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Abstract. The β-encoder, introduced as an alternative to binary encoding in A/D con-
version, creates a quantization scheme robust with respect to quantizer imperfections by
the use of a β-expansion, where 1 < β < 2. In this paper we introduce a more general
encoder called the βα-encoder, that can offer more flexibility in design and robustness
without any significant drawback on the exponential rate of convergence of the obtained
expansion. Mathematically, the βα-encoder gives rise to a dynamical system that is both
very interesting and challenging.

1. Introduction

Computer and digital information technologies are everywhere in our lives today. A key
step that makes all those technologies possible is to convert analog data into digital ones,
a process known analog-to-digital conversion, or A/D conversion. With we demand for
higher precision and more cutting-edge technologies, the mathematics of A/D conversion
algorithms plays a key role in this quest.

One of the most basic problems in A/D conversion concerns the representation of a signal
x coming from a continuous media into a string of characters in a finite alphabet. Probably
the best known scheme is the binary representation. In this scheme, a finite or infinite
string of binary digits is obtained to represent x ∈ [0, 1) in the following way

(1.1)
x0 = x
bn = Q(2xn−1)
xn = 2xn−1 − bn,

where the function Q is given by

(1.2) Q(t) =
{

0 if t < 1,
1 otherwise.

The function Q(t) is called a comparator or a quantizer. Perfect reconstruction of x is given
by

(1.3) x =
∞∑
n=1

bn2−n.
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It is well know that the binary representation gives exponential accuracy in the sense that∣∣∣∣∣x−
N∑
n=1

bn2−n
∣∣∣∣∣ < 2−N .

One important drawback of this A/D encoder is the fact that the binary representation
is unique for all x that is not a dyadic rational, which has two binary representations.
The significance of this drawback comes from the fact that in practice analog devices have
inherent imprecisions. Thus if the comparator Q(t) in (1.2) makes a wrong decision this
error cannot be corrected. Thus the encoder based on binary expansion is inaccurate if the
comparator Q(t) is imprecise. Indeed, in practical applications it is more suited to model
the comparator (quantizer) Q by the following Qf with some build-in randomness:

(1.4) Qf (t) =

 0 if t < ν1,
0 or 1 if ν1 ≤ t ≤ ν2

1 otherwise,

where the values of ν1 and ν2 are not known precisely, though, they lie in a known range.
With such a “flaky” comparator the A/D encoder based on binary expansion will fail with
high probability, see [2].

To address this concern the β-encoder for A/D conversion was recently introduced in [1]
and studied in more detail in [2] and [4]. This encoder is based on the so-called β-expansion,
which is analagous to the binary expansion but uses a value 1 < β ≤ 2 in place of base 2.
The β-encoder achieves exponential accuracy in the order of O(β−N ), but more importantly,
with suitably chosen β the β-encoder is robust against imprecise comparators Qf . In this
paper we introduce a variant of the β-encoder called the βα-encoder, where the introduction
of a secondary parameter α allows more flexibility in the scheme while achieving the same
exponential acuracy as in β-encoder.

2. The β-Encoder

The so called β-encoder is based in the β-expansion introduced originally in [10] as
a particular case of an f -expansion. There, Renyi introduced the posibility to use non-
integral bases to represent real numbers. Then, given a non integer β > 1, if 0 < x < 1 it
is possible to express

(2.1) x =
∞∑
n=1

bnβ
−n.

The digits bn can be chosen recursively as

(2.2)
x0 = x,
bn = bβxn−1c,
xn = βxn−1 − bn,

where b·c denotes the integer part. At each step, 0 ≤ bi ≤ bβc. There is an immediate
gain using this representation instead of the representation obtained by an integral base:
There are many possible choices of {bn} that still yield a valid reconstruction for x with the
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expansion (2.1). In fact it is proved (see Sidrov [11]) that for almost every x ∈ (0, 1) there
are uncontably many of such representations. Taking advantage of this fact, Daubechies,
DeVore, Güntürk and Vaishampayan [2] introduced the idea of a β-encoder for A/D conver-
sion, which enables one to overcome the imprecision of the comparator Qf . (This is often
referred to as the i.e. the flaky quantizer problem.) They proved the following theorem:

Theorem 1. Let 1 < β < 2, 0 ≤ x < 1, 1 ≤ ν0 < ν1 ≤ (β − 1)−1 and Qf as defined in
(1.4), and define xfn, b

f
n by the algorithm

(2.3)
xf0 = x

bfn = Qf (βxfn−1)
xfn = βxfn−1 − b

f
n

Then, for all N ∈ N

0 ≤ x−
N∑
n=1

bfnβ
−n ≤ ν1β

−N .

