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Abstract

In this paper, we investigate the scaling behaviour of ground magnetometer measurements
based on the data at 22 stations of the INTERMAGNET. This behaviour would be useful in
identifying the source which causes the fluctuations in some regions of the magnetosphere.

The time series of the Bx component at each station is modeled as the solution of a fractional
stochastic differential equation. A method to estimate the parameters based on observed data
and to simulate the model is given. The degree of fractional differentiation and the α-stability
exponent of the noise process driving the equation are employed to cluster the stations. The
Bx time series possess pronounced local trends, which must be removed before clustering can
be performed. This trend removal is carried out via an empirical mode decomposition. A by-
product is an efficient method to simulate Bx time series via empirical mode decomposition and
fractional stochastic differential equations.

The numerical results indicate the existence of two distinct regions of scaling: one in the
low latitudes near the equator similar to that of the Dst, and the other above latitude 60◦N
consistent with the AE. These scalings are characteristic of each region, which maps into the
magnetospheric region related to the solar wind and the inner magnetosphere respectively.

1 Introduction

Earlier works by Consolini et al. (1996), Uritsky and Pudovkin (1998), Chapman et al. (1998),
Chang (1999) in modeling the magnetosphere in the framework of self-organized criticality (SOC)
motivated many recent studies on stochastic properties of the magnetosphere and related geomag-
netic indices. In an SOC model, simple local interactions produce complex global signatures of a
system. These signatures may appear in the form of power-law scaling in the probability distribu-
tions or in the power spectra. For example, Freeman and Watkins (2002) noted that the probability
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distribution of the time for which the AE index exceeds a given threshold follows a power law dis-
tribution. In investigations of the spatial structure of the aurora using ultraviolet images from
NASA’s polar spacecraft, Lui et al. (2000) found a power law relationship between the number of
bright spots and their area, and Uritsky et al. (2002) found power laws for the probability dis-
tribution of bright spot lifetime and maximum dissipated energy. An explanation of some aspects
of these power laws was given in Klimas et al. (2004) in an SOC-like reconnection-based model.
A review on the scaling in the AE and other geomagnetic indices was provided in Watkins et al.
(2005).

Pulkkinen et al. (2006) developed an Itô-type stochastic model for the AE index to investigate
the role of stochastic fluctuations in the global dynamics of the magnetosphere-ionosphere system.
Anh et al. (2008) provided a fractional stochastic diferential equation for the hourly AE index for
the period 1978-1987. The memory of the AE time series is represented by a fractional derivative,
while its heavy-tailed behavior is modeled by a Lévy noise with inverse Gaussian marginal distri-
bution. The equation has the form of the classical Stokes-Boussinesq-Basset equation of motion for
a spherical particle in a fluid with retarded viscosity. The fractional order of the equation conforms
with the previous finding that the fluctuations of the magnetosphere-ionosphere system as seen in
the AE reflect the fluctuations in the solar wind: They both possess the same extent of fractional
differentiation.

These high-latitude fluctuations, which typically occur above geomagnetic latitude 60◦N as
manifested in the AE index, reflect solar wind conditions. On the other hand, low-latitude geomag-
netic fluctuations, as seen in the Dst index, are believed to connect directly to the inner magne-
tosphere. Wanliss and Reynolds (2003) suggested that “examination of low-latitude ground mag-
netometer signals can provide clues as to whether the magnetosphere is inherently self-organized”.
Wanliss and Reynolds (2003) analyzed hourly magnetometer measurements of total magnetic field
strength from 6 stations at low latitudes over the period 13-18 January 1993. Using spectral anal-
ysis and rescaled range analysis, they found, at this hourly resolution, a relative increase of the
Hurst exponent with latitude, and suggested that the result “may help quantify the dynamics of
the inner magnetosphere itself without the direct presence of the solar wind driver”. With regard
to the Dst itself, Wanliss (2004, 2005) and Wanliss and Dobias (2007) found that the Dst index
exhibits a power-law spectrum with the Hurst parameter varying over different segments of the
time series. This behavior indicates that Dst is a multifractional process.

