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Abstract

Texture and feature extraction is an important research area with a wide range of applications in

science and technology. Selective extraction of entangled textures is a challenging task due to spatial

entanglement, orientation mixing and high frequency overlapping. The partial differential equation

(PDE) transform is an efficient method for functional mode decomposition. The present work introduces

adaptive PDE transform algorithm to appropriately threshold the statistical variance of the local variation

of functional modes. The proposed adaptive PDE transform is applied to the selective extraction of

entangled textures. Successful separation of human face, clothes, background, natural landscape,

text, forest, and camouflaged sniper has validated the proposed method.
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I Introduction

Texture is one of the important features characterizing many natural and man-made images. Texture

characterization and analysis are usually performed according to the spatial as well as frequency vari-

ations of brightness, pixel intensities, color and texture orientation in the different regions of the image

corresponding to different types of textures. For example, the roughness or bumpiness of an image

usually refers to variations in the intensity values, or gray levels. Texture segmentation, recognition and

interpretation are critical for human visual perception and processing. As a result, research on texture
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analysis has received considerable attention in recent years. A large number of approaches has been

proposed for texture classification and segmentation.1–8,14,17,33 In general, texture analysis methods fall

into two categories: statistical methods which analyzes the Fourier power spectrum, gray level values,

and various variance matrices of the input image, and structural methods which is knowledge-based

algorithms with an emphasis on the structural primitives and their placement rules. Some examples

of such methods include Markov random field models,12,13 simultaneous autoregressive model,11 and

fractal models.15 Among many existing approaches, local variation minimization has been a popular and

powerful technique in image analysis16 with applications to the texture modeling.18 Multiphase segmen-

tation approaches are based on the structural division of gray scales.19 More recently, multiresolution

approaches have become more important in texture analysis,9–11,20 where fixed-size neighborhood and

window size are used to derive features at varying scales corresponding to the input image at different

resolutions.

In general, the total texture extraction has become a mature technique in real applications. However,

despite of the progress in the past few decades, selective extraction of entangled textures encounters a

number of difficulties. One difficulty is due to spatial entanglement, including orientation mixing of various

textures. Another difficulty is due to gray scale entanglement, especially the near continuous merging of

various textures. The other difficulty is due to frequency entanglement, which plagues texture analysis

when many high frequency textures coexist.

In this work, we propose an adaptive partial differential equation (PDE) transform approach for selec-

tive extraction of entangled textures. By using arbitrarily high order PDEs, the PDE transform is able to

decompose signals, images and data into functional modes, which exhibit appropriate time-frequency

localizations.21–25 Additionally, the PDE transform is able to provide a perfect reconstruction. Unlike

wavelet transform or Fourier transform, the PDE transform offers results in the physical domain, which

enables straightforward mode analysis and secondary processing. Based on the image mode function

generated by the PDE transform method, the adaptive PDE transform algorithm calculates the variance

of the local variation of the image mode functions followed by the corresponding thresholding analysis.

II PDE transform method

In the past two decades, PDE based image processing approaches have raised a strong interest in the

image processing and applied mathematical communities and have opened new approaches for image

denoising, enhancement, edge detection, restoration, segmentation, etc. The use of PDEs for image

analysis started as early as 1980’s when Witkin first introduced diffusion equation for image denoising.26
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The time evolution of an image under a diffusion operator is formally equivalent to the low-pass filter.

After Perona and Malik introduced anisotropic diffusion equation in 1990,27 non-linear PDE has found

great applications for a variety of image processing tasks such as edge detection and denoising. Two

important advances in the history of image processing, namely the Perona-Malik equation and the total

variation methods,16 employ second order nonlinear PDEs for image analysis. The Willmore flow, pro-

posed in 1920s, is a fourth order geometric PDE and has also been used for surface analysis. In the

past decade, fourth order nonlinear PDEs have attracted much attention in image analysis.28–30

Arbitrarily high order nonlinear PDEs have also been introduced by Wei in 1999 to more efficiently

remove image noise in edge-preserving image restoration28

ut(r, t) =
∑
q

∇ ·
[
dq(u, |∇u|)∇∇2qu

]
+ e(u, |∇u|) , (1)

where u ≡ u(r, t) is the image function, dq(u(r), |∇u(r)|, t) and e(u(r), |∇u(r)|, t) are edge sensitive

diffusion coefficients and enhancement operator respectively. The Perona-Malik equation is recovered at

q = 0 and e(u(r), |∇u(r)|, t) = 0. As in the original Perona-Malik equation, the hyper-diffusion coefficients

dq(u(r), |∇u(r)|, t) in Eq. (1) can be chosen in many different ways. For instance, one can set

dq(u(r), |∇u(r)|, t) = dq0 exp

[
−|∇u|

2

2σ2
q

]
, (2)

where the values of constants dq0 depend on the noise level, and σ0 and σ1 are chosen as the local

statistical variance of u and ∇u

σ2
q (r) = |∇qu−∇qu|2 (q = 0, 1). (3)

The notation Y (r) above denotes the local average of Y (r) centered at position r. In this algorithm,

the statistical measure based on the variance is important for discriminating image edges from noise.

