THE $\beta \alpha$-ENCODERS FOR ROBUST A/D CONVERSION

DAVID JIMÉNEZ AND YANG WANG

Abstract

The β-encoder, introduced as an alternative to binary encoding in A / D conversion, creates a quantization scheme robust with respect to quantizer imperfections by the use of a β-expansion, where $1<\beta<2$. In this paper we introduce a more general encoder called the $\beta \alpha$-encoder, that can offer more flexibility in design and robustness without any significant drawback on the exponential rate of convergence of the obtained expansion. Mathematically, the $\beta \alpha$-encoder gives rise to a dynamical system that is both very interesting and challenging.

1. Introduction

Computer and digital information technologies are everywhere in our lives today. A key step that makes all those technologies possible is to convert analog data into digital ones, a process known analog-to-digital conversion, or A/D conversion. With we demand for higher precision and more cutting-edge technologies, the mathematics of A / D conversion algorithms plays a key role in this quest.

One of the most basic problems in A/D conversion concerns the representation of a signal x coming from a continuous media into a string of characters in a finite alphabet. Probably the best known scheme is the binary representation. In this scheme, a finite or infinite string of binary digits is obtained to represent $x \in[0,1)$ in the following way

$$
\begin{align*}
x_{0} & =x \\
b_{n} & =Q\left(2 x_{n-1}\right) \tag{1.1}\\
x_{n} & =2 x_{n-1}-b_{n},
\end{align*}
$$

where the function Q is given by

$$
Q(t)= \begin{cases}0 & \text { if } t<1, \tag{1.2}\\ 1 & \text { otherwise } .\end{cases}
$$

The function $Q(t)$ is called a comparator or a quantizer. Perfect reconstruction of x is given by

$$
\begin{equation*}
x=\sum_{n=1}^{\infty} b_{n} 2^{-n} . \tag{1.3}
\end{equation*}
$$

[^0]It is well know that the binary representation gives exponential accuracy in the sense that

$$
\left|x-\sum_{n=1}^{N} b_{n} 2^{-n}\right|<2^{-N}
$$

One important drawback of this A/D encoder is the fact that the binary representation is unique for all x that is not a dyadic rational, which has two binary representations. The significance of this drawback comes from the fact that in practice analog devices have inherent imprecisions. Thus if the comparator $Q(t)$ in (1.2) makes a wrong decision this error cannot be corrected. Thus the encoder based on binary expansion is inaccurate if the comparator $Q(t)$ is imprecise. Indeed, in practical applications it is more suited to model the comparator (quantizer) Q by the following Q_{f} with some build-in randomness:

$$
Q_{f}(t)=\left\{\begin{array}{cl}
0 & \text { if } t<\nu_{1} \tag{1.4}\\
0 \text { or } 1 & \text { if } \nu_{1} \leq t \leq \nu_{2} \\
1 & \text { otherwise }
\end{array}\right.
$$

where the values of ν_{1} and ν_{2} are not known precisely, though, they lie in a known range. With such a "flaky" comparator the A/D encoder based on binary expansion will fail with high probability, see [2].

To address this concern the β-encoder for A/D conversion was recently introduced in [1] and studied in more detail in [2] and [4]. This encoder is based on the so-called β-expansion, which is analagous to the binary expansion but uses a value $1<\beta \leq 2$ in place of base 2 . The β-encoder achieves exponential accuracy in the order of $O\left(\beta^{-N}\right)$, but more importantly, with suitably chosen β the β-encoder is robust against imprecise comparators Q_{f}. In this paper we introduce a variant of the β-encoder called the $\beta \alpha$-encoder, where the introduction of a secondary parameter α allows more flexibility in the scheme while achieving the same exponential acuracy as in β-encoder.

2. The β-Encoder

The so called β-encoder is based in the β-expansion introduced originally in [10] as a particular case of an f-expansion. There, Renyi introduced the posibility to use nonintegral bases to represent real numbers. Then, given a non integer $\beta>1$, if $0<x<1$ it is possible to express

$$
\begin{equation*}
x=\sum_{n=1}^{\infty} b_{n} \beta^{-n} . \tag{2.1}
\end{equation*}
$$

