ⊕V = (EZd)⊕U . Letting Λ̃ = (EZd)∩(Λ⊕V ), we obtain (EA)⊕ Λ̃ = EZd.

This implies A⊕ (E−1Λ̃) = Zd.

Corollary 2.2. Let A and B be two finite subsets of Zd. If A = GB for some non-singular

d× d rational matrix G, then A can tile Zd if and only if B can tile Zd.

Lemma 2.3. Let C =
{(

0
0

)
,

(
p1

1
2 + p2

)
,

(
1
2 + p3

t + p4

)
,

(
1
2 + p5

1
2 + t + p6

)}
for some t ∈

Q and pj ∈ Z (j = 1, . . . , 6). Then there exists D ⊂ Q2 such that C ⊕ D is a lattice in R2.

Proof. Let t = m
n , where m ∈ Z, n ∈ N and gcd(m,n) = 1. Define

D =
{(

u

v + j
2n

)
, u, v ∈ Z, j = 0, 1, . . . , n− 1

}
.

Then one can check that

C ⊕ D =
(

1
2 0
0 1

2n

)
Z2.

This finishes the proof.

Corollary 2.4. Let A be a subset of Z2 of cardinality 4. Assume 0 ∈ A. Then A can tile

Z2 if A = GC for some 2 × 2 non-singular rational matrix G and some C ⊂ R2 which has

the form as in Lemma 2.3.

Remark 2.5. I doubt that the above “if” can be replaced by “iff”.

Lemma 2.6. For any u, v ∈ Q, one of the following three equations has a solution (x, y, z) ∈
Z3:
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(i) (1
2 + x)u + (1

2 + y)v = z.

(ii) xu + (1
2 + y)v = 1

2 + z.

(iii) (1
2 + x)u + yv = 1

2 + z.

Proof. It is easily check that if one of the above three equations has an integral solution,

then that equation also has an integral solution when we change u, v to ũ and ṽ so that

ũ/u, ṽ/v ∈ 2Z+1
2Z+1 . Thus to prove the lemma, we can assume without loss of generality that

u = 2m and v = 2n for m,n ∈ Z. Then it is a routine to check one of the above three

equations must have an integral solution.

Proposition 2.7. Let

D =
{(

0
0

)
,

(
1
0

)
,

(
0
1

)
,

(
u
v

)}
where u, v ∈ Q. Then there exists a non-singular 2× 2 rational matrix G such that GD has

the same form as C in Lemma 2.3 if u, v do not satisfy anyone of the following conditions:

(i) u = 1 and v 6∈ 2Z+1
2Z+1 .

(ii) v = 1 and u 6∈ 2Z+1
2Z+1 .

(iii) u = −v and u 6∈ 2Z+1
2Z+1 .

Proof. We will prove the existence of G in each of the following scenarios:

(1) u = 1 and v ∈ 2Z+1
2Z+1 .

(2) v = 1 and u ∈ 2Z+1
2Z+1 .

(3) u = −v and u ∈ 2Z+1
2Z+1 .

(4) u 6= 1, v 6= 1 and u 6= −v.

For scenario (1), let v = 2q+1
2p+1 , where p, q ∈ Z. We may take G =

(
0 p + 1

2
1
2 2p + 1

)
. Then

GD =
{(

0
0

)
,

(
0
1
2

)
,

(
1
2 + p
2p + 1

)
,

(
1
2 + q

1
2 + 2q + 1

)}
.

For scenario (2), let u = 2q+1
2p+1 , where p, q ∈ Z. We may take G =

(
p + 1

2 0
2p + 1 1

2

)
. Then

GD has the same expression as that in scenario (1).

For scenario (3), let u = 2q+1
2p+1 , where p, q ∈ Z. We may take G =

(
1
2

1
2

2p + 1 p + 1
2

)
.

Then GD =
{(

0
0

)
,

(
1
2

2p + 1

)
,

(
1
2

p + 1
2

)
,

(
0

q + 1
2

)}
.
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Now let us turn to the scenario (4). By Lemma 2.6, one of the following equations has a

integral solution (x, y, z):

(e1) (1
2 + x)u + (1

2 + y)v = z.

(e2) xu + (1
2 + y)v = 1

2 + z.

(e3) (1
2 + x)u + yv = 1

2 + z.

Assume at first that (e1) has an integral solution (x, y, z). Since u 6= −v, there exists t ∈ Q
such that

(t + x)u + (
1
2

+ t + y)v =
1
2

+ z.

Take G =
(

1
2 + x 1

2 + y
t + x 1

2 + t + y

)
. Then GD =

{(
0
0

)
,

(
1
2 + x
t + x

)
,

(
1
2 + y

1
2 + t + y

)
,

(
z

1
2 + z

)}
.

Now we assume (e2) has an integral solution (x, y, z). Since v 6= 1, there exists t ∈ Q so that
1
2u+tv = 1

2+t. Take G =
(

x 1
2 + y

1
2 t

)
. Then GD =

{(
0
0

)
,

(
x
1
2

)
,

(
1
2 + y

t

)
,

(
1
2 + z
1
2 + t

)}
.

If (e3) has an integral solution, we may construct G in a similar way as above.

