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Abstract. Empirical Mode Decomposition (EMD), an adaptive technique for data and
signal decomposition, is a valuable tool for many applications in data and signal processing.
One approach to EMD is the iterative filtering EMD, which iterates certain banded Toeplitz
operators in l∞(Z). The convergence of iterative filtering is a challenging mathematical
problem. In this paper we study this problem, namely for a banded Toeplitz operator T
and x ∈ l∞(Z) we study the convergence of Tn(x). We also study some related spectral
properties of these operators. Even though these operators don’t have any eigenvalue in
Hilbert space l2(Z), all eigenvalues and their associated eigenvectors are identified in l∞(Z)
by using the Fourier transform on tempered distributions. The convergence of Tn(x) relies
on a careful localization of the generating function for T around their maximal points and
detailed estimates on the contribution from the tails of x.

1. Introduction

Let a = (ak) ∈ l1(Z). We consider the operator Ta : l∞(Z)−→l∞(Z) associated with a,

given by

Ta(x) =
(∑
j∈Z

ajxk+j

)
k∈Z

where x = (xk) ∈ l∞(Z). In the signal processing literature Ta is called a filter, and it is

a finite impulse response (FIR) filter if ak 6= 0 for only finitely many k ∈ Z. Note that

Ta is in fact a Toeplitz operator and a FIR filter simply means the Toeplitz operator Ta is

banded. In this paper we shall use the terms filter and Toeplitz operator interchangeably,

and only FIR filters and banded Toeplitz operators will be considered. Toeplitz operators

are classical operators that have been studied extensively, see [3] and the references therein.

There is an even larger literature on filters, which we shall not divulge into. In this paper

our main focus is on the iteration of certain type of banded Toeplitz operators. More

precisely, we consider the following question: Let Ta be banded and x ∈ l∞(Z). When will
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Tna (x) converge (in the sense that every entry converges) as n→∞? This question arises

from signal and data processing using empirical mode decomposition (EMD), which is an

important tool for analyzing digital signals and data sets [10, 14]. Our study is motivated

primarily by the desire to provide a mathematical framework for EMD.

Signal and data analysis is an important and necessary part in both research and practical

applications. Understanding large data set is particularly important and challenging given

the explosion of data and numerous ways they are being collected today. Often the challenge

is to find hidden information and structures in data and signals. To do so one might

encounter several difficulties with the data: The data represent a nonlinear process and is

non-stationary; the essential information in the data is often mingled together with noise or

other irrelevant information, and others. Historically, Fourier spectral analysis has provided

a general method for analyzing signals and data. The term “spectrum” is synonymous with

the Fourier transform of the data. Another popular technique is wavelet transform. These

techniques are often effective, but are known to have their limitations. To begin with, none

of these techniques is data adaptive. This can be a disadvantage in some applications.

There are other limitations. For example, Fourier transform may not work well for non-

stationary data or data from nonlinear systems. It also does not offer spatial and temporal

localization to be useful for some applications in signal processing. Wavelet transform

captures discontinuities very successfully. But it too has many limitations; see [10] for

a more detailed discussion. These limitations have led Huang et al [10] to propose the

empirical mode decomposition (EMD) as an highly adaptive technique for analyzing data.

EMD has turned out to be a powerful complementary tool to Fourier and wavelet transforms.

The goal of EMD is to decompose a signal into a finite number of instrinsic mode functions

(IMF), from which hidden information and structures can often be captured by analyzing

their Hilbert transformations. We shall not discuss the details of IMF and EMD in this

paper. They can be found in [4, 7, 10, 11, 14, 15, 18] and the references therein.

The original EMD is obtained through an algorithm called the sifting algorithm. The

local maxima and minima of a function (signal) are respectively connected via cubic splines

to form the so-called upper and lower envelopes. The average of the two envelopes is then

subtracted from the original data. This process is iterated to obtain the first IMF in the

EMD. The other IMF’s are obtained by the same process on the residual signal. The

sifting algorithm is highly adaptive. A small perturbation, however, can alter the envelopes
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dramatically, raising some questions about its stability. Another drawback there is no

natural way to generalize EMD to higher dimensions, which severely limits the scope of its

applications. As powerful as EMD is in many applications, a mathematical foundation is

virtually nonexistent. Many fundamental mathematical issues such as the convergence of

the sifting algorithm have never been established.

To address these concerns, a new approach, the iterative filtering EMD, is proposed in

[14]. Instead of the average of the upper and lower envelopes, the iterative filtering EMD

replaces them by certain FIR filters, usually low-pass filters that yield a “moving average”

similar to the mean of the envelopes in the original sifting algorithm. It is shown in [14] that

iterative filtering approach often leads to comparable EMD as the classical EMD, and in

general it serves as a useful alternative or complement. Furthermore iterative filtering EMD

has some advantages over the classic EMD, making it well suited for certain applications

[Mao 2010, 17, 19].

The iterative filtering EMD proposed in [14] has the following set up: let a = (ak)k∈Z be

finitely supported, i.e. only finitely many ak 6= 0, which we choose so that Ta(x) represents

a “moving average” of x. Now let

(1.1) L(x) = x− Ta(x).