As such, one can bypass the image preprocessing, i.e., the convolution of the noise image with a test

function or smooth mask.

In general, the nonlinear PDE operators described above serve as low-pass filters. PDE based non-

linear high-pass filters were introduced by Wei and Jia31 in 2002. They constructed two weakly coupled

PDEs to act as a high-pass filter. Recently, this approach has been combined with Wei’s earlier arbitrarily
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high order nonlinear PDE operator to give23

∂t

 um

vn

 =

 ∑m−1
j=0 ∇ · duj∇∇2j − εum

, εvn

εum
,
∑n−1

j=0 ∇ · dvj∇∇2j − εvn


 um

vn

 ,

where εum ≡ εum(|∇um|) and εun ≡ εun(|∇vn|) are made edge sensitive. As low-pass filters, both

duj ≡ duj(|∇um|) ≥ 0 and dvj ≡ dvj(|∇vn|) ≥ 0 when j is even. Similarly, both duj(|∇um|) ≤ 0 and

dvj(|∇um|) ≤ 0 when j is odd. We can define a PDE transform as

wm,n(r, t) = um(r, t)− vn(r, t) = Hmn(r, t)X(r), (4)

where Hmn(r, t) can be regarded as a coupled nonlinear PDE operator. For Eq. (4) to work properly,

we choose |dvj(|∇vn|)| � |duj(|∇um|)|. As shown in our earlier work, by increasing the order of the

highest derivative, one can increase frequency localization and accuracy of the PDE transform for mode

decomposition.23 The frequency selection of wm,n(r, t) also depends on the evolution time. High order

PDEs are integrated by using the Fourier pseudospectral method.23

In the PDE transform, intrinsic mode functions are systematically extracted from residues, i.e.,

wk
mn = HmnX

k
mn, ∀k = 1, 2, · · · (5)

where wk
mn is the kth mode function. Here the residue function is given by

Xk
mn = X1

mn −
k−1∑
j=1

wj
mn, ∀k = 2, 3, · · · . (6)

where X1
mn = X(r). Therefore, X =

∑k−1
j=1 w

j
mn+X

k
mn is a perfect reconstruction of X in terms of all the

mode functions and the last residue. The mode decomposition algorithm given in Eq. (5) is inherently

nonlinear, even if a linear PDE operator might be used.

The PDE transform is applied to the image 1(a) to extract the three textures in Figures 1(b), 1(c) and

1(d). Note that only one texture is isolated at each time, which means the proposed PDE transform is

able to perform a controlled or selective segmentation of textures. The PDEs of up to order 200 have

been used for the selective texture segmentation. Due to the ideal frequency localization, three textures

are separated with clear boundary sharpness.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1: Extraction of various embedded textures using the PDE transform. Figure 1(a) shows the original image composed of
various horizontal and vertical textures. Figures 1(b) through 1(d) show the three texture patterns extracted by applying the PDE
transform, one at each time. Figure 1(e) shows the edge mode obtained by applying the PDE transform to Figure 1(a). Figure 1(f)
shows the variance of the local variation of the image mode function 1(e). Figures 1(g) and 1(h) show the projection, or average,
of the variance in Figure 1(f) along x- and y-direction respectively.

III Adaptive PDE transform algorithm

The separation of textures highly entangled in spatial locations, frequency ranges and gray scales be-

comes a challenge and conventional segmentation techniques are in general not applicable for such

cases. For example, highly oscillatory textures can be separated from slowly varying background, but

can not be separated from another texture with overlapping frequency distribution purely based on fre-

quency fingerprints. To selectively distinguish such entangled textures of high frequency, one needs a

mode decomposition algorithm that is able to be highly localized in frequency. Second order PDEs are

poorly localized in the frequency domain.23 Whereas, the PDE transform with high order PDEs pro-

vides desirable frequency localization.23 However, the PDE transform by itself does not perform well for

the separation of entangled textures. To this end, we introduce an adaptive PDE transform algorithm

for selective texture extraction. The essence of the adaptive PDE algorithm lies in the realization that

features of various textures are closely correlated with both the magnitude and smoothness of the gray

scale values, or, equivalently, the local variation of the image mode functions. Similar ideas have been

implemented in other methods such as total variation.16

Nonlinear PDEs have been widely applied to detect images with noises. However, despite of better

image edge protection, the nonlinear anisotropic diffusion operator may still break down when the gra-
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dient generated by noise is comparable to image edges and features.32 Application of a pre-convolution

with a smoothing function to the image can practically alleviate the instability and reduce gray scale

oscillation, but the image quality is often degraded. One alternative solution introduced by Wei28 is to

statistically discriminate noise from image edges by a measure based on the local statistical variance of

the image or its gradient. Such a local statistical variance based edge-stopping algorithm was found to

work very well for image restoration.

