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1. Introduction

Many classical puzzles involve hats. The general setting for these puzzles is a game in

which several players are each given a hat to wear. Associated with each hat is either a

color or a number. Every player can see the color or number of everyone else’s hat but not

his own. The players are then trying to figure out the colors or the numbers on their own

hats. The Three-Hat Problem is one of such puzzles.

The Three-Hat Problem. Three players are each given a hat to wear. Written on each

hat is a positive integer. Any player can see the other two numbers but not his own. It

is known that one of the numbers is the sum of the other two. They take turns to either

identify their numbers, or pass if they can’t. The following process has taken place:

Player A: Pass.

Player B: Pass.

Player C: Pass.

Player A: My number is 50.

The question is: What are the other numbers?

There is also a more complex version of the above problem, in which the process has gone

longer as follows:

Player A: Pass.

Player B: Pass.

Player C: Pass.

Player A: Pass.

Player B: Pass.

Player C: Pass.
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Player A: Pass.

Player B: Pass.

Player C: My number is 60.

Again the question is: What are the other numbers?

The most general form of the Three-Hat Problem would have numbers a, b, a + b. In this

general setting one may ask: (a) Will the players be able to determine their numbers, and

(b) how will the process go if so.

As far as we know, both puzzles were proposed by Donald Aucamp in the MIT Technology

Review, see [4, 5, 6]. Although by no means trivial, the first puzzle is readily within grasph

of most enthusiasts who have some familiarity with these type of puzzles. The solution is

Player B has 20 and Player C has 30. To see why these two numbers work. Player A on his

first turn obviously doesn’t know whether his number is 50 or 10. Similarly neither Player B

nor Player C can immediately figure out their numbers. However, on his second turn Player

A can reason: If mine is a 10, then Player C would know his number is either 10 or 30. If

it is 10 Player B would immediately know his number is 20. But he didn’t know. So Player

C should know his number is 30. Now since Player C didn’t know, my number must be

50. With this kind of reasoning we can also rule out all other combinations. So [50, 20, 30]

is the only solution to the first puzzle. The second In a private communication Aucamp

mentioned that he received no solution to the second puzzle from the readers [1]. As it

turns out, our study shows that the second puzzle has eight solutions! They are [25, 35, 60],

[35, 25, 60], [42, 18, 60], [18, 42, 60], [10, 50, 60], [50, 10, 60], [44, 16, 60], [16, 44, 60].

The Three-Hat Problem is among the more challenging hat puzzles. However, as we shall

see, like the Three-Hat Problem many of these hat puzzles can be solved using the same

principles and techniques. We list two classical hat puzzles here.

The Two-Hat Problem. Two players are each given to wear a hat with a positive integer

written on it. Assume that the two numbers are consecutive integers. Each player can see

the other’s number but not his own. They take turns to either identify their numbers or

pass if they cannot. Will they be able to identify their numbers, and if so what will the

process be?
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The Color-Hat Problem. Several players are each given either a red or a blue hat to

wear. Each player can see all other hats but not his own. They are also told that there is at

least one red hat. The game goes by rounds. In each round, every player will either identify

the color of his hat or pass, but all players do so simultaneously. The game ends when one

or more players have corectly identified their colors while no one makes a mistake. What

will happen? This puzzle takes on many popular forms, one of which is the Muddy Face

Problem analyzed in Tanaka and Tsujishita [8].

A very challenging variation of the Color-Hat Problem was due to Todd Ebert [2] and

was reported in an article in the New York Times [7]. In this variation, the players are

allowed to collaborate as a team and decide on a strategy before the game starts. However,

the players have only one chance to identify their colors. They win if at least one player

correctly name the color of his hat while no one is wrong. The question is: How well can

they do? What is their optimal strategy? This problem has an interesting connection to

coding theory.

In fact each of the hat puzzles mentioned here can have a similar collusion version that

is phrased as a game of strategy. Suppose that we say the players win if at least one player

makes a correct identification while no one else is wrong. Then each aforementioned hat

puzzle can be viewed as a problem of finding the strategy for the players to win with the

least number of go-arounds.