The first IMF in the EMD is given by I1 = limn→∞ Ln(x), and subsequent IMF’s are

obtained recursively via Ik = limn→∞ Lnk(x − I1 − · · · − Ik−1). In practical applications

the process stops when some stopping criterion is met. For a periodic x the convergence

of Ln(x) is completely characterized in [14]. However, the convergence for x ∈ l∞(Z) in

general is a much more difficult problem. The main purpose of this paper is to study this

question.

The rest of the paper is organized as follows: In Section 2 we introduced the notations

and state the main theorem. In Section 3 we prove a result on sum of Dirac measures, which

is closely related to the Poisson Summation Formula as well as a classical result of Cordoba

[6]. We use it to characterize all eigenvectors of banded Toeplitz operators on lp(Z) for

1 ≤ p ≤ ∞. The proof of the main theorem, which is quite tedious, is given in Section 4.
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2. Main Result and Notations

For any x = (xk)k∈Z ∈ l∞(Z) we shall use xN to denote the cutoff of x from k = −N
to N , i.e. xN = (yk) such that yk = xk for −N ≤ x ≤ N and yk = 0 otherwise. We shall

often also view x = (xk)k∈Z ∈ l∞(Z) as a function x : Z−→C with x(k) = xk. We say

x = (xk) ∈ l∞(Z) is symmetric if xk = x−k for all k ∈ Z, and it is finitely supported if

supp(x) := {k ∈ Z : xk 6= 0} is a finite set.

Throughout this paper the Fourier transform of a function f(x) is defined as

F(f)(ξ) = f̂(ξ) :=
∫

R
f(x)e2πixξ dx.

The inverse Fourier transform of g(ξ) is

F−1(g)(x) :=
∫

R
g(ξ)e−2πiξx dξ.

For each x ∈ l∞(Z) there is an associated complex measure µx :=
∑

k∈Z xkδk, where δb is

the Dirac measure supported at b for any b ∈ R, i.e. δb(x) = δ(x− b). It is well known that

µx is a tempered distribution. Thus µ̂x is also well defined as a tempered distribution. We

shall often use x̂ to denote µ̂x for simplicity, especially when x is finitely supported; in such

case x̂(ξ) is a trigonometric polynomial.

Going back to Toeplitz operators, it is easy to check that for any a ∈ l1(Z) we have

T̂a(x)(ξ) = â(−ξ)µ̂x(ξ) = â(−ξ)x̂(ξ).

For any finitely supported a the spectrum of Ta is precisely {â(ξ) : ξ ∈ [0, 1)}. Let Za,λ =

{θ ∈ [0, 1) : â(θ) = λ}. This set will occur very frequently in this paper.

Before stating our main theorem we introduce a few more notations. For any θ ∈ R let

vθ := (e2πikθ)k∈Z. If θ ∈ Za,λ then Ta(vθ) = λvθ. For any x = (xk) and y = (yk) in l∞(Z)

define

[x,y] = lim
n→∞

1
2n+ 1

n∑
k=−n

xkȳk

if it exists. One can view this as a form of “inner product.”

One of the main objectives of the paper is to study the convergence of the new sifting

algorithm from which we obtain the IMFs by Ik = limn→∞(I − Tak)n(x− I1 − · · · − Ik−1).

Since I −Ta is simply the Toeplitz operator Tδ−a where δ = (δk0) with δ00 = 1 and δk0 = 0
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for k 6= 0. So we shall focus on iterations of Ta for general finitely supported a. Our main

theorem of the paper is:

Theorem 2.1. Let a = (ak) be finitely supported and symmetric such that −1 < â(ξ) ≤ 1

and â(ξ) 6≡ 1. For any x ∈ l∞(Z), if [x,vθ] exists for all θ ∈ Za,1 then

(2.1) lim
n→∞

Tna (x) =
∑
θ∈Za,1

[x,vθ]vθ pointwise.

Here pointwise convergence means the k-th entry Tna (x)(k) of Tna (x) converges for each

k ∈ Z. Informally speaking, Tna (x) converges pointwise to the “projection” of x onto the

1-eigenspace of Ta. Note that the eigenvalues of Ta are precisely {â(ξ) : ξ ∈ [0, 1)} (see

Section 3), so the condition −1 < â(ξ) ≤ 1 is natural. It is not clear whether the condition

[x,vθ] exists for each θ ∈ Za,1 is a necessary condition. The following example shows that

limn→∞ T
n
a (x) does not exist for a x ∈ l∞(Z).

Example 2.1. Let a = (ak) with a0 = 1
2 , a1 = a−1 = 1

4 and ak = 0 for all other k.

â(ξ) = sin2 ξ
2 satisfies the hypothesis of Theorem 2.1. Let x = (xk) where xk = 0 for all

k ≤ 0 and xk = (−1)n−1 for 2n! ≤ K < 2(n+1)!. Then it is easy to show that Tna (x)(0) does

not converge. In fact every point in [−1
2 ,

1
2 ] is a limit point of the sequence.