Local variation calculation

Statistical variance analysis

Selective texture segmentation

Adaptive 
PDE 

transform

Mode decomposition via high order PDE transformImage input

Choose parameters for 
texture orientation, 
frequency, brightness

Figure 2: Algorithm of adaptive PDE transform for entangled texture separation.

Similar statistical analysis can be employed to perform selective texture extraction for images con-

taining highly entangled and overlapping textures. In the present approach, we first compute the local

variation of each pixel of the image mode functions obtained by the high order PDE transform. Unlike

the total variation, the local variation is a still a function, of which the variance can be calculated

E(X(r)) =
∣∣∣|∇Xk(r)| − |∇Xk(r)|

∣∣∣2. (7)

where Xk(r) is the kth mode function obtained by the PDE transform (6) and
∣∣∇Xk(r)

∣∣ is evaluated

locally over the neighbor pixels. Equation (7) yields a statistical analysis which is used for various

texture separation and segmentation with appropriate threshold values. Various threshold values need

to be chosen to select the range of the variance corresponding to the particular texture of interest. All

the previously classified textures are registered for sequential/recursive texture extractions. A flowchart

of the adaptive algorithm of PDE transform is shown in Figure 2.

Figure 1(e) shows the edge mode obtained by applying the PDE transform to Figure 1(a). Figure 1(f)

shows the variance of the local variation of gray scale calculated using adaptive PDE transform. Figures

1(g) and 1(h) show the projection, or average, of the variance in Figure 1(f) along x- and y-direction

respectively. By slicing out different domain of the variance in Figure 1(f), three different textures in

Figures 1(b) through 1(d) are then perfectly separated from each other.
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IV Applications

In this section, adaptive PDE transform is applied to three different cases to illustrate its superior ca-

pability of selective texture separation. The three images feature different types of entangled textures.

Figure 3(a) contains textures overlapping in physical space with entangled frequency fingerprints. Fig-

ures 5(a) and 6(a) contain spatially segmented textures overlapping in frequency domain. Figure 7

contain textures with overlapping textures highly entangled in both frequency and spatial domains.

IV.A Text-image separation

The adaptive PDE transform method employing the variance of the local variation of the image mode

functions is applied to several benchmark test cases. In particular, separation of text and texture can be

regarded as a generalized type of texture analysis. In Figure 3, texts of various fonts are imprinted on

the background image. Additional background watermark in Chinese is also present in the image 3(a).

Separation of English title from both background image and Chinese characters is a challenging task in

terms of texture analysis because of high degree of entanglement of very similar textures. Due to the

font size difference in this application, high order PDE transform plays an extremely important role in

differentiating modes with slightly different frequency characteristics. In Figure 3(b), the PDE transform

successfully suppresses the low frequency parts and extracts the mode with frequency band mainly

corresponding to texts. Such a procedure is similar to the edge detection in a general image processing.

Statistical segmentation is then performed on the high frequency mode. A suitable threshold value is

used to cut off the region with low variance and yields only the texts as shown in Figure 3(c).

(a) Original image. (b) Mode function. (c) Extracted texture.

Figure 3: Extraction and separation of texts, background watermark, and textures of image 3(a). Shown in the3(b) and 3(c) are
the image mode function and extracted texture using adaptive PDE transform.
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Figure 4: Adaptive PDE transform for selective texture extraction in the Barbara image. The variance of the local variation is shown
in the

IV.B Selective texture extraction

The present algorithm of selective texture extraction is also tested on the widely used image of Barbara

in Figure 5. Barbara image is a benchmark test for edge detection and denoising. It contains fine

details of different textures such as the table cloth, curtain behind Barbara, scarf and clothes on her.

Distinctions between all these textures and background is much larger than those among these textures,

which leads to the difficulty of selective texture separation and segmentation. Due to the tiny difference

between the frequency or spectrum features of different textures mentioned above, a highly frequency-

selective separation method is required. However, conventional Fourier method is not applicable for

this case since the textures are entangled in the frequency domain. Moreover, conventional statistical

segmentation does not perform well for this case due to the gray scale entanglement. The current

adaptive PDE transform method performs well for the selective texture extraction in the Barbara image.