Although this paper is concerned with the Three-Hat Problem, a main additional objec-

tive is to show that these type of puzzles can be analyzed easily if we first treat them as

games of strategies. Once optimal strategies are found we can often easily show that the

non-collusion version and the collusion version for those games are equivalent, and therefore

they will end in exactly the same fashion. One of the main advantages of presenting these

puzzles as games of strategy is that we can avoid the so-called super-rationality assump-

tion (see Hofstadter [3]), namely each player has unlimited mental capacity to process all

informations available to them, including long chains of reasonings such as “I know player

B knows player C knows I know player C knows ....” Such an assumption can be con-

fusing even to mathematicians without venturing deeply into the realm of set theory and

mathematical logic. The Three-Hat Problem is an excellent example to illustrate this point.
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2. Optimal Strategy for the Three-Hat Problem

We now discuss a strategy for the collusion version of the Three-Hat Problem. We say a

strategy is viable if it always leads to a win for the players. (So there is no guessing at any

stage.) A viable strategy is optimal if it requries the least number of turns (go-arounds) to

end the game successfully regardless what the numbers are on the three hats. Of course,

not all viable strategies are optimal. In theory it is also possible that an optimal strategy

does not exist, in which case a strategy may be the best for some configurations but no

strategy is the best for all configurations. For the Three-Hat Problem there does exist an

optimal strategy, which we give here. The optimality of the strategy is proved in the next

section.

The optimal strategy we describe here is a reduction scheme involving a chain of vectors

with postive integer entries. Throughout this paper we assume that the game begins with

Player A, followed by Player B next and Player C last. This order remains in all subsequent

rounds until the game ends. The numbers a, b, c for Players A, B and C respectively are

represented by the vector [a, b, c]. Such a vector is called a three-hat configuration, or simply

just a configuration.

Let H denote the set of all triples s = [a, b, c] where a, b, c are positive integers such

that the largest of which is the sum of the other two. H represents the set of all possible

configurations of the Three-Hat Problem. Define a map σ : H −→ H as follows: For

s = [a, b, c] ∈ H, if two of the entries are identical then σ(s) = s; otherwise the largest entry

is replaced by the difference of the other two entries. For example, σ([3, 10, 7]) = [3, 4, 7],

σ([10, 1, 9]) = [8, 1, 9], and σ([3, 3, 6]) = [3, 3, 6]. We shall call s ∈ H a base configuration if s

contains two identical entry, or equivalently σ(s) = s. Note that in the base configuration,

the player with the largest number can immediately declare that his number is the sum of

the other two numbers. (He may choose not to in order to obey his strategy.)

Our strategy for the Three-Hat Problem involves a chain of configurations for each player.

For any s ∈ H we otain a sequence of configurations s, σ(s), ...σn(s) where n ≥ 0 is the

smallest power such that σn(s) is a base configuration. For example, for s = [3, 10, 7] the

sequence is

[3, 10, 7], [3, 4, 7], [3, 4, 1], [3, 2, 1], [1, 2, 1].
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We call the sequence in reverse order the configuration chain associated with s. So in the

above example s = [3, 10, 7] the associated configuration chain is

[1, 2, 1], [3, 2, 1], [3, 4, 1], [3, 4, 7], [3, 10, 7].

Given a configuration, we say that a player has the cue if his number is the sum of the other

two. For example, for the configuration [3, 10, 7] Player B has the cue.

Chain Reduction Strategy for the Three-Hat Problem. For the Three-Hat Problem

with configuration s = [a, b, c], let sA = [b + c, b, c], sB = [a, a + c, c] and sC = [a, b, a + b].

These are the working configurations for Players A, B, and C respectively. Each player

now writes down the configuration chain associated with his working configuration. It is

important to note that the chains differ only at the end. The players with the two smaller

numbers have longer chains by one configuration, which may differ for these two players.

The rest of the chains are identical.

When the game begins, the players are assigned the first configuration in their respective

configuration chain, and proceed with the following reduction scheme:

At each turn, a player looks at what remain on his configuration chain. If it contains only

one configuration he declares his number to be the sum of the other two numbers. The game

is over. Otherwise he will pass. Each player will now examine his assigned configuration

(which is in fact the same for all the players before the game ends). If he sees that the player

who has just passed has the cue for this configuration he will cross out the configuration

from his chain and assign himself the next configuration in the chain. Otherwise he keeps

his assigned configuration and his chain intact. The game continues until a player declares

his number.

The following two examples will facilitate the understanding of the strategy.

Example 1. The numbers for Players A, B, C are 60, 36, 24, respectively. In this case the

working configurations are sA = [60, 36, 24], sB = [60, 84, 24] and sC = [60, 36, 96]. The

configuration chains are

Player A : [12, 12, 24], [12, 36, 24], [60, 36, 24]
Player B : [12, 12, 24], [12, 36, 24], [60, 36, 24], [60, 84, 24]
Player C : [12, 12, 24], [12, 36, 24], [60, 36, 24], [60, 36, 96]
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As the start of the game, all players are assigned the configuration [12, 12, 24]. Player A

will pass, as will Player B and Player C. But Player C has the cue. So after Player C has

passed the configuration [12, 12, 24] is crossed out by all players from their chain. The new

configuration chains are

Player A : [12, 36, 24], [60, 36, 24]
Player B : [12, 36, 24], [60, 36, 24], [60, 84, 24]
Player C : [12, 36, 24], [60, 36, 24], [60, 36, 96]