3. Eigenvectors of Banded Toeplitz Operators

To study the iterations of banded Toeplitz operators it is natural to ask about their

eigenvalues and eigenvectors in l∞(Z). We state some results here. While these results may

not be new (although we have not found them in the literature), our approach appears to

be.

For any x = (xk) ∈ l∞(Z) the associated measure µx is a tempered distribution [9, 13].

Hence its Fourier transform, given by

(3.1) 〈µ̂x, φ〉 := 〈µx, φ̂〉 =
∑
k∈Z

xkφ̂(k)

for any φ in the Schwartz class, is also a tempered distribution.

Lemma 3.1. Let x ∈ l∞(Z) such that supp(µ̂x) = Λ is a uniformly discrete set in R. Then

(3.2) µ̂x =
∑
β∈Λ

cβδβ
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for some bounded sequence (cβ)β∈Λ in C.

Proof. Since Λ is uniformly discrete we may find ψβ ∈ C∞0 (R) for each β ∈ Λ such that∑
β∈Λ ψβ = 1 and supp(ψβ)∩Λ = {β}. Now for any β ∈ Λ, ψβ µ̂x is a tempered distribution

supported on a single point {β}. It follows that

ψβ µ̂x =
N∑
j=0

ajδ
(j)
β ,

where δ(j)
β denotes the j-th derivative of δβ (see e.g. Folland [8]). We only need to show that

aj = 0 for j > 0 for all β ∈ Λ. If not there exists some α∗ ∈ Λ such that ψα∗ µ̂x =
∑N

j=0 ajδ
(j)
α∗

with aN 6= 0, N > 0.

Without loss of generality we assume that α∗ = 0. Now take a test function φ ∈ C∞0 (R)

such that supp(φ) = [−ε, ε], supp(φ) ∩ supp(ψβ) = ∅ for all β 6= 0, and φ(j)(0) = 0 for

j < N but φ(N)(0) 6= 0. Set φλ(x) = φ(λx). Then

〈µ̂x, φλ〉 =
〈∑
β∈Λ

ψβ µ̂x, φλ

〉
= 〈ψ0 µ̂x, φλ〉 =

〈 N∑
j=0

ajδ
(j)
0 , φλ

〉
= aNλ

Nφ(N)(0),

which goes to ∞ as λ→∞. On the other hand,

|〈µ̂x, φλ〉| = |〈µx, φ̂λ〉| =
∣∣∣ 1
λ

∑
k∈Z

xkφ̂
(k
λ

) ∣∣∣ ≤ C

λ

∑
k∈Z

∣∣∣ φ̂(k
λ

) ∣∣∣,
which goes to C

∫
R |φ̂(ξ)| dξ as λ→∞. This is a contradiction. Thus µ̂x =

∑
β∈Λ cβδβ.

It remains to show cβ are bounded. Take a test function φ ∈ C∞(R) such that φ(0) = 1

and supp(φ) = [−ε, ε], where ε < inf{|α1 − α2| : α1, α2 ∈ Λ, α1 6= α2}. Applying 〈µ̂x, ϕ〉 =

〈µx, ϕ̂〉 to ϕ(x) = φ(x− β) for each β ∈ Λ we obtain

|cβ| = |〈µx, ϕ̂〉| =
∣∣∣ ∑
k∈Z

xke
−2πikβφ̂

(
k
) ∣∣∣ ≤ ‖x‖∞∑

k∈Z

∣∣∣ φ̂(k) ∣∣∣ .
This proves the lemma.

The following theorem is closely related to a well known result of Cordoba [6], which is

a classic result in the study of quasicrystals.

Theorem 3.2. Let Λ be a uniformly discrete set in R and µ =
∑

β∈Λ xβδβ where (xβ) is

bounded. Assume that supp(µ̂) ⊂ Z. Then

(A) There exist α1, . . . , αm ∈ [0, 1) such that Λ =
⋃m
j=1(αj + Z).
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(B) There exist c1, . . . , cm such that xβ = cj for all β ∈ αj + Z. Thus

µ =
m∑
j=1

cj
∑
k∈Z

δαj+k.

(C) µ̂ =
∑

k∈Z

(∑m
j=1 cje

2πiαjk
)
δk.

Proof. By Lemma 3.1 we have µ̂ =
∑

k∈Z pkδk. For φ ∈ C∞0 (R) denote φλ,t(x) :=

φ(λx)e2πitx. Then φ̂λ,t(ξ) = λ−1φ
(
λ−1(ξ − t)

)
.

It follows from 〈µ, φ̂λ,t〉 = 〈µ̂, φλ,t〉 that∑
k∈Z

pkφλ,t(k) =
∑
α∈Λ

xαφ̂λ,t(α).

This yields

(3.3)
∑
k∈Z

pkφ(λk)e2πikt =
1
λ

∑
α∈Λ

xαφ̂
(α− t

λ

)
.