Fractal and multifractal approaches have been quite successful in extracting salient features of
physical processes responsible for the near-Earth magnetospheric phenomena (Lui, 2002). Heavy-
tailed Lévy-type behavior has been observed in the interplanetary medium and the magnetosphere
(Burlaga, 1991, 2001; Burlaga et al., 2003; Kabin and Papitashvili, 1998; Lui et al., 2000, 2003).
A method to describe the multiple scaling of the measure representation of the Dst time series
was provided in Wanliss et al. (2005). A prediction method was detailed in Anh et al. (2005)
together with some numerical results evaluating its performance. A two-dimensional chaos game
representation of the Dst index and prediction of geomagnetic storm events was proposed in Yu
et al. (2007). The spatiotemporal scaling properties of the ground geomagnetic field variations
from individual magnetometer stations were studied in Pulkkinen et al. (2005) and Cersosimo and
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Wanliss (2007). Anh et al. (2007) used multifractal detrended fluctuation analysis (MF-DFA) to
analyze ground magnetic fluctuations for the year 2000 Anno Domini. Yu et al. (2009) found the
storm-flare class dependence through the measure representation (Yu et al. 2001a) and multifractal
analysis.

In this paper, we will consider both high-latitude and low-latitude ground magnetometer mea-
surements. We will use the data at 22 stations of the INTERMAGNET to investigate the scaling
behaviour of both high and low latitudes.

The Earth’s magnetic fluctuations are measured almost continuously by arrays of magnetome-
ters located around the world. The INTERMAGNET program has established a global network of
cooperating digital magnetic observatories that currently comprises over 108 observatories. Typical
measured parameters include the north (Bx) and east (By) components of the horizontal intensity,
and the vertical intensity (Bz), or some combination of these. By constantly measuring the mag-
netic field through programs such as INTERMAGNET, we can observe how the field is changing
over a period of years and use it to derive a mathematical representation of the Earth’s magnetic
field and how it is changing. It is noted that the Dst is calculated as an hourly average of the hor-
izontal component Bx of the magnetic field at four observatories, namely, Hermanus (33.3◦ south,
80.3◦ in magnetic dipole latitude and longitude), Kakioka (26.0◦ north, 206.0◦), Honolulu (21.0◦

north, 266.4◦), and San Juan (29.9◦ north, 3.2◦). These four observatories were chosen because
they are close to the magnetic equator and thus are not strongly influenced by auroral current
systems. In this paper, we use the horizontal component Bx at 22 stations of INTERMAGNET
covering 6 distinct regions, namely Southwest North America, Northeast North America, Central
Europe, Northern Europe, Australasia and Asia. The stations and their geomagnetic latitudes are
given in Table 2.

The time series of Bx at each station is modeled as the solution of a fractional stochastic
differential equation (SDE) of the form (1) defined in the next section. A similar SDE was considered
in Anh et al. (2008) to model the AE. A method to estimate the parameters of the model based
on observed data was also given there. In this paper, we will pay particular attention to the degree
of fractional differentiation ν and the α-stability index of the noise process L (t)) driving Eq.
(1). These two parameters, which express the scaling behaviour of the magnetic field at different
locations, will be employed to cluster the stations. It will be seen that the Bx component possesses
local trends, which must be removed before clustering can be performed. This trend removal will
be carried out via an empirical mode decomposition. The parameter ν is estimated by a detrended
fluctuation analysis, while the parameter α is obtained via Monte Carlo simulation of Eq. (1).

The next section details a description of Eq. (1) and the needed techniques of detrended
fluctuation analysis and empirical mode decomposition. An estimation of Eq. (1) is then performed
for each station. The numerical results are reported in Tables 1 and 2 in Section 3 for the cases of
trend intact and trend removed respectively. It will be seen that the results for the case of trend
removed are more consistent, hence will be used for station clustering. Consistency of the results
is partially due to a good simulation of the observed Bx time series from the fractional SDEs.
Hence a by-product of the approach of this paper is an efficient method and algorithm to simulate
magnetometer time series via empirical mode decomposition and fractional SDE. A discussion of
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the results and some conclusions will be given in Section 4.

2 Methods

2.1 α-stable distribution

The Lévy α−stable distribution is defined by the Fourier transform of its characteristic function
(Nolan 2009)

f(x; α, β, γ, δ) =
∫ ∞

−∞
ϕ(x)e−itxdt,

where ϕ(t) is given by

ϕ(t) = exp{iδt− γ|t|α[1 + iβ sign(t)w(t, α)]},

and

w(t, α) =

{
tan απ

2 , if α 6= 1,
2
π log |t|, if α = 1,

sign(t) =





1, if t > 0,

0, if t = 0,

−1, if t < 0.

Here, γ is the scale parameter, α the stability exponent, δ the shift parameter and β the skewness
parameter. The exponent α controls the kurtosis and lies in the range (0, 2]. The value α = 2
corresponds to a Gaussian distribution (for any β), while α = 1, β = 0 corresponds to a Cauchy
distribution. The skewness parameter β lies in the range [−1, 1], and when it is zero, the distribution
is symmetric and is referred to as a Lévy symmetric α-stable distribution. The scale parameter γ

must be larger than 0, and is equal to 1
2 of the variance in the Gaussian case (α = 2). The shift δ

is a location parameter; it is the mean when 1 < α ≤ 2 and the median when 0 < α < 1 (Nikias
and Shao 1995).