All three players are now assigned the configuration [12, 36, 24]. Player A and Player B will

pass again. But since Player B has the cue, after his pass all three players will cross out

[12, 36, 24] from their chain and assign themselves the next configuration, which is [60, 36, 24]

for everyone. The new configuration chains are

Player A : [60, 36, 24]
Player B : [60, 36, 24], [60, 84, 24]
Player C : [60, 36, 24], [60, 36, 96]

It is Player C’s turn and he will pass. Now Player A has only one configuration left on

his chain, namely [60, 36, 24]. So he declares his number to be the sum of the other two

numbers, which is 60. The game ends with a win for the players.

Example 2. The numbers for Players A, B, C are 3, 10, 7, respectively. In this case the

working configurations are sA = [17, 10, 7], sB = [3, 10, 7] and sC = [3, 10, 13]. The following

shows the configuration chains and the action at each turn. Players with the cue are denoted

by a ∗.

Player A: Pass [1, 2, 1], [3, 2, 1], [3, 4, 1], [3, 4, 7], [3, 10, 7], [17, 10, 7]
Player B*: Pass [1, 2, 1], [3, 2, 1], [3, 4, 1], [3, 4, 7], [3, 10, 7]
Player C: Pass [3, 2, 1], [3, 4, 1], [3, 4, 7], [3, 10, 7], [3, 10, 13]
Player A*: Pass [3, 2, 1], [3, 4, 1], [3, 4, 7], [3, 10, 7], [17, 10, 7]
Player B*: Pass [3, 4, 1], [3, 4, 7], [3, 10, 7]
Player C*: Pass [3, 4, 7], [3, 10, 7], [3, 10, 13]
Player A: Pass [3, 10, 7], [17, 10, 7]
Player B*: I have 10 [3, 10, 7].

The game ends successfully for the players.

Using this strategy, the player with the sum of the other two numbers will always be the

one to declare his number correctly to end the game. This is quite easily shown. Since his

chain is a subchain of the other two players, and by the time his chain is down to only one

configuration the other players still have two. Moreover, since he holds the cue at that stage
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the other players cannot reduce the chain further without waiting for him to act. But when

he does act he will declare his number. So he is always the first to identify his number.

3. Optimality of the Chain Reduction Strategy

We will now prove that the above strategy is optimal for the Three-Hat Problem in the

sense that no other viable strategy will be able to end the game with fewer turns for all

configurations. Before proceeding further we first notice that because gcd(a, b) = gcd(a, c) =

gcd(b, c) the players can always divide out the numbers by the greatest common divisor of

the two numbers they see. So we may without loss of generality assume that all numbers in

the Three-Hat game are pairwise coprime. In the coprime case the only base configurations

are [1, 1, 2], [1, 2, 1] and [2, 1, 1].

Proposition 1. No matter what viable strategy the players use for the Three-Hat Problem,

the player whose number is the sum of the other two is always the first player to declare his

number.

Proof. Assume that in the Three-Hat Game a player declared his number on the very first

turn of the game. It is easy to see that this can happen only if we have a base configuration

and this player has the sum of the other two numbers. No other cases allow the game to

end on the very first turn without guessing. For instance, even in the base configuration

[1, 2, 1] Player A cannot declare his number on his first turn without guessing, for he can

have both 1 or 3.

If the proposition is false then we have a game with configuration [a, b, c] that ends on the

n-th turn, n > 1, by a player who does not have the sume of the two numbers. Without loss

of generality we assume that Player C declares his number to end the game, and he does not

have the sum. So c = |a− b|. But if so Player C must have concluded on the n-th turn that

his number is not c = a+ b. This is equivalent in saying that had his number been c = a+ b

the game would have ended earlier, with another player declaring his number. Therefore

the strategy the players use allows them to end the three-hat configuration [a, b, a + b] in

k < n turns by a player other than Player C. This player does not have the sum of the

other two numbers.
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We can repeat this reasoning. In the end, we deduce that using their strategy the players

can end a non-base configuration game in one turn by a player whose number is not the

sum of the other two numbers. This is a contradiction.

Theorem 2. The Chain Reduction Strategy is the optimal strategy for the Three-Hat Prob-

lem.

Proof. For the Three-Hat Problem with the configuration [a, b, c] let r([a, b, c]) denote the

number of turns needed to end the game using the Chain Reduction Strategy. We prove

that one cannot end the game in fewer turns using any other strategy.