Substituting 1/λ for λ we can rewrite the equation as

(3.4) λ−1
∑
k∈Z

pkφ(λ−1k)e2πikt =
∑
α∈R

xαφ̂ (λ(α− t)) ,

where xα = 0 for α 6∈ Λ. Observe that because all xα are bounded and Λ is uniformly

discrete we have

lim
λ→∞

∑
α∈R

xαφ̂ (λ(α− t)) = xtφ̂(0).

However the right hand side of (3.4) has

λ−1
∑
k∈Z

pkφ(λ−1k)e2πikt1 = λ−1
∑
k∈Z

pkφ(λ−1k)e2πikt2

for any t1, t2 with t1 − t2 ∈ Z. By choosing φ such that φ̂(0) =
∫

R φ 6= 0 it follows that

xt1 = xt2 whenever t1 − t2 ∈ Z. Thus Λ must be the union of equivalent classes modulo

Z, i.e. cosets of Z. Being uniformly discrete Λ can only be a finitely union of cosets of Z.

Hence there exist α1, . . . , αm ∈ [0, 1) such that Λ =
⋃m
j=1(αj + Z). Furthermore, xβ = cj

for all β ∈ αj + Z. Finally (C) follows directly from taking the Fourier transform of µ and

the Poisson Summation Formula ∑̂
k∈Z

δk+α =
∑
k∈Z

e2πiαkδk.
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Remark 1. The condition supp(µ̂) ⊂ Z in the theorm can be replaced with supp(µ̂) ⊂ Γ

for some lattice Γ. In this setting the theorem still holds if the set Z in (A) and (B) is

replaced by the dual lattice Γ∗ of Γ, and the Z in (C) is replaced by Γ.

Remark 2. A theorem of Cordoba [6] draws the same conclusions under the hypotheses

that supp(µ̂) is a uniformly discrete set but requires that the set {xβ : β ∈ Λ} is finite.

Theorem 3.3. Let a = (ak) be finitely supported. Suppose Ta 6= c I where I is the identity

map. Then λ is an eigenvalue of Ta if and only if λ ∈ {â(ξ) : ξ ∈ [0, 1)}. Furthermore

x ∈ l∞(Z) is an eigenvector of Ta for the eigenvalue λ if and only if

(3.5) x =
∑
θ∈Za,λ

cθvθ

for some constants cθ, where Za,λ := {t ∈ [0, 1) : â(t) = λ}.

Proof. For any λ = â(t) it is easy to check that vt is an eigenvector of Ta. Let λ be an

eigenvalue of Ta with Ta(x) = λx for some nonzero x ∈ l∞(Z). Observe that F−1(µTa(x)) =

âF−1(µx). Thus

âF−1(µx) = λF−1(µx), and (â− λ)F−1(µx) = 0.

It follows that supp(F−1(µx)) ⊆ Za,λ+Z. Thus λ ∈ {â(ξ) : ξ ∈ [0, 1)}, and because Ta 6= c I

the set Za,λ is finite. Hence Za,λ + Z is uniformly discrete. Lemma 3.1 implies that

F−1(µx) =
∑

α∈Za,λ+Z
bαδα

for some bounded sequence(bα). Theorem 3.2 now applies to F−1(µx) to show that

F−1(µx) =
∑
θ∈Za,λ

cθ
∑
k∈Z

δθ+k.

The structure of µx now follows from part (C) of Theorem 3.2, which yields

x =
∑
θ∈Za,λ

cθvθ.

Corollary 3.4. For any finitely supported a = (ak) the operator Ta has no point spectrum

in lp(Z) for any 1 ≤ p <∞ unless Ta = c I.
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Proof. Clearly any eigenvector for Ta in lp(Z) is also an eigenvector in l∞(Z) for the same

eigenvalue. If Ta 6= c I then by Theorem 3.3, all eigenvectors of Ta in l∞(Z) are of the form

(3.5), which do not belong to lp(Z) for an 1 ≤ p <∞. This is easily seen from the fact that

such x are almost periodic so the entries do not tend to 0. Thus Ta has no point spectrum

in lp(Z) for 1 ≤ p <∞.

4. Proof of Main Theorem

In this section we assume the hypotheses of Theorem 2.1 and prove the theorm by break-

ing it down into a series of lemmas and estimates. Without loss of generality we assume

that a = (ak) is symmetric and ak = 0 for k > q or k < −q, i.e. supp(a) ⊂ [−q, q]. To

prove the theorem it suffices to prove that limn→∞ T
n
a (x)(0) =

∑
θ∈Za,1

[x,vθ].

Lemma 4.1. Let T = R/Z. Then

(4.1) lim
n→∞

Tna (x)(0) =
∫

T
ân(ξ)x̂qn(ξ) dξ

and

(4.2) lim
n→∞

(
Tna (x)(0)−

∑
θ∈Za,1

∫
|ξ−θ|<δ

ân(ξ)x̂qn(ξ) dξ
)

= 0

for any δ > 0 such that the intervals {(θ − δ, θ + δ) : θ ∈ Za,1} in T are disjoint.