An empirical probability density function (PDF) can be computed from an observed time series.
Then maximum likelihood can be used to estimate the parameters α, β, γ and δ in the α-stable
distribution and fit the empirical PDF of the time series.

2.2 Fractional stochastic differential equations driven by Lévy noise

Anh et al. (2008) provided a description of the non-Gaussianity and possible long-range
dependence of the auroral electrojet (AE) index in the form of a fractional stochastic differential
equation

dX

dt
+ κDνX(t) = η

dL

dt
, ν ≥ 0, (1)

where the fractional derivative Dν is defined by (Podlubny 1999, Eq. (2.138))

Dνξ(t) =
1

Γ(n− ν)

∫ t

0
(t− τ)n−ν−1 dnξ(τ)

dτn
dτ, (2)
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ν ∈ [n− 1, n) , n = 1, 2, ..., Γ is the gamma function, dL
dt is Lévy noise defined in the distribution

sense (see Mueller 1998, for example), and κ, η are constants. Specifically for ground magnetometer
data, the Lévy noise of Eq. (1) is assumed to have an α-stable distribution. Note that, for ν = 0
and dL

dt = dW
dt , Eq. (1) is the classical Langevin equation. If the value of ν is equal to 1

2 , the
equation for the time series then takes the form

dX

dt
+ κD 1

2 X (t) = η
dL

dt
, (3)

which is the Stokes-Boussinesq-Basset equation in hydrodynamics (driven by Gaussian noise).
We use a Lévy noise to drive Eq. (1). The α-stable form of this Lévy process is suggested by

the empirical probability density of the observed time series. The Green function solution of the
fractional SDE (1) is obtained as

X (t) =
∫ t

0
G (t− s) dL (s) , (4)

where the Green function is given by

G (t) = E1−ν,1

(−κt1−ν
)
1(0,∞) (t) , 0 < ν < 1,

with 1(0,∞) (t) being the indicator function, which is equal to 1 when t ∈ (0,∞) , and is equal to
0 otherwise; Eν,ρ (x) being the two-parameter Mittag-Leffler function, which can be defined by the
series expansion

Eν,ρ (x) =
∞∑

k=0

zk

Γ (νk + ρ)
, ν > 0, ρ > 0, z ∈ C.

It was derived in Anh and McVinish (2003) that the Green function of the SDE (1) is in fact

G (t) =
1
π

∫ ∞

0

κλν sin (νπ)
λ2 + κ2λ2ν + 2κλ1+ν cos (π (1− ν))

e−tλdλ. (5)

Note that this Green function has the form

G (t) =
∫ ∞

0
e−λtµ (dλ) , (6)

with a finite Borel measure µ (dλ) = 1
π

κλν sin(νπ)
λ2+κ2λ2ν+2κλ1+ν cos(π(1−ν))

. Hence, by Bernstein’s theorem
(Feller 1971), G (t) is a completely monotone function. This representation leads to an efficient
method to simulate the solution of (4) as follows.

In view of (4) and (6), the solution of (1) is then given by

X (t) =
∫ t

0

∫ ∞

0
e−λ(t−s)µ (dλ) dL (s) . (7)

It should be noted that
∫ t
0 e−λ(t−s)dL (s) is the solution of the Ornstein-Uhlenbeck-type equation

dY (λ, t) = −λY (λ, t) dt + dL (t) , Y (λ, 0) = 0. (8)

The following approximation scheme is given in Anh and McVinish (2003). Define a compact
set K ⊂ [0,∞) by K = [r−m, rn] with m,n being positive integers and r > 1. Denote the geometric
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partition of K by π = {Ai} with Ai =
[
ri, ri+1

)
, i = −m, . . . , n − 1. Consider the following

approximation of X (t) :
Xπ (t) =

∑
π

µ
{[

ri, ri+1
)}

Y
(
ri, t

)
, (9)

where Y
(
ri, t

)
is the solution to the Ornstein-Uhlenbeck-type equation (8). Finally, the Ornstein-

Uhlenbeck-type process is approximated by

Y∆ (t) = L (t) , (10)

for 0 < t ≤ ∆ and

Y∆ (t) = e−λ(t−(n−1)∆)Y∆ ((n− 1)∆) + L (t)− L ((n− 1)∆) , (11)

for (n− 1)∆ < t ≤ n∆. The approximation (9) of X (t) is then

Xπ,∆ (t) =
∑
π

µ
{[

ri, ri+1
)}

Y∆

(
ri, t

)
. (12)

Suppose that KN is a sequence of compact sets growing to (0,∞) , rN → 1 and ∆N → 0 as
N →∞. Then,

sup
t≤T

|X (t)−Xπ,∆ (t)| → 0

in mean square. The above approximation algorithm and convergence analysis were established in
Anh and McVinish (2003). The algorithm plays an essential role in the estimation of the parameters
of the SDE described below.