Note that ν1 ≥ 1. This means that even though the β-encoder allows certain imprecision
on the quantizer, it does not allow the quantizer to err upward, i.e. reading off a 0 as a 1.
The scheme would fail if this occurs. This drawback can be overcome by replacing Qf (t)
with Qf (t − δ) where δ is known to have δ ≥ ν2. This requires a conservative estimate
of ν1. In this paper we propose an alternative approach. We introduce the βα-encoder
as a variation of the β-encoder. With a secondary parameter α this encoder allows added
flexibility.

3. The βα-Encoder

As it has been already discussed, a β-expansion of a real number x ∈ [0, 1] is any collection
of digits {bn}n∈N such that

x =
∑
n∈N

bnβ
−n.

Such expression is far from unique. A very intuitive way to obtain such a collection of digits
is described by (2.2), and thus we will call this specific β-expansion of x as its canonical
expansion. In this chapter we will analyze another way to obtain β-expansions, and will seize
on the properties of this alternative method to obtain a stable scalar quantization scheme
where the implementation can be given with some freedom unavailabe in the β-Encoder.

3.1. A Non-Canonical β-Expansion. We will introduce a non-canonical β-expansion,
that we will call a βα-expansion. This one is similar to the β-expansion in that it still uses
a possibly non-integer β as the base. However, unlike in the β-expansion the digits bn are
obtained at each stage using an amplification factor α instead of β. More precisely, for any
0 ≤ x < 1 we set x0 = x and obtain bn, xn for n ≥ 1 using the following scheme:

(3.1) bn = bαxn−1c,
xn = βxn−1 − bn.
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Observe that xn−1 = β−1(xn + bn) for every n ≥ 1, and therefore, nesting this identity
we obtain for any N ∈ N the expression

x = β−NxN +
N∑
n=1

bnβ
−n,

or equivalently,

(3.2) x−
N∑
n=1

bnβ
−n = β−NxN .

In order for perfect reconstruction x =
∑∞

n=1 bnβ
−n we will need β−NxN → 0, preferably

at an exponential rate. To make it happen, let {t} denote the fractional part of t. Then
x = bxc+ {x}, and

xN = βxN−1 − bN
= βxN−1 − bαxN−1c
= βxN−1 − αxN−1 + {αxN−1}
= (β − α)xN−1 + {αxN−1}

= (β − α)Nx+
N∑
n=1

{αxn−1}.

Since 0 ≤ {t} < 1, it follows that (β − α)Nx ≤ xN < (β − α)Nx+N , and

β−N (β − α)Nx ≤ β−NxN < β−N
(
(β − α)Nx+N

)
.

Thus if we set β > 1 and 0 < α ≤ β we will ensure a perfect reconstruction with exponential
rate convergence. Furthermore, all xn ≥ 0 and hence all digits bn are nonnegative. For
quantization applications, the magnitude of xn matters because it determines the magnitude
of bn. Since these digits bn must come from a finite alphabet we shall require that xn be
bounded. A necessary condition is β − α < 1. In what follows we focus on the case
0 ≤ β − α < 1. We ask the following questions: Are {bn} bounded, and if so, what is the
upper bound?

Lemma 2. Let 1 < β, α ≤ β and β − α < 1. Define T (x) = βx − bαxc and set ω =
[1 − (β − α)]−1. Let K = dω(β − 1)e where dye denotes the least integer greater than or
equal to y. Then the fixed points of T are {k(β − 1)−1 : 0 ≤ k < K}.

Proof. First we notice that T (x) ≥ (β − α)x implies that T (x) > x if x < 0. So T cannot
have a negative fixed point. Now, notice that if T (x) = x then βx− k = x where k = bαxc.
Thus x = k(β − 1)−1. So all fixed points must be in the form of x = k(β − 1)−1 for some
integer k ≥ 0. We shall determine which of these k’s actually yield fixed points. To do so, let
x = k(β− 1)−1 be a fixed point. Then βx−bαxc = x. It follows that bαxc = (β− 1)x = k.