Proof. Note that ân is a trigonometric polynomial of degree qn, Tna (x)(0) is the constant

term of ân(−ξ)x̂qn(ξ). Integrating it over T yields Tna (x)(0). (4.1) follows from the fact

that ân(−ξ) = ân(ξ).

To prove (4.2) we observe that

(Tna (x)(0)−
∑
θ∈Za,1

∫
|ξ−θ|<δ

ân(ξ)x̂qn(ξ) dξ =
∫
E

ân(ξ)x̂qn(ξ) dξ,

where |ξ− θ| ≥ δ on E for any θ ∈ Za,1. Thus there exists an ε > 0 such that |â(ξ)| ≤ 1− ε
on E. Also |x̂qn(ξ)| ≤ ‖x‖∞qn, so

(4.3) lim
n→∞

∣∣∣∫
E

ân(ξ)x̂qn(ξ) dξ
∣∣∣ ≤ lim

n→∞
(1− ε)n‖x‖∞qn = 0.

Throughout this section we shall assume that δ > 0 is small enough so that {(θ−δ, θ+δ) :

θ ∈ Za,1} in T are disjoint. Our next step shows that with small enough δ > 0, for any
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ε > 0 the estimate

(4.4)
∣∣∣∫
|ξ−θ|<δ

ân(ξ)x̂qn(ξ) dξ − [x,vθ]
∣∣∣ < ε

holds for sufficiently large n. This is achieved by performing a series of delicate estimates.

Obviously Theorem 2.1 follows readily from (4.4).

We now fix any θ ∈ Za,1. Note that â ≤ 1 so â′(θ) = 0 and

â(ξ) = 1− cθ(ξ − θ)2m +O((ξ − θ)2m+1)

near θ, where cθ > 0. It follows that â(θ + t) = 1 − cθt2m + hθ(t) where hθ(t) = O(t2m+1)

is bounded and∫
|ξ−θ|<δ

ân(ξ)x̂qn(ξ) dξ =
∫ δ

−δ
ân(θ + t)x̂qn(θ + t) dt = A(n, θ, δ) +B(n, θ, δ),

where

A(n, δ, θ) =
∫ δ

−δ
(1− cθt2m)nx̂qn(θ + t) dt,(4.5)

B(n, δ, θ) =
∫ δ

−δ

(
â(θ + t)n − (1− cθt2m)n

)
x̂qn(θ + t) dt.(4.6)

We first prove that limn→∞B(n, δ, θ) = 0. To do so we study the term â(θ + t)n − (1−
cθt

2m)n on [0, δ].

Lemma 4.2. Let Fn(t) = (1−tk+h(t))n−(1−tk)n where k ≥ 2 and h(t) = o(tk) is analytic

and nonzero. Let δ > 0 be sufficiently small. Then for sufficiently large n the function Fn

has only one critical point tn ∈ (0, δ], at which |F (tn)| = maxt∈[0,δ] |Fn(t)| ≤ Cn−
1
k .

Proof. Let f(t) = 1 − tk + h(t) and g(t) = 1 − tk. Since h is analytic and nonzero, we

have h(t) = Ktm + O(tm+1) where m > k and K 6= 0. Note that Fn(0) = 0 and Fn(δ)→0

exponentially. But Fn(n−
1
k ) does not go to 0 exponentially. Hence Fn has at least one

critical point in (0, δ] for sufficiently large n. Let tn be a critical point, i.e. F ′n(tn) = 0. It

follows that fn−1(tn)f ′(tn)− gn−1(tn)g′(tn) = 0, and thus

(4.7)
gn−1(tn)
fn−1(tn)

=
f ′(tn)
g′(tn)

= 1− Km

k
tm−kn +O(tm−k+1

n ).

Claim. limn→∞(n− 1)tkn = m/k.
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It is clear that if tnj→ε where ε > 0 then
gnj−1(tnj )

fnj−1(tnj )
→0 when K > 0, the limit is +∞

when K < 0. This is a contradiction. Hence tn→0. Now observe that g(tn)/f(tn) =

1−Ktmn +O(tm+1
n ). By taking logarithm on both sides of (4.7) we obtain

−(n− 1)Ktmn +O((n− 1)tm+1
n ) = −Km

k
tm−kn +O(tm−k+1

n ).

The claim limn→∞(n− 1)tkn = m/k now follows. �

We next show that this tn is unique for sufficiently large n. This is done by the sign of

F ′′(tn).

F ′′n = n
(
f ′′fn−1 − g′′gn−1

)
+ n(n− 1)

(
f ′2fn−2 − g′2gn−2

)
.

Thus
F ′′n

nfn−2
=
(
f ′′f − g′′ g

n−1

fn−2

)
+ (n− 1)

(
f ′2 − g′2 g

n−2

fn−2

)
.

At t = tn we have gn−1

fn−1 = f ′

g′ . It is not hard to verify that this yields

F ′′n
nfn−2

= fg′
(f ′
g′

)′
+ (n− 1)f ′g

(f
g

)′
at t = tn.