Assume that the players are using another viable strategy such that the game ends in

f([a, b, c]) turns. Our objective is to show f([a, b, c]) ≥ r([a, b, c]). Without loss of generality

we assume that a, b, c are pairwise coprime. We will prove the optimality of the Chain

Reduction Strategy by induction on max(a, b, c).

For max(a, b, c) = 2 we have the base case. It is clear that the Chain Reduction Strategy

is optimal, f([a, b, c]) ≥ r([a, b, c]). Now assume that f([a, b, c]) ≥ r([a, b, c]) whenever

max(a, b, c) < M . We now prove that f([a, b, c]) ≥ r([a, b, c]) if max(a, b, c) = M .

We shall examine the case a = b + c and b > c, so a = M . The other cases are proved in

virtually identical fashion so we shall omit them. Note that by Proposition 1 the game will

end with Player A declaring his number regardless of the strategy. With this in mind we

need only to examine what happens before Player A declares his number. Clearly from his

perspective Player A knows he has either a = b + c or a = b− c. He is not able to declare

his number until he rules out a = b − c, regardless of the strategy the players are using.

Now since all strategies end with the player with the sum declaring his number, Player A

knows that if his number is a = b − c Player B will declare his number first on the n-th

turn, where n = f([b − c, b, c]). But by the n-th turn Player B will pass because he does

not have the sum, and after it the earliest Player A can declare his number is after Player

C’s pass. Thus

f([a, b, c]) ≥ 2 + f([b− c, b, c]).

Note that here we do not get equality in general because we do not aasume the strategy

is optimal. By the induction hypothesis, since max(b − c, b, c) = b < a = M we have

f([b − c, b, c]) ≥ r([b − c, b, c]), and hence f([a, b, c]) ≥ 2 + r([b − c, b, c]). We argue that
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r([a, b, c]) = 2 + r([b − c, b, c]). This can be seen easily if we compare the configuration

chains for [b − c, b, c] and those for [a, b, c]. For all three players the former is a sub-chain

of the latter with one less configuration. On the r([b − c, b, c])-th turn Player B will pass,

and he has the cue. So [b − c, b, c] is crossed out from eveyone’s chain, leaving Player A

with only one configuration on his chain, namely [a, b, c]. After Player C passes Player

A is able to declare his number as a = b + c using the Chain Reduction Strategy. Thus

f([a, b, c]) ≥ 2+r([b−c, b, c]) = r([a, b, c]). This proves the optimality of the Chain Reduction

Strategy.

One may wonder whether there are indeed non-optimal viable strategies for the Three-

Hat Problem. One such strategy is the following: Players will note the larger of the two

numbers they see, call these nA, nB, and nC respectively. Unless another player has already

declared his number, Player A will pass until his nA-th turn, when he will declare his number

to the the sum of the two other numbers. Players B and C do likewise. This is clearly a

viable strategy but by no means an optimal one.

4. Equivalence of Collusion and No-Collusion Versions

We now argue that under the super-rationality assumption the no-collusion version of the

Three-Hat Problem will end exactly the same way as if the players are colluding using the

Chain Reduction Strategy. Specifically, we assert that if there exists an optimal strategy

then a super-rational player is able to obtain this result. Clearly, from this perspective, if an

optimal strategy exists then the players need not collude. The super-rationality assumption

suffices to gurantee that all players will be able to find it and use it with the knowledge that

other players will do likewise. Collusion is helpful only when there exists no single optimal

strategy. This is the case when for any one strategy there is another strategy that is better

for some configurations. If so the players need to collude to decide on one strategy. Note

that two strategies for the Three-Hat Problem are considered to be the same if they lead to

exactly the same solution for all configurations. In this sense the Chain Reduction Strategy

is clearly the unique optimal strategy. By the above argument we have

Theorem 3. The no-collusion Three-Hat Problem is equivalent to the collusion Three-Hat

Problem using the Chain Reduction Strategy.
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By establishing the equivalence of collusion and no-collusion versions we can also solve

the other two hat problems easily. For the Two-Hat Problem, the no-collusion version is

equivalent to players using the following strategy: Each player will pass until on his n-th

turn, when he will declare his number to be n + 1, where n is the number written on the

other player’s hat. The game ends when one player declares his number. For the Color-Hat

Problem, the no-collusion version is equivalent to this strategy: Players will each note how

many red hats he sees. Say a player sees n red hats. He will then pass in the first n rounds,

but declares his hat to be red on the (n + 1)-th round. The games ends when some players

declare their numbers. These strategies are easily shown to be optimal by similar arguments

for the Three-Hat Problem.
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