Now bαxc = αx− {αx}. So we have αx− k = {αx}. Note that

αx− k =
αk

β − 1
− k =

(1− β + α)k
β − 1

=
k

ω(β − 1)
.
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Thus we have k[ω(β − 1)]−1 = {αx} < 1, which yields k < ω(β − 1) or equivalently,
k < K. Conversely, if 0 ≤ k < K and x = k

β−1 the above calculations can be reversed to
show that x is a fixed point. �

Proposition 3. Let 1 < α ≤ β and β − α < 1. Define T (x) = βx− bαxc and set

(3.3) M =
⌈

α(β − 1)
β[1− (β − α)]

⌉
.

Let τ = M(βα−1 − 1) + 1. For any 0 ≤ x ≤ τ we have 0 ≤ Tn(x) < τ for all n ≥ 1.

Proof. Note that T (x) = (β − α)x + {αx} so T (x) ≥ 0 for x ≥ 0. Furthermore, as α < β
we have αβ−1ω(β−1) < ω(β−1), where ω = [1− (β−α)]−1. Thus M ≤ dω(β − 1)e. Hence
(M − 1)(β − 1)−1 is a fixed point. For x < Mα−1,

T (x) < (β − α)x+ 1 < (β − α)Mα−1 + 1 = τ.

If M < dω(β − 1)e, then M(β− 1)−1 would be also a fixed point by Lemma 2 along with

α(β − 1)
β[1− (β − α)]

< M ⇒M(βα−1 − 1) + 1 ≤ M

β − 1
.

Therefore, T (x) ≤ x for every x ∈ [Mα−1, τ). Hence T (x) < τ .

If M = dω(β − 1)e, then (M − 1)(β− 1)−1 is the largest fixed point of T . Thus for every
x > Mα−1, T (x) < x.

As it was just proven, 0 ≤ x ≤ τ implies 0 ≤ T (x) ≤ τ . The iteration step is trivial. �

Proposition 4. Let 1 < α ≤ β and β − α < 1. Let M and τ be as in Proposition 3. For
any x ∈ [0, τ) define x0 = x and xn, bn for n ≥ 1 by bn = bαxn−1c and xn = xn−1 − bn.
Then 0 ≤ xn < τ and bn ∈ {0, 1, . . . ,M}.

Proof. Notice that xn = Tn(x0). By Proposition 3 we have 0 < xn < τ . Also, by
bn = bαxn−1c it is enough to prove that τα ≤ M + 1. Now, it follows from α < β that
α(β − 1) > β(α− 1). Thus

α− 1
1− (β − α)

<
α(β − 1)

β[1− (β − α)]
≤M.

Hence α−1 < M [1− (β−α)], which yields τ = M(β−α) +α < (M + 1)α−1 ⇒ bn ≤M . �

3.2. The βα-Encoder vs. the β-Encoder. The βα-expansion described in the previous
section leads naturally to a quantization scheme assuming a perfect quantizer. When a
flaky quantizer is used, it can still yield a perfect reconstruction with suitable chioces of the
parameters.

Given the conditions 1 < α ≤ β, β − α < 1 we now consider the following general
βα-enocder given by the scheme x0 = x,

(3.4) bn = Q̄(αxn−1),
xn = βxn−1 − bn.
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where Q̄ is a quantizer that such that Q̄(t) ∈ {0, 1, . . . , B − 1} for some integer B. The
case B > 2 corresponds to a multi-bits quantizer, which is increasingly used in applications.
Note that Q̄ may have build-in uncertainty as in the 1-bit flasky comparator Qf . Our main
concern is to keep xN bounded for every N .

The first natural question is: what bounds should xN have to in order to have stability?
Note that if x0 < 0, then x1 = βx0 − Q̄(αx0) ≤ βx0. Thus xN ≤ β−Nx0, making the
sequence diverge to negative infinity. Hence xn should be positive. On the other hand, note
that if xN is bounded for all N , then by (3.2) one has that

xN = lim
K→∞

K∑
n=1

bN+nβ
−n ≤

∞∑
n=1

(B − 1)β−n =
B − 1
β − 1

.

With 0 ≤ xn ≤ B−1
β−1 we have x =

∑∞
n=1 bnβ

−n, and thus the exponential accuracy

(3.5) 0 ≤ x−
N∑
n=1

bnβ
−n ≤ β−N .