One can also check easily that at t = tn,

fg′(f ′/g′)′ = Km(m− k)tm−2
n +O(tm−1

n ),

f ′g(f/g)′ = −Km(m− k)tm+k−2
n +O(tm+k−1

n ).

Thus by the Claim,

lim
n→∞

F ′′n (tn)
n tl−2

n gn−2(tn)
= Km(m− k)− lim

n→∞
Kmk(n− 1)tkn = −Kmk.

If K > 0, we have Fn(t) ≥ 0 on [0, δ] and F ′′n (tn) < 0, which implies that any critical

point tn is a local maximum for sufficiently large n. But any two local maximum must

sandwich a local minimum. Thus there can only be one critical point, at which Fn must

achieve its maximum. If K < 0, Fn(t) ≤ 0 on [0, δ] and F ′′n (tn) > 0. By the same reason

tn is the only critical point of Fn and it is the minimum. Thus in either case we must have

|F (tn)| = maxt∈[0,δ] |Fn(t)|. Finally,

|Fn(t)| ≤ (1− tk)n ((1 +K1t
m)n − 1)

for some K1 > 0 on [0, δ]. It follows from limn→∞ nt
k
n = m/k that (1 − tmn )n→e

m
k and

(1 +K1t
m
n )n − 1 = O(tm−kn ) = O(n−

m−k
k ). This proves the lemma.

Lemma 4.3. limn→∞B(n, δ, θ) = 0.
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Proof. Let Fn(t) = â(θ+ t)n− (1−cθt2m)n. Without loss of generality we may assume that

cθ = 1. Then Fn satisfies the hypothesis of Lemma 4.2. Let tn be the unique critical point

of Fn on (0, δ]. So Fn is monotone on [0, tn] and [tn, δ]. A special Mean Value Theorem for

integration (see e.g. Bartle [1], Theorem 30.11) now implies that for some η ∈ [0, δ],∫ tn

0
Fn(t)x̂qn(θ + t) dt = Fn(0)

∫ η

0
x̂qn(θ + t) dt+ Fn(tn)

∫ tn

η
x̂qn(θ + t) dt.

Note that Fn(0) = 0 and∣∣∣ ∫ δ

η
x̂qn(θ + t) dt

∣∣∣ ≤ C1

qn∑
j=1

1
j

= O(lnn).

It follows that ∣∣∣ ∫ tn

0
Fn(t)x̂qn(θ + t) dt

∣∣∣ = O(n−
1

2m lnn).

By the same token, ∣∣∣ ∫ δ

tn

Fn(t)x̂qn(θ + t) dt
∣∣∣ = O(n−

1
2m lnn).

Thus
∫ δ

0 Fn(t)x̂qn(θ + t) dt −→0. Similarly
∫ 0
−δ Fn(t)x̂qn(θ + t) dt −→0. These combine to

yield limn→∞B(n, δ, θ) = 0.

Lemma 4.4. Assume that b, k > 0 and p ≥ 0. For any ε > 0 such that bεk < 1 we have∫ ε

0
(1− btk)ntp dt ≤ min

{ 1
p+ 1

εp+1, C n−
p+1
k

}
,

where C =
∫∞

0 e−bs
k
sp ds.

Proof. Using the fact that 1 − x ≤ e−x for all x ≥ 0, we have (1 − btk)n ≤ e−nbt
k
. Make

the substitution s = k
√
nt we have∫ ε

0
(1− btk)ntp dt ≤ n−

p+1
k

∫ k√nε

0
e−bs

k
sp ds.

The lemma follows from two estimates. First, the integral
∫ k√nε

0 e−bs
k
sp ds is bounded by

C2 =
∫∞

0 e−bs
k
sp ds. Second, it is also bounded by 1

p+1( k
√
nε)p+1.

Next we concentrate on estimating A(n, δ, θ). To achieve this, for each ε > 0 we break

x̂qn(θ + t) up into three parts:

x̂qn(θ + t) =
( ∑
|k|≤εnσ

+
∑

εnσ<|k|≤ε−1nσ

+
∑

ε−1nσ<|k|≤qn

)
xke

2πik(θ+t) = J1 + J2 + J3,



CONVERGENCE OF ITERATIVE FILTERING EMD 13

where σ = 1
2m . As a result we write A(n, δ, θ) = A1(n, δ, θ, ε) +A2(n, δ, θ, ε) +A3(n, δ, θ, ε),

where

(4.8) Aj(n, δ, θ, ε) =
∫ δ

−δ
(1− cθt2m)nJj(θ + t) dt, j = 1, 2, 3.

Note that here all Jj(θ + t) depend on n, ε, but for simplicity of notations we keep the

dependence in the background.

Lemma 4.5. Let ε > 0. Then |A1(n, δ, θ, ε)| ≤ C1
√
ε for sufficiently large n, where C1 > 0

is independent of n.

Proof. By the Cauchy-Schwartz inequality we have

|A1(n, δ, θ, ε)|2 ≤
∫ δ

−δ
(1− cθt2m)2n dt

∫ δ

−δ
|J1(θ + t)|2 dt.