A way to simulate random variables from the α-stable distribution is as follows (see Chambers
et a. 1976):

(a) Generate V from a uniform distribution on [−π/2, π/2] and W from an exponential distri-
bution with mean 1.

(b) For α 6= 1, compute

X = Sα,β
sin[α(V + Bα,β)]

[cos(V )]1/α

[
cos[V − α(V + Bα,β)]

W

](1/α−1)

,

where
Bα,β =

arctan(β tan πα
2 )

α
,

Sα,β =
[
1 + β2 tan2

(πα

2

)]1/(2α)
;

for α = 1, compute

X =
2
π

[(π

2
+ βV

)
tanV − β ln

(
πW cosV

π + 2βV

)]
.

Then the stable variable Y can be computed as

Y =

{
γX + δ, if α 6= 1,

γX + 2
πβγ ln γ + δ, if α = 1.
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Sample paths of the corresponding Lévy motion can then be generated as

L (nh) =
n∑

i=1

h1/αYi, (13)

where the Yi have an α-stable distribution. This algorithm is needed in the simulation of paths of
Eq. (1).

2.3 Detrended fluctuation analysis (DFA)

In order to estimate the order of fractional derivative, we performed a detrended fluctuation
analysis (DFA) (Peng et al. 1994, Yu et al. 2001b, 2006, 2009) of the time series. The DFA is the
special case when q = 2 of the multifractal detrended fluctuation analysis (MF-DFA) detailed by
Kantelhardt et al. (2002). We adopt the algorithm in Kantelhardt et al. (2002) and Movahed et
al. (2006) to estimate the exponent of DFA in this paper. The procedure consists of five steps. Let
{Xk}N

k=1 be a time series of length N .
Step 1. The time series is integrated as Y (i) =

∑i
k=1[Xk −Xave], i = 1, 2, ..., N , where Xave is

the sample mean over the whole time period.
Step 2. The integrated time series is divided into Ns = [N/s] non-overlapping segments of equal

length s. Here, [N/s] is the integer part of N/s. Since the length N of the series is often not a
multiple of timescale s, a short part of length le = N − Nss at the end of Y (i) may remain. In
order not to disregard this part, the same procedure is repeated starting from the opposite end.
Thereby, 2Ns segments are obtained altogether.

Step 3. Calculate the local trend for each of the 2Ns segments by a least squares fit of the
series, then determine the variance

F 2(s, ν) =
1
s

s∑

i=1

{Y [(ν − 1)s + i]− yν(i)}2, (14)

for each segment ν = 1, 2, ..., Ns, and

F 2(s, ν) =
1
s

s∑

i=1

{Y [(ν −Ns − 1)s + i + le]− yν(i)}2, (15)

for each segment ν = Ns + 1, Ns + 2, ..., 2Ns. Here le = N − Nss, and yν(i) is the fitting linear
polynomial in the νth segment.

Step 4. Average over all segments to get the second-order fluctuation function

F (s) = { 1
2Ns

2Ns∑

ν=1

[F 2(s, ν)]}1/2. (16)

By construction, F (s) is only defined for s ≥ 3.
Step 5. Determine the scaling behavior of the fluctuation function by analyzing log-log plots of

F (s) versus s, i.e., the power law
F (s) ∝ sh, (17)

in some range of time scale s.
For model (1), Anh et al. (2008) suggested a method to estimate the fractional order ν based

on an estimation of the scaling exponent h, namely, via the relationship ν = h− 1
2 .
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2.4 Algorithm for simulation of fractional SDE

First, the empirical PDF of the given time series is computed. We denote this empirical PDF as
f0 (x). The parameters α, β, γ and δ of the α-stable distribution are then estimated via maximum
likelihood. Then we use the DFA to estimate the parameter h and get an estimate for the parameter
ν via the relationship ν = h− 1/2. We fix these estimated values for α, β, γ, δ and ν in the SDE
(1). Setting initial values for κ and η, we then generate a sample path of the process X (t) defined
by (7) via the approximation algorithm described by (9) - (12). Another empirical PDF based on
this path of X (t) is then computed.