The digits b_{n} can be chosen recursively as

$$
\begin{align*}
x_{0} & =x, \\
b_{n} & =\left\lfloor\beta x_{n-1}\right\rfloor \tag{2.2}\\
x_{n} & =\beta x_{n-1}-b_{n},
\end{align*}
$$

where $\lfloor\cdot\rfloor$ denotes the integer part. At each step, $0 \leq b_{i} \leq\lfloor\beta\rfloor$. There is an immediate gain using this representation instead of the representation obtained by an integral base: There are many possible choices of $\left\{b_{n}\right\}$ that still yield a valid reconstruction for x with the
expansion (2.1). In fact it is proved (see Sidrov [11]) that for almost every $x \in(0,1)$ there are uncontably many of such representations. Taking advantage of this fact, Daubechies, DeVore, Güntürk and Vaishampayan [2] introduced the idea of a β-encoder for A/D conversion, which enables one to overcome the imprecision of the comparator Q_{f}. (This is often referred to as the i.e. the flaky quantizer problem.) They proved the following theorem:
Theorem 1. Let $1<\beta<2,0 \leq x<1,1 \leq \nu_{0}<\nu_{1} \leq(\beta-1)^{-1}$ and Q_{f} as defined in (1.4), and define x_{n}^{f}, b_{n}^{f} by the algorithm

$$
\begin{align*}
x_{0}^{f} & =x \\
b_{n}^{f} & =Q_{f}\left(\beta x_{n-1}^{f}\right) \tag{2.3}\\
x_{n}^{f} & =\beta x_{n-1}^{f}-b_{n}^{f}
\end{align*}
$$

Then, for all $N \in \mathbb{N}$

$$
0 \leq x-\sum_{n=1}^{N} b_{n}^{f} \beta^{-n} \leq \nu_{1} \beta^{-N}
$$

Note that $\nu_{1} \geq 1$. This means that even though the β-encoder allows certain imprecision on the quantizer, it does not allow the quantizer to err upward, i.e. reading off a 0 as a 1 . The scheme would fail if this occurs. This drawback can be overcome by replacing $Q_{f}(t)$ with $Q_{f}(t-\delta)$ where δ is known to have $\delta \geq \nu_{2}$. This requires a conservative estimate of ν_{1}. In this paper we propose an alternative approach. We introduce the $\beta \alpha$-encoder as a variation of the β-encoder. With a secondary parameter α this encoder allows added flexibility.

3. The $\beta \alpha$-Encoder

As it has been already discussed, a β-expansion of a real number $x \in[0,1]$ is any collection of digits $\left\{b_{n}\right\}_{n \in \mathbb{N}}$ such that

$$
x=\sum_{n \in \mathbb{N}} b_{n} \beta^{-n} .
$$

Such expression is far from unique. A very intuitive way to obtain such a collection of digits is described by (2.2), and thus we will call this specific β-expansion of x as its canonical expansion. In this chapter we will analyze another way to obtain β-expansions, and will seize on the properties of this alternative method to obtain a stable scalar quantization scheme where the implementation can be given with some freedom unavailabe in the β-Encoder.
3.1. A Non-Canonical β-Expansion. We will introduce a non-canonical β-expansion, that we will call a $\beta \alpha$-expansion. This one is similar to the β-expansion in that it still uses a possibly non-integer β as the base. However, unlike in the β-expansion the digits b_{n} are obtained at each stage using an amplification factor α instead of β. More precisely, for any $0 \leq x<1$ we set $x_{0}=x$ and obtain b_{n}, x_{n} for $n \geq 1$ using the following scheme:

$$
\begin{align*}
b_{n} & =\left\lfloor\alpha x_{n-1}\right\rfloor, \\
x_{n} & =\beta x_{n-1}-b_{n} . \tag{3.1}
\end{align*}
$$

Observe that $x_{n-1}=\beta^{-1}\left(x_{n}+b_{n}\right)$ for every $n \geq 1$, and therefore, nesting this identity we obtain for any $N \in \mathbb{N}$ the expression

$$
x=\beta^{-N} x_{N}+\sum_{n=1}^{N} b_{n} \beta^{-n},
$$

or equivalently,

$$
\begin{equation*}
x-\sum_{n=1}^{N} b_{n} \beta^{-n}=\beta^{-N} x_{N} . \tag{3.2}
\end{equation*}
$$

In order for perfect reconstruction $x=\sum_{n=1}^{\infty} b_{n} \beta^{-n}$ we will need $\beta^{-N} x_{N} \rightarrow 0$, preferably at an exponential rate. To make it happen, let $\{t\}$ denote the fractional part of t. Then $x=\lfloor x\rfloor+\{x\}$, and

$$
\begin{aligned}
x_{N} & =\beta x_{N-1}-b_{N} \\
& =\beta x_{N-1}-\left\lfloor\alpha x_{N-1}\right\rfloor \\
& =\beta x_{N-1}-\alpha x_{N-1}+\left\{\alpha x_{N-1}\right\} \\
& =(\beta-\alpha) x_{N-1}+\left\{\alpha x_{N-1}\right\} \\
& =(\beta-\alpha)^{N} x+\sum_{n=1}^{N}\left\{\alpha x_{n-1}\right\} .
\end{aligned}
$$