The theorem below shows that even with an imprecise (multi-bits) quantizer Q̄, which we
shall denote by Q̄f , we can make {xn} bounded by suitably choosing the parameters β and
α.

Theorem 5. Let B be a given positive integer and let β, α > 1 such that 1 < β < B,
0 < β − α < 1. For any x ∈ [0, 1) define xf0 = x and

(3.6)
bfn = Q̄f (αxfn−1),
xfn = βxfn−1 − b

f
n,

where the quantizer Q̄f (t) ∈ {0, 1, . . . , B − 1} has the property Qf (t) = j implies that
t ∈ [jαβ−1, αβ−1(µ+ j)], with µ = (B − 1)(β − 1)−1. Then 0 ≤ xfn ≤ µ for all n and hence

0 ≤ x−
N∑
n=1

bfnβ
−n ≤ µβ−N .

Proof. Note that β < B implies µ > 1, and therefore xf0 < µ. Now xfn = βxfn−1 − b
f
n and

(3.2) is valid regardless of how bfn are chosen. Therefore it suffices to prove that 0 ≤ xfn ≤ µ.
Let’s now examine the respective subintervals.

Assume that 0 ≤ xfn ≤ mu. If Q̄f (αxfn) = j then αxfn ∈ [jαβ−1, αβ−1(µ + j)]. Thus
jβ−1 ≤ xfn ≤ β−1(µ+ j). It follows that 0 = β(jβ−1)− j ≤ xfn+1 ≤ β[β−1(µ+ j)]− j = µ.
By induction on n we have 0 ≤ xfn ≤ mu for all n. �

By Proposition 4 we may choose B = M + 1 where M =
⌈

α(β−1)
β[1−(β−α)]

⌉
. This βα-encoder

gives a robust multi-bits encoder. A special case is to choose β and α so B = 2, which leads
to a robust 1-bit βα-encoder. The following theorem is a corollary of Theor.me 5, which is
a generalization of the 1-bit β-encoder.
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Theorem 6. Let 1 < β < 2 and α > 1. Let Qf be as in (1.4. Assume that β(β−1) < α < β
and αβ−1 ≤ ν1 < ν2 ≤ αβ−1(β − 1)−1 and ). Then for any x ∈ [0, 1) the encoder given by

(3.7)
xf0 = x,

bfn = Qf (αxfn−1),
xfn = βxfn−1 − b

f
n

has the property that for all N ∈ N

0 ≤ x−
N∑
n=1

bfnβ
−n ≤ (β − 1)−1β−N .

3.3. Imprecise α-Multiplication. An imprecise quantizer is not the only problem that
can arise in a real application. The multiplication via analog circuits can potentially be
another source of inaccuracy. Thus, by performing two multiplications in the βα-encoder
we introduce an extra source for potential errors. In this section, we show that the α-
multiplication in the βα-encoder does not have to be very accurate, by allowing each α-
multiplier to multiply a different value each time. We prove the following theorem.

Theorem 7. Let B be a given positive integer and let β, αn > 1 such that 1 < β < B,
β
B < β − αn < 1. For any x ∈ [0, 1) let xf0 = x and

bfn = Q̄f (αnx
f
n−1),

xfn = βxfn−1 − b
f
n,

where the quantizer Q̄f (t) ∈ {0, 1, . . . , B − 1} has the property Qf (t) = j implies that
t ∈ [j(supαk)β−1, (inf αk)β−1(µ + j)] and Qf (t) = B − 1 if t ≥ (inf αk)µ, with µ =
(B − 1)(β − 1)−1. Then, 0 ≤ xfn ≤ µ for all n and hence

0 ≤ x−
N∑
n=1

bfnβ
−n ≤ µβ−N .

Proof. Note that trivally, for any integer n and 0 ≤ j < B one has that

[j(supαk)β−1, (inf αk)β−1(µ+ j)] ⊆ [jαnβ−1, αnβ
−1(µ+ j)].

Then, using the same argument as in the proof of Theorem 5 we only need to prove the
set of intervals Ij = [j(supαk), (inf αk)(µ + j)] cover [0, (inf αk)µβ]. Note that 0 ∈ I0

and (inf αk)µ ∈ IB−1, and the lower endpoints (as well as the upper endpoints) are in an
increasing order. Thus the only thing left to prove is that Ij ∩ Ij+1 6= ∅. For this it suffices
to prove (j + 1) supαk ≤ (µ+ j) inf αk. Note that by assumption we have

µ+ j

j + 1
inf αk ≥

µ+ (B − 1)
B

(β − 1) =
(B − 1)β

B
≥ supαk.