Proposition 2.8. Let

D =
{(

0
0

)
,

(
1
0

)
,

(
0
1

)
,

(
u
v

)}
where u, v ∈ Q. Then there exists no C such that D ⊕ C is a lattice if u, v does satisfy one

of the following conditions:

(i) u = 1 and v 6∈ 2Z+1
2Z+1 .

(ii) v = 1 and u 6∈ 2Z+1
2Z+1 .

(iii) u = −v and u 6∈ 2Z+1
2Z+1 .

Proof. Without loss of generality we may only consider case (ii), since the sets D in cases

(i) and (iii) differ from that in (ii) only by an affine map.

Assume u = p
q with p ∈ Z, q ∈ N and p + q ∈ 2Z + 1. Take G =

(
q 0
0 1

)
. Then

GD =
{(

0
0

)
,

(
q
0

)
,

(
0
1

)
,

(
p
1

)}
By Proposition 2.1, we only need to prove that GD can not tile Z2.

Assume on the contrary that GD can tile Z2, i.e., (GD)⊕Λ = Z2. Then any x ∈ Z2 can

be uniquely written as x = x1 + x2 with x1 ∈ GD and x2 ∈ Λ. Define φ : Z2 → GD by
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x 7→ x1. Let {an}n∈Z be the sequence defined by

an =



1 if φ(n, 0) =
(

0
0

)
2 if φ(n, 0) =

(
q
0

)
3 if φ(n, 0) =

(
0
1

)
4 if φ(n, 0) =

(
p
1

)
We have the following observations:

(a) For any n ∈ Z, an+p 6= an and an+q 6= an.

(b) If an = 1 then an+q = 2. If an = 2 then an−q = 1. If an = 3 then an+p = 4. If

an = 4 then an−p = 3.

Let us first prove (a). From (GD)⊕ Λ = Z2 we obtain (GD −GD) ∩ (Λ− Λ) = {0}. Since(
p
0

)
,

(
q
0

)
∈ GD −GD, we have

(
p
0

)
,

(
q
0

)
6∈ Λ− Λ. Now assume (a) is not true.

Without loss of generality we assume an+p = an for some n. Then(
n
0

)
= y + λ1,

(
n + p

0

)
= y + λ2

for some y ∈ GD and λ1, λ2 ∈ Λ. It implies that
(

p
0

)
= λ2 − λ1 ∈ Λ − Λ, which leads

to a contradiction. This proves (a). To prove (b) without loss of generality we prove that

an+q = 2 when an = 1. Since an = 1, we have
(

n
0

)
=

(
0
0

)
+ λ for some λ ∈ Λ.

Therefore
(

n + q
0

)
=

(
q
0

)
+ λ, which implies an+q = 2. This finishes the proof of (b).

According to (a) and (b), we have the following claims:

(c1) Assume p > 0. If an ∈ {1, 3}, then an+p+q ∈ {1, 3}.
(c2) Assume p < 0. If an ∈ {1, 4}, then an−p+q ∈ {2, 3}.

Without loss of generality we only prove (c1). First assume an = 1. Then by (b) we have

an+q = 2. Thus by (a) we have an+p+q 6= 2. In the same time by (b) we have an+p+q 6= 4

since otherwise an+q = 3. Therefore we always have an ∈ {1, 3} when an = 1. Using an

essentially identical argument, we can obtain that an ∈ {1, 3} when an = 3. This finishes

the proof of (c1).
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Now assume p > 0. Then (c1) implies that the set {0, 1, . . . , p + q} can be partitioned

into two set A and B such that there exists a large N ∈ N so that for n > N , an ∈ {1, 3} if

n( mod p+q) ∈ A, and an ∈ {2, 4} if n( mod p+q) ∈ B. That means the density of those

n with an ∈ {1, 3} in Z ∩ [N,∞) is #A/(p + q), and the density of the rest is #B/(p + q).

Since p+q ∈ 2Z+1, these two densities are different. However from (b), these two densities

must be the same. This leads to a contradiction.

A contradiction can be derived on the same line for the case p < 0. We omit the details.

Proof of Theorem 1.1 Since D is not contained in a line, there exists a non-singular

rational 2 × 2 matrix A so that AD =
{(

0
0

)
,

(
1
0

)
,

(
0
1

)
,

(
u
v

)}
with u, v ∈ Q.

Assume D can not tile Z2. Then by Proposition 2.1, There is no non-singular rational

matrix G and C ⊂ Q2 such that GD ⊕ C be a lattice. Therefore by Proposition 2.7 and

Lemma 2.3, u, v do satisfy one of the following conditions:

(i) u = 1 and v 6∈ 2Z+1
2Z+1 .

(ii) v = 1 and u 6∈ 2Z+1
2Z+1 .

(iii) u = −v and u 6∈ 2Z+1
2Z+1 .

Thus there exists a non-singular rational matrix B such that

BAD =
{(

0
0

)
,

(
1
0

)
,

(
0
1

)
,

(
1

p/q

)}
with p, q ∈ Z \ {0} and p + q ∈ 2Z + 1. This proves the necessity. The sufficiency is implied

by Proposition 2.8.
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