The procedure is continued for different sets of values of the parameters (κ, η), and we denote
the resulting empirical PDF as f̂ (x). The estimates of the parameters of Eq. (1) are those
corresponding to

min
κ,η

N∑

i=1

(
f0 (xi)− f̂ (xi)

)2
, (18)

where N is the number of points on the pdf curve we selected. In this paper, we set N = 130.
We solve problem (18) by using the function fminsearch in MATLAB version 7.1. This algorithm

finds the minimum of a scalar function of several variables based on the Nelder-Mead simplex search
method (Lagarias et al. 1998). It should be noted that the PDF f̂ (x) may have to be computed
for a large number of times, once for each new set of parameters, before the minimum is reached.

A solution path of Eq. (1) based on these estimates is generated. To compare the patterns
of the original and simulated series, we replaced values higher than the maximum value or less
than the minimum value of the original time series by a uniformly random number between the
minimum value and the maximum value.

2.5 Empirical mode decomposition

Lin et al. (2009) described the traditional empirical mode decomposition (EMD) and presented a
new approach to EMD. We outline some content of Lin et al. (2009) here. The traditional EMD for
data, which is a highly adaptive scheme serving as a complement to Fourier and wavelet transforms,
was originally proposed by Huang et al. (1998). In EMD a complicated data set is decomposed
into a finite, often small, number of components called intrinisc mode functions (IMF), which seem
to admit well behaved Hilbert transforms. EMD has been used successfully in many applications
in analyzing a diverse range of data sets in biological and medical sciences, geology, astronomy,
engineering, etc. (e.g., Janosi and Muller 2005; Shi et al. 2008).

The original EMD is obtained through a shifting algorithm: Let {tj} be the local maxima of a
signal X(t). The cubic spline EU (t) connecting the points {(tj , X(tj))} is referred to as the upper
envelope of X. The lower envelope EL(t) is similarly obtained from the local minima {sj} of X (t).
Then we define the operator S by

S(X) = X − 1
2
(EU + EL).

In the so-called sifting algorithm, the first IMF in the EMD is given by

I1 = lim
n→∞S

n(X).
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Subsequent IMFs in the EMD are obtained recursively via

Ik = lim
n→∞S

n(X − I1 − ...− Ik−1).

The process stops when Y = X−I1−I2−...−Im has at most one local maximum or local minimum.
This function Y (t) denotes the local trend in X(t).

Lin et al. (2009) proposed a new algorithm called iterative filtering for EMD. Instead of using
the envelopes generated by spline. In this new algorithm a low-pass filter is used to generate a
moving average to replace the mean of the envelopes. The essence of the sifting algorithm remains.
Let L be an operator that is a low-pass filter, for which L(X)(t) represent the moving average of
X. We now define

T (X) = X − L(X).

In this approach, the low-pass filter L is dependent on the data X.For a given X(t) we choose
a low-pass filter L1 accordingly and set T1 = I − L1, where I is the identity operator. The first
IMF in the new EMD is given by limn→∞ T n

1 (X), and subsequently the k-th IMF Ik is obtained
first by selecting a low-pass filter Lk according to the data X − I1 − ... − Ik−1 and iterations
Ik = limn→∞ T n

k (X − I1 − ... − Ik−1), where Tk = I − Lk. Again the process stops when Y =
X − I1− ...− Im has at most one local maximum or local minimum. Lin et al. (2009) suggested to
use the filter Y = L(X) having the form Y (n) =

∑m
j=−m ajX(n+ j) and proved the convergence of

the sifting algorithm for a class of filters. We choose the filter given by aj = m−|j|+1
m+1 , j = −m, ..., m

for this study, which is simple but works well and is shown to converge.
Hilbert transform: having obtained the IMFs (denoted as Ik), one will have no difficulty in

applying the Hilbert transform to each IMF component,

H(Ik(t)) =
1
π

PV

∫ ∞

−∞

Ik(t)
t− τ

dτ,

in which the PV indicates the principle value of the singular integral. Then the instantaneous
amplitude is defined as (Shi et al. 2008)

rk(t) =
√

I2
k(t) +H2(Ik(t)).

Shi et al. (2008) considered IMF2, IMF3, IMF4 and defined the energy value as ek =
∑

t rk(t), k =
2, 3, 4, and then used the energy ratio gk = ek

e2+e3+e4
, k = 2, 3, 4 to predict protein subcellular

location.