�



8 DAVID JIMÉNEZ AND YANG WANG

4. Ergodic Properties of the βα-Encoder

In the previous chapter we discussed the βα-Encoder. The scheme defined in (3.1) gives
rise to the dynamical system xn+1 = T (xn), where T (x) = βx − bαxc. Beyond its practi-
cal applications, this system is interesting on its own from a mathematical point of view,
specifically, the ergodicity of T , on which we will focus in this section.

4.1. Invariant Sets for T . Let 1 < β, α ≤ β and β − α < 1. As in Lemma 2, denote
T (x) = βx− bαxc, ω = [1− (β − α)]−1and K = dω(β − 1)e.

For simplicity we will introduce the following additional notation. For 0 < k ≤ K let

(4.1) λk =
k

(β − 1)
, ξk = k

(
β − α
α

)
+ 1, ζk = k

(
β − α
α

)
.

By Lemma 2, λk are the nonzero fixed points of T . Observe that the map T (x) = (β −
α)x + {αx} is piecewise linear with discontinuities at yk = k/alpha. It is easy to see that
ξk = limx→y−k

T (x) and ζk = limx→y+k
T (x).

Proposition 8. If i and j are indices such that λi−1 ≤ ζi and ξj ≤ λj, then ζi < ξj.
Furthermore the interval Ψ = [ζi, ξj ] is T -invariant in the sense that T (Ψ) = Ψ.

Proof. Note that

λi−1 ≤ ζi

< ζi + 1− (β − α)
= ζi−1 + 1
= ξi−1.

Hence j > i− 1, i.e. i ≤ j, and therefore ζi < ξj .

Now for any 0 ≤ i ≤ n, ζi ≤ iα−1 < (i+ 1)α−1 < ξi+1, and also we have

T
(
[iα−1, (i+ 1)α−1]

)
= [ζi, ξi+1).

Thus regardless of how i and j are chosen, as long as 0 ≤ i ≤ j ≤ n we would have
T (Ψ) ⊇ Ψ. Now, as ζi < ζi+1 and ξi < ξi+1 for any i, we only have to prove that for the i
and j described in the statement, T

(
[ζi, iα−1, ξj ]

)
⊆ Ψ and T

(
[jα−1, ξj ]

)
⊆ Ψ.

Note that
sup

x<iα−1

T (x) = ξi ≤ ξj .

Also, as λi−1 ≤ ζi ≤ iα−1, if one takes ζi ≤ x̃ < iα−1 then T (ζi) ≤ T (x̃) < ξi. Observe that
T (x)−x is continuous and increasing on (ζi, iα−1) interval, and because λi−1 ≤ x̃ and λi−1

is a fixed point, one has that T (ζi) > ζi. Therefore if ζi ≤ x̃ ≤ iα−1 then T (x̃) ∈ Ψ. An
analogous argument proves that T

(
[jα−1, ξj ]

)
⊆ Ψ. Note that by definition, Ψ is a closed

set and we have T (Ψ) ⊆ Ψ ⊆ T (Ψ), so T (Ψ) = Ψ. �

Of the invariant sets described by Proposition 8, the smallest of them is [ζm, ξn] where
m = max{i : λi−1 ≤ ζi} and n = min{i : ξi ≤ λi}. We shall denote it by Ωβα or Ω where
the choice of α and β is clear from the context.
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4.2. Li-Yorke Theorem and Ergodicity of T for K = 1. As it has already been proved,
given α and β with β > 1, α ≤ β and β − α < 1 we have T (Ωβα) = Ωβα. Note that T is a
piecewise monotone C∞ function. Furthermore, let Ω∗ be the set where both T and dT/dx
are continuous. Then

inf
x∈Ω∗

∣∣∣∣ddxT (x)
∣∣∣∣ > 1

In [7], Lasota and Yorke proved that under these conditions there exist at least one non-
negative function f of bounded variation such that the measure µ with dµ = fdm (where
m is the Lebesgue measure) is invariant under T , in the sense that

µ(E) =
∫
E
fdm =

∫
T−1(E)

fdm = µ
(
T−1(E)

)
.