Using the orthogonality of e2πikt on T, we have∫ δ

−δ
|J1(θ + t)|2 dt ≤

∫ 1
2

− 1
2

|J1(θ + t)|2 dt ≤ 4εnσ‖x‖2∞.

Also by Lemma 4.4,
∫ δ
−δ(1− cθt

2m)2n dt ≤ Cn−σ. The lemma now follows.

Lemma 4.6. Let ε > 0. Then |A3(n, δ, θ, ε)| ≤ C3ε for sufficiently large n, where C3 > 0

is independent of n.

Proof. We first establish the inequality

(4.9)
∣∣∣ ∫ δ

−δ
(1− cθt2m)ne2πikt dt

∣∣∣= 2
∣∣∣ ∫ δ

0
(1− cθt2m)n cos(2πkt) dt

∣∣∣≤ C ′3n
σ

k2

for all |k| > ε−1nσ, where again σ = 1
2m . The substitution s = nσt yields

(4.10)
∫ δ

0
(1− cθt2m)n cos(2πkt) dt =

1
nσ

∫ δnσ

0
gn(s) cos(Ls) ds

where L = 2πk
nσ and gn(s) = (1 − cθs

2m

n )n. Again, 1 − cθs
2m

n ≤ e−
cθs

2m

n so gn(s) ≤ e−cθs
2m

.

Observe that we have gn(δnσ) = O(e−cθδ
2mn), g′n(0) = 0 and g′n(δnσ) = O(ne−cθδ

2mn).

Combining these with integration by parts twice on (4.10) we obtain∫ δnσ

0
gn(s) cos(Ls) ds = O(ne−cθδ

2n)− 1
L2

∫ δnσ

0
g′′n(s) cos(Ls) ds.
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It is easy to check that |g′′n(s) cos(Ls)| ≤ (a1s
2m−2 + a2s

4m−2)e−cθs
2m

for some constants

a1, a2 > 0. Thus
∫ δnσ

0 g′′n(s) cos(Ls) ds is bounded by
∫∞

0 (a1s
2m−2 + a2s

2m−2)e−cθs
2m
ds,

which is finite. Hence there exists C ′′3 > 0 such that∣∣∣ ∫ δnσ

0
gn(s) cos(Ls) ds

∣∣∣≤ C ′′3
L2

=
C ′′3n

2σ

4π2k2
,

which yields (4.9). Finally by (4.9),

|A3(n, δ, θ, ε)| ≤ C ′3‖x‖∞
∑

ε−1nσ<|k|≤qn

nσ

k2
≤ C3ε.

Lemma 4.7. Assume that [x,v−θ] = 0. Let ε > 0. Then |A2(n, δ, θ, ε)| ≤ C2ε for suffi-

ciently large n, where C2 > 0 is independent of n.

Proof. Set y = (yk) := (xke2πikθ)k∈Z. Then ŷqn(t) = x̂qn(θ + t). By the fact that
∫ δ
−δ(1−

cθt
2m)n sin(2πkt) dt = 0,

A2(n, δ, θ, ε) =
∑

εnσ<|k|≤ε−1nσ

yk

∫ δ

−δ
(1− cθt2m)ne2πikt dt

= 2
∑

εnσ<k≤ε−1nσ

(yk + y−k)
∫ δ

0
(1− cθt2m)n cos(2πkt) dt.

Now denote Sk :=
∑k

j=−k yj and Uk =
∫ δ

0 (1 − cθt
2m)n cos(2πkt) dt. Then yk + y−k =

Sk − Sk−1. Using summation by parts

A2(n, δ, θ, ε) =
N∑

k=M

(Sk − Sk−1)Uk =
N−1∑
k=M

Sk (Uk − Uk+1)− SM−1UM + SNUN

where M = bεnσc + 1 and N = bε−1nσc. Using the fact |Sk| ≤ a1k for some constant a1

and Lemma 4.4 we have

|SM−1UM | ≤ a1εn
σ

∫ δ

0
(1− cθt2m)n dt ≤ a′1ε.

By (4.9) there exists some a2 > 0 such that

|SNUN | ≤ a1C
′
3N

nσ

N2
≤ a2ε

−1nσ
nσ

(ε−1nσ)2
= a2ε.

It remains to estimate T :=
∑N−1

k=M Sk (Uk − Uk+1). The hypothesis [x,v−θ] = 0 implies

that limk→∞ Sk/k = 0. Thus for n > N0 we have supk≥εnσ |Sk/k| ≤ ε3. It follows from the
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Cauchy-Schwartz inequality that

|T |2 =
∣∣∣ N−1∑
k=M

Sk
k
k (Uk − Uk+1)

∣∣∣2≤ ε6
(N−1∑
k=M

k2
)(N−1∑

k=M

(Uk − Uk+1)2
)
.