3 Data analysis and discussion

We use the above methods to model the hourly averaged magnetic field time series Bx from 22
INTERMAGNET stations. We collect the stations into 6 groups for the year 2000 A.D.: Southwest
North America (NA1), Northeast North America (NA2), Central Europe (CEUR), Northern Europe
(NEUR), Australasia (AUS) and Asia (ASIA). The stations in each group are listed in Table 1.
Figure 1 shows the time series from the BOU station in NA1 as an example to illustrate the typical
anomalous nature of this kind of data. This Bx time series clearly displays non-Gaussianity at large
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Figure 1: The hourly magnetic field Bx component for the year 2000 at station BOU.

scales and Brownian motion-type behavior at small scales. This indicates the existence of different
scalings in the process.

The empirical density of this time series, as shown in Figure 2, is consistent with a skewed
α-stable distribution. Hence we used maximum likelihood (implemented by the program STABLE
downloaded from J. P. Nolan’s website: http://www.academic2.american.edu/ jpnolan) to estimate
the parameters α, β, γ and δ in the α-stable distribution and generate the corresponding PDF to fit
the empirical density of the observed time series. We found that the α-stable distribution provides
a reasonably good fit to the probability density of Bx data (see Figure 2). The estimated values of
α, β, γ and δ for Bx of these stations are given in Table 1.

Then we performed a detrended fluctuation analysis on the Bx data. For the given time series,
we found good linear relationships of log10 F (s) versus log10 s in the time scale range of 5 ≤ s ≤ 25
hours (almost a day). The estimated values of the exponent h for Bx are given in Table 1. For
example, the DFA slope estimation for the Bx at the BOU station is given in Figure 3. The h

values of the Bx time series, which vary in the range 1.0 < h < 1.5, indicate that the observed Bx

time series are non-stationary and anti-persistent.
Then we tried to simulate paths of Bx using the fractional SDE (1) directly, but found that

all the resulting simulations are not adequate; in particular, they were not able to trace the local
trends, which are pronounced in the magnetic field data. So we used the traditional EMD (Huang
et al. 1998) and the new EMD developed by Lin et al. (2009) to fit these local trends. We
found that both EMDs can fit the trends well, but the new EMD works slightly better. Hence
we just showed the results using the new EMD in the following. We used the new EMD to get
the IMFs as in Figure 4, which show that the randomness becomes less from IMF1 to IMF4,
and IMF4 is relatively smooth. Hence we define the local trend of the magnetic field data as
Y = X − (IMF1 + IMF2 + IMF3 + IMF4). We then removed the local trend from the raw
data by X − Y to get the detrended data (IMF1 + IMF2 + IMF3 + IMF4), which appear to be
stationary. For example, we fit the local trend of Bx data at the BOU station in the upper panel
of Figure 5 and get the detrended data in the lower panel of Figure 5.
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Figure 2: α-stable distribution fit for the probability density of hourly magnetic field component
Bx at station BOU

Table 1: The estimated values of α, β, γ and δ when we use the α-stable distribution to fit the
probability density, and the power law exponent h in DFA of the Bx data at the selected stations.