In a more general setting, let τ : I → I be piecewise twice continuously differentiable.
Denote I∗ the set of points where dτ/dx exists, and assume that

(4.2) inf
x∈I∗

∣∣∣∣ddxτ(x)
∣∣∣∣ > 1.

We will refer to the points of I−I∗ = {x1, . . . , xk} as the points of discontinuity. For x ∈ I,
let Λ(x) be the set of limit points of τn(x), that is

(4.3) Λ(x) =
∞⋂
N=1

{τn(x)}∞n=N .

An important property of this set is that it is fixed under τ , i.e. τ(Λ(x)) = Λ(x). Let F
be the set of f ∈ L1(I), such that f is an invariant density under τ . In [8], Li and Yorke
proved the following theorem.

Theorem 9. Let τ : I → I be a piecewise continuous and twice continuous differentiable
interval map satisfying (4.2). Then, there exists a finite collection of sets L1, L2, . . . , Ln
and a set of functions {f1, f2, . . . , fn} such that

(1) Each Li is a finite union of closed intervals,
(2) Li ∩ Lj contains at most a finite number of points when i 6= j;
(3) each Li contains at least one point of discontinuity xj, 1 ≤ j ≤ k on its interior;

hence n ≤ k;
(4) fi(x) = 0 for x /∈ Li and f(x) > 0 for almost all x in Li;

(5)
∫
Li

fi(x)dx = 1 for 1 ≤ i ≤ n;

(6) if g ∈ F satisfy both (4) and (5), then g = fi almost everywhere;

(7) every f ∈ F can be written as f =
n∑
i=1

aifi for suitably chosen {ai}ni=1;

(8) for almost every x ∈ I there is an index i such that Λ(x) = Li.

Now assume that 1 < β < 2 and β(β−1) < α < β. Then T (x) = βx−bαxc generates a 1-
bit quantization for every x ∈ [0, 1). Now, by Proposition 8 we have Ωβα = [α−1β−1, α−1β].
This interval contains a unique point of discontinuity for T and T ′. By Theorem 9, up to
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normalization, there exists a unique non-negative function f ∈ L1 such that the measure
dµ = fdm is invariant under T . As this measure is unique, T is ergodic with respect to µ.

Indeed, the density of this function can be given in a closed form. In [9], Parry proved
that if τ is a linear transformation (mod 1), (i.e. τ(x) = bx+ a (mod 1) for real numbers
a and b), then the function

h(x) =
∑

x<τn(1)

1
βn
−

∑
x<τn(0)

1
βn
,

where τ0(x) = x by definition, is the density of an invariant measure of τ (potentially
signed). Now if α and β are the parameters of a 1-bit βα-encoder, we can define b = β,
a = (β−1)(β−α)α−1, and f(x) = x− (β−α)α−1. Then T (x) = f−1(τ(f(x))). By Parry’s
theorem, the function

g(x) =
∑

x<Tn(βα−1)

1
βn
−

∑
x<Tn((β−α)α−1)

1
βn

is the density of an absolutely continuous signed measure on Ωβα, and by Li-Yorke’s Theo-
rem, such a measure is necessarily unique up to a re-scaling factor. Therefore, the density
of the unique normalized invariant measure under T is

f(x) =
1
F

 ∑
x<Tn(βα−1)

1
βn
−

∑
x<Tn((β−α)α−1)

1
βn

 ,

where F is a normalizing factor.

4.3. Invariant Sets of T for K > 1. A natural question at this point is: If K > 1, is
there a unique (up to scaling) measure µ, that is absolutely continuous with respect to the
Lebesgue measure and ergodic with respect to T? The answer in general is no.

Consider the βα-encoder with α = 3/4 and β = 3/2. In this case it is easy to show that
K = 2 and Ωβα = [1, 3]. One may check that T has two different invariant sets, namely
[1, 2] and [2, 3]. Therefore, by the theorem of Li and Yorke, there is a measure invariant
under T for each of these intervals, each one independent of the other.

Notice that in this case, λ1, ξ1 and ζ2, as defined in (4.1), are all equal. Our simulations
suggesst that if for every index i the three numbers λi, ξi and ζi+1 are distinct, then the
system is indeed ergodic. One may conjecture that in this case there is a unique invariant
measure which is ergodic. We leave this as an open question.
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