Now Uk − Uk+1 =
∫ δ

0 (1 − cθt
2m)n sin(πt) sin(π(2k + 1)t) dt. Observe that the functions

{
√

2 sin(π(2k + 1)t)} are orthonormal on [0, 1]. Parseval’s inequality yields

(4.11)
N−1∑
k=M

(Uk − Uk+1)2 ≤ 1
2

∫ δ

0
(1− cθt2m)2n sin2(πt) dt ≤ π2

2

∫ δ

0
(1− cθt2m)2nt2 dt.

By Lemma 4.4 ∫ δ

0
(1− cθt2m)2nt2 dt ≤ Cn−

3
2m = Cn−3σ.

Thus

|T |2 ≤ a3ε
6(ε−1nσ)3n−3σ = a3ε

3.

These estimates show that for sufficiently large n we have

|A2(n, δ, θ, ε)| ≤ C2ε.

We can now complete the proof of Theorem 2.1. Let x̃ := x −
∑

θ∈Za,1
[x,vθ]vθ. Then

Tna (x) = Tna (x̃) +
∑

θ∈Za,1
[x,vθ]vθ. Note that x̃ satisfies the hypothesis of Lemma 4.7.

Combining Lemma 4.3 and Lemmas 4.5-4.7 yields Tna (x̃)(0)→0. Thus

lim
n→0

Tna (x)(0) =
∑
θ∈Za,1

[x,vθ]vθ(0) =
∑
θ∈Za,1

[x,vθ].

Finally, let τ be the left shift operator on l∞(Z), i.e. τ((xk)) = (xk+1). Then Ta ◦τ = τ ◦Ta.

It follows that

Tna (x)(k) = τk ◦ Tna (x)(0) = Tna

(
τk(x)

)
(0).

But [τk(x),vθ] = [x,vθ]e2πikθ for θ ∈ Za,1. Thus

Tna (x)(k) = Tna

(
τk(x)

)
(0) =

∑
θ∈Za,1

[x,vθ]e2πikθ.

This completes the proof of Theorem 2.1.

Remark: Lemma 4.7 is the only place where the condition [x,vθ] exists for all θ ∈ Za,1 is

being used. With this condition we may apply summation by parts and the convergence

of Sk/k to obtain the necessary final estimates. It is also clear from the proof that we can
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apply summation by parts again to show the following: Let Sk(θ) :=
∑k

j=−k xje
−2πjθ and

S′k(θ) :=
∑

1≤|j|≤k Sj(θ)/j. Assume that limk→∞ S
′
k(θ)/k exists for every θ ∈ Za,1 then the

conclusion of the theorem still holds. Unfortunately the convergence of S′k(θ)/k is equivalent

to the convergence of Sk(θ)/k. We shall omit the proof here.
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[9] L. Hörmander, The Analysis of Linear Partial Differential Operators I, Springer-Verlag, 1983.

[10] N. Huang et al, The empirical mode decomposition and the Hilbert spectrum for nonlinear nonsta-
tionary time series analysis, Proceedings of Royal Society of London A 454 (1998), 903-995.

[11] N. Huang, Z. Shen and S. Long, A new view of nonlinear water waves: the Hilbert spectrum, Annu.
Rev. Fluid Mech. 31 (1999), 417-457.

[12] C. Huang, Y. Wang and L. Yang, Convergence of a convolution-filtering-based algorithm for empir-
ical mode decomposition, Advances in Adaptive Data Analysis 1 No. 4 (2009), 561–571.

[13] J. Lagarias, Mathematical quasicrystals and the problem of diffraction, in: Directions in Mathemat-
ical Quasicrystals, M. Baake and R. V. Moody, Eds., CRM Monograph Series, Vol. 13, Amer. Math.
Soc., Providence, RI, 2000, pp. 61–93 .

[14] L. Lin, Y. Wang, and H. Zhou, Iterative filtering as an alternative algorithm for empirical mode
decomposition, Advances in Adaptive Data Analysis Vol. 1, No. 4 (2009) 543–560.

[15] B. Liu, S. Riemenschneider and Y. Xu, Gearbox fault diagnosis using empirical mode decomposition
and hilbert spectrum, preprint.

[16] S. Mallat, A Wavelet Tour of Signal Processing. London, Academic Press (1998).
[Mao 2010] D. Mao, D. Rockmore, Y. Wang, and Q. Wu, EMD analysis of visual stylometry, preprint.

[17] D. Mao, Y. Wang, and Q. Wu, A new approach for analyzing physiological time series, preprint.
[18] D. Pines and L. Salvino, Health monitoring of one dimensional structures using empirical mode

decomposition and the Hilbert-Huang Transform, Proceedings of SPIE 4701(2002), 127-143.
[19] Z.-G. Yu, V. Anh, Y. Wang and D. Mao, Modeling and simulation of the horizontal component of

the magnetic field by fractional stochastic differential equation in conjunction with epirical mode
decomposition, Journal of Geophysical Research - Space Physics, to appear.

Department of Mathematics, Michigan State University, East Lansing, MI 48824-1027, USA.

E-mail address: ywang@math.msu.edu

Department of Mathematics, Michigan State University, East Lansing, MI 48824-1027, USA.

E-mail address: zfzhou@math.msu.edu