Group Station min(Bx) max(Bx) α β γ δ h

BOU 20439 20723 1.5879 -0.8989 13.1886 20648.1 1.1959 ± 0.0334

NA1 FRN 22767 23174 1.6511 -0.9008 13.6125 23090.4 1.2217 ± 0.0265

DLR 24996 25366 1.7012 -0.9900 15.8343 25288.5 1.2481 ± 0.0294

TUC 24213 24596 1.7114 -0.9900 15.5121 24515.8 1.2492 ± 0.0239

FCC 7388.4 9283.7 1.2705 -0.3183 37.4423 8440.47 1.2188 ± 0.0227

NA2 PBQ 10022 12144 1.2703 -0.3248 31.9522 11031.1 1.2249 ± 0.0218

OTT 16422 17823 1.6929 -0.8602 18.0112 16967.4 1.1738 ± 0.0723

STJ 17540 18266 1.6525 -0.9253 18.3224 17914.7 1.2192 ± 0.0532

BDV 20052 20399 1.5927 -0.8663 11.4755 20296.9 1.3191 ± 0.0300

CEUR NCK 20814 21127 1.6256 -0.8641 10.9772 21040.3 1.3010 ± 0.0291

FUR 20608 20939 1.5815 -0.8700 11.2065 20842.9 1.3148 ± 0.0275

NGK 18455 18930 1.6334 -0.8597 12.1750 18780.0 1.2998 ± 0.0362

ABK 10189 12258 0.9401 -0.1305 19.9918 11455.2 1.2200 ± 0.0292

NEUR NUR 14041 15352 1.5973 -0.3771 13.1472 14897.1 1.2058 ± 0.0672

LOV 14531 15664 1.6463 -0.4805 12.8191 15297.0 1.2167 ± 0.0664

SOD 10129 12277 0.9829 -0.1366 17.0264 11477.4 1.2122 ± 0.0319

ASP 29665 30014 1.6334 -0.8627 13.6621 29940.2 1.3426 ± 0.0171

AUS CTA 31239 31617 1.6017 -0.8537 13.6192 31529.0 1.3500 ± 0.0233

KDU 35056 35470 1.7123 -0.3080 16.8851 35357.8 1.4698 ± 0.0468

BMT 28170 28528 1.6517 -0.9435 14.2766 28457.1 1.2653 ± 0.0330

ASIA KAK 29520 29867 1.6464 -0.8909 13.9227 29785.2 1.3146 ± 0.0273

MMB 25584 25952 1.6389 -0.9450 14.1416 25877.4 1.2761 ± 0.0367
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Figure 3: The DFA slope estimation for the Bx data of BOU station.
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Figure 4: The EMD results of the Bx data of BOU station.
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Figure 5: The local trend (white curve) of Bx data in BOU station ( upper panel) and the detrended
data (lower panel).

We now use the fractional SDE (1) to simulate the detrended data (IMF1+ IMF2+ IMF3+
IMF4). We found that the fractional SDE simulates very well all detrended Bx time series. The
next step is to fit the empirical density of the detrended data using an α-stable distribution. Then
we used the slope of DFA in the time scale range 11 ≤ s ≤ 47, which gives good linear relationships,
to infer the exponent h and get an estimate of the parameter ν via the relationship ν = h − 1/2.
We then fixed the estimated values of the parameters α, β, γ, δ and ν in the SDE (1) and used the
simulation algorithm in Section 2.4 to estimate the coefficients κ and η via (18). The estimated
values of all the parameters α, β, γ and δ, ν, κ and η for the detrended Bx at the selected stations
are listed in Table 2.

From these estimates of all the parameters, we simulated sample paths of detrended data,
denoted as X̂detrend. A simulation of each time series Bx is then obtained as the sum of such a
simulated path X̂detrend and the fitted trend Y . As an example, we show the simulation of the
Bx time series at the BOU station in the left column of Figure 6 and the corresponding empirical
density of the detrended data in its right column. It is seen that the empirical density generated
from the fractional SDE follows the tails of the detrended Bx series, while the positive tail generated
from the theoretical α-stable density is thinner but longer than that of the empirical density. More
examples of the simulation of Bx time series are given in Figure 7.

The simulated paths trace very well those of the observed time series. In conjunction with
excellent fitting of the empirical densities of the time series, the results indicate that the fractional
SDE (1) in combination with empirical mode decomposition provides a good method to model the
components of the magnetic field. In fact, we tried the method on the By and Bz components and
the simulations are equally excellent for all 22 stations.

For the purpose of clustering of the magnetic field, the two most significant parameters are
the stability exponent α and the degree of differentiation ν (or h as reported). As was proved in
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Table 2: The estimated values of α, β, γ and δ when we use the α-stable distribution to fit the
probability density, and the power law exponent h in DFA, estimated κ and η of the detrended Bx

data at the selected stations. We set 1.5 and 2.5 as the initial value of κ and η respectively for all
stations except FCC (1.5,1.0), ABK (1.5,1.0) and SOD (2.0,1.0).

Group Station Geomagnetic α β γ δ h κ η

latitude (◦)