The total texture, or image edge, is extracted from the high frequency mode of the PDE transform as

shown in Figure 5(b). The variance of the local variation is shown in Figure 4, which is calculated and

used for selective texture extraction and separation using appropriate thresholding values. The resulting

textures are shown in the Figures 5(c) through 5(f) which correspond to those of clothes, curtain and

table cloth respectively. The four textures in the Figure 5 are superimposed on the original image for the

purpose of a clearer visualization.
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(a) Original image. (b) Image mode function.

(c) Texture 1 (d) Texture 2

(e) Texture 3 (f) Texture 4

Figure 5: PDE transform is applied on image 5(a) to extract edges of all textures into 5(b). Adaptive PDE transform is then applied
to extract different textures from 5(b). In 5(c) through 5(f), all the textures are superimposed on the original image for better
viewing.
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In Figure 6, the present adaptive PDE transform is applied to detect a sniper hidden in the forest

(Figure 6(a)). The whole image is composed of highly entangled textures. The boundaries between

these textures are very challenging to be classified appropriately. In our approach, variance of the local

variation is calculated and used for texture separation as in the previous examples. By appropriate

thresholding, the variance can be decomposed into three regions corresponding to those of the forest,

the tree trunk, and the sniper. The resulting texture modes are shown in Figures 6(b) through 6(d).

(a) Original image. (b) Texture 1

(c) Texture 2 (d) Texture 3

Figure 6: Sniper detection by using adaptive PDE transform method. Textures 1, 2 and 3 are respectively from the forest, the tree
trunk and the sniper.
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(a) Original neuron image. (b) Class 1 of the selective neuron skeleton.

(c) Class 2 of the selective neuron skeleton. (d) Class 3 of the selective neuron skeleton.

Figure 7: Neuron image.

IV.C Natural neuron skeleton analysis

In the previous introduction to the adaptive PDE transform algorithm and applications, local variation is

defined and calculated for the intensity of image mode function to extract selective textures beyond the

total texture extraction. The selective texture can be generalized to indicate any spatial parts of the im-

age characterized with specific (and usually functionally important) spatial orientation and/or frequency
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Neuron skeleton class Physical meaning Percentage of the total neuron surface area
Class 1 shown in Figure 7(b) Soma (neuron cell body) 22%
Class 2 shown in Figure 7(c) Major (root of) dendrite 24%
Class 3 shown in Figure 7(d) Fine (tips of) dendrite 54%

Table 1: Classification of natural neuron skeleton.

oscillation, such as different parts in the neuron network, brain cells, and retina vasculatures. In Figure

7(a), image of typical neuron is shown. With advanced imaging techniques made available, research

scientists have been able to obtain more and clearer 2D and 3D images of various neuron cells and

network, study of which will be important for identifying the relation between phenotype and genotype

patten in the fields of both physiology and molecular biology. Closely related to the advancement in

the experimental imaging techniques, various improved computation image processing techniques have

been proposed to better analyze the neuron images. Neuron morphology study has become more and

more important since the shape and branching of dendrites in neurons are closely related to the struc-

ture and functioning of the neuron network, and advancements in both experimental imaging techniques

and computational image enhancements have assisted better visualization and exploration of neuron

morphology.34,35,37–41 In the study of neuron morphology, image processing and segmentation of cul-

tured neuron skeleton provides details of how neuron grow and branches. In this paper, we apply the

adaptive PDE transform to the study of “natural” neuron skeleton to segment and classify neuron skele-

tons into different desired classes according to the spatial and frequency oscillation of neuron dendrites,

very much like the way of dividing total image texture into several selective fine textures. Such an sep-

aration and classification enables secondary computation and analysis of neuron morphology, such as

the computation of surface areas (for 2D images) or volumes (for 3D images) for different classes of

neuron skeletons. Specifically, we aim to separate different parts, or textures, such as soma, dendrites,

axon, terminal or lobe, and numerous ramifications, from the neuron imaging as shown in Figures 7(b)

through 7(d), three classes of neuron parts are separated according to the spatial and frequency oscil-

lation. Surface areas of each classes are listed in the table 1. Values of these surface area ratios and

many other geometric ratios of neuron morphology are related, on both molecular and cellular levels, to

the many physiological diseases as well as classification of neuron networks.

V Conclusion

Selective extraction and separation of image textures involving spatial entanglement, gray scale mixing,

and high frequency overlapping is a challenging task in image analysis. In this work, we introduce ap-

propriate adaptation to our earlier partial differential equation (PDE) transform23 to construct an adaptive
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PDE transform algorithm. The adaptation is realized via a proper thresholding with the statistical vari-

ance of the local variation of image functional mode functions. The present PDE transform enables one

to decompose and separate modes with entanglement in both spatial and frequency domains. The pro-

posed method is applied to several challenging benchmark images. Textures of very similar features in

the same image are successfully decomposed and separated using the present adaptive PDE transform

method.
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