BOU 40.14 1.5237 -0.8341 9.98987 5.10507 0.8884 ± 0.0321 1.7100 2.2923

NA1 FRN 37.09 1.6169 -0.6796 9.75016 3.42546 0.9423 ± 0.0217 1.4137 2.6347

DLR 29.49 1.5925 -0.4920 9.30300 2.84548 1.0046 ± 0.0159 0.7182 3.8897

TUC 32.17 1.6118 -0.4884 9.31218 2.59578 0.9905 ± 0.0158 1.5345 2.5371

FCC 58.76 1.2604 -0.1740 35.7932 11.1448 0.7891 ± 0.0516 1.3490 1.1252

NA2 PBQ 55.28 1.1022 -0.0650 25.2671 7.05106 0.8242 ± 0.0579 1.3962 1.0606

OTT 45.40 1.3143 -0.7016 10.5020 6.61395 0.7508 ± 0.0325 1.4977 1.0506

STJ 47.60 1.3946 -0.7397 9.76454 6.00033 0.7595 ± 0.0354 1.4586 1.0410

BDV 49.08 1.5513 -0.5706 8.53128 3.08720 0.9432 ± 0.0340 1.2553 2.9598

CEUR NCK 47.63 1.5359 -0.5312 7.58381 2.74455 0.9617 ± 0.0313 1.4121 2.6619

FUR 48.16 1.5457 -0.5333 8.24641 2.90425 0.9544 ± 0.0330 0.9244 2.9225

NGK 52.07 1.5809 -0.6605 9.52715 3.45741 0.8771 ± 0.0376 1.4525 2.5750

ABK 68.36 1.0559 -0.0396 25.2279 6.86519 0.7397 ± 0.0496 1.6266 0.9744

NEUR NUR 60.51 1.3905 -0.3972 10.2271 3.66515 0.7346 ± 0.0385 1.4555 1.0791

LOV 59.90 1.4335 -0.4894 9.81644 3.82705 0.7433 ± 0.0387 1.5036 1.0878

SOD 67.37 1.0434 -0.0085 20.0871 5.14762 0.7340 ± 0.0471 1.8166 1.1511

ASP -23.76 1.6202 -0.2351 9.77916 1.85506 1.1191 ± 0.0238 0.6305 4.4862

AUS CTA -20.09 1.5271 -0.0957 9.43664 1.51390 1.1411 ± 0.0298 1.5642 2.5204

KDU -12.69 1.5580 0.2269 12.9957 -0.77396 1.0145 ± 0.0397 1.4929 2.3166

BMT 40.34 1.5994 -0.5864 10.1863 3.48716 0.9914 ± 0.0249 1.3488 2.7529

ASIA KAK 36.23 1.6003 -0.3849 9.30575 2.41755 1.0954 ± 0.0273 1.2019 2.7582

MMB 43.91 1.5712 -0.6727 10.2512 4.06109 0.9737 ± 0.0382 1.2852 2.7394
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Figure 6: (Left): The SDE simulation of the Bx data at BOU station. (Right): the corresponding
probability density of the detrended data.
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Figure 7: (Left): The SDE simulation of the Bx data at ABK station. (Right): The SDE
simulation of the Bx data at ABK station.

Jaffard (1999), the paths of an α-stable process is multifractal, while, the degree of differentiation
ν indicates the extent of self-similarity in the process.

Using the estimates of α reported in Table 2, it is seen that the stations group into two distinct
regions, one consisting of NA1, CEUR, AUS and ASIA corresponding to α = 1.6 approximately,
and the other consisting of NA2 and NEUR corresponding to α = 1.3 approximately. It is noted
that NEUR is composed of those stations above 60◦N and NA2 is composed of those stations of
Northeast America around 60◦N . The values of h reported in Table 1 also confirm the clustering
of these two regions corresponding to h = 1 and h = 0.75 approximately. We recall that α signifies
the degree of non-Gaussianity (away from Gaussianity, which corresponds to α = 2). The smaller
value of α = 1.3 shows a higher degree of fluctuations in the magnetometer measurements at the
stations of NA2 and NEUR. This is corroborated by a smaller h value, meaning a smaller extent
of self-similarity/memory, for NA2 and NEUR.

Another outcome from the numerical results is that these estimates for α and h remain approx-
imately constant in these two regions, implying that their fluctuations be driven by two different
sources.

4 Conclusions

The numerical results from detrended fluctuation analysis show that the magnetic field time
series are non-stationary and anti-persistent, consistent with this type of geophysical data. The
α-stable density fits the empirical densities of magnetic field time series very well. The time series
have pronounced local trends. Empirical mode decomposition is found to be a suitable technique
to fit this type of local trends. These local trends must be removed before a fractional SDE can
be developed. It is seen that the probability density generated from such a fractional SDE follows
closely that of a detrended Bx series, while the tail of the theoretical α-stable density is continuous
and longer, hence generating a denser path of extreme values. It is also found that fractional SDEs
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simulate very well detrended magnetic field time series.
The main finding of this paper is the presence of two distinct scaling regimes, one in the low

latitudes near the equator similar to that of the Dst, and the other above latitude 60◦N consistent
with that of the AE. These scalings are characteristic of each region, which maps into the inner
magnetosphere and the magnetospheric region related to the solar wind respectively. The scalings
are fairly constant, confirming these two different sources in driving the fluctuations in the magnetic
field.

The numerical results of the α-stability index and the self-similarity index indicate that the
intrinsic dynamics of the low-latitude magnetosphere is less complex than the high-latitude mag-
netosphere. This supports Wanliss and Reynolds (2003)’s suggestion that the result may help
quantify the dynamics of the inner magnetosphere itself without the direct presence of the solar
wind driver.
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