Since $0 \leq\{t\}<1$, it follows that $(\beta-\alpha)^{N} x \leq x_{N}<(\beta-\alpha)^{N} x+N$, and

$$
\beta^{-N}(\beta-\alpha)^{N} x \leq \beta^{-N} x_{N}<\beta^{-N}\left((\beta-\alpha)^{N} x+N\right)
$$

Thus if we set $\beta>1$ and $0<\alpha \leq \beta$ we will ensure a perfect reconstruction with exponential rate convergence. Furthermore, all $x_{n} \geq 0$ and hence all digits b_{n} are nonnegative. For quantization applications, the magnitude of x_{n} matters because it determines the magnitude of b_{n}. Since these digits b_{n} must come from a finite alphabet we shall require that x_{n} be bounded. A necessary condition is $\beta-\alpha<1$. In what follows we focus on the case $0 \leq \beta-\alpha<1$. We ask the following questions: Are $\left\{b_{n}\right\}$ bounded, and if so, what is the upper bound?

Lemma 2. Let $1<\beta$, $\alpha \leq \beta$ and $\beta-\alpha<1$. Define $T(x)=\beta x-\lfloor\alpha x\rfloor$ and set $\omega=$ $[1-(\beta-\alpha)]^{-1}$. Let $K=\lceil\omega(\beta-1)\rceil$ where $\lceil y\rceil$ denotes the least integer greater than or equal to y. Then the fixed points of T are $\left\{k(\beta-1)^{-1}: 0 \leq k<K\right\}$.

Proof. First we notice that $T(x) \geq(\beta-\alpha) x$ implies that $T(x)>x$ if $x<0$. So T cannot have a negative fixed point. Now, notice that if $T(x)=x$ then $\beta x-k=x$ where $k=\lfloor\alpha x\rfloor$. Thus $x=k(\beta-1)^{-1}$. So all fixed points must be in the form of $x=k(\beta-1)^{-1}$ for some integer $k \geq 0$. We shall determine which of these k 's actually yield fixed points. To do so, let $x=k(\beta-1)^{-1}$ be a fixed point. Then $\beta x-\lfloor\alpha x\rfloor=x$. It follows that $\lfloor\alpha x\rfloor=(\beta-1) x=k$.

Now $\lfloor\alpha x\rfloor=\alpha x-\{\alpha x\}$. So we have $\alpha x-k=\{\alpha x\}$. Note that

$$
\alpha x-k=\frac{\alpha k}{\beta-1}-k=\frac{(1-\beta+\alpha) k}{\beta-1}=\frac{k}{\omega(\beta-1)} .
$$

Thus we have $k[\omega(\beta-1)]^{-1}=\{\alpha x\}<1$, which yields $k<\omega(\beta-1)$ or equivalently, $k<K$. Conversely, if $0 \leq k<K$ and $x=\frac{k}{\beta-1}$ the above calculations can be reversed to show that x is a fixed point.

Proposition 3. Let $1<\alpha \leq \beta$ and $\beta-\alpha<1$. Define $T(x)=\beta x-\lfloor\alpha x\rfloor$ and set

$$
\begin{equation*}
M=\left\lceil\frac{\alpha(\beta-1)}{\beta[1-(\beta-\alpha)]}\right\rceil . \tag{3.3}
\end{equation*}
$$

Let $\tau=M\left(\beta \alpha^{-1}-1\right)+1$. For any $0 \leq x \leq \tau$ we have $0 \leq T^{n}(x)<\tau$ for all $n \geq 1$.
Proof. Note that $T(x)=(\beta-\alpha) x+\{\alpha x\}$ so $T(x) \geq 0$ for $x \geq 0$. Furthermore, as $\alpha<\beta$ we have $\alpha \beta^{-1} \omega(\beta-1)<\omega(\beta-1)$, where $\omega=[1-(\beta-\alpha)]^{-1}$. Thus $M \leq\lceil\omega(\beta-1)\rceil$. Hence $(M-1)(\beta-1)^{-1}$ is a fixed point. For $x<M \alpha^{-1}$,

$$
T(x)<(\beta-\alpha) x+1<(\beta-\alpha) M \alpha^{-1}+1=\tau
$$

If $M<\lceil\omega(\beta-1)\rceil$, then $M(\beta-1)^{-1}$ would be also a fixed point by Lemma 2 along with

$$
\frac{\alpha(\beta-1)}{\beta[1-(\beta-\alpha)]}<M \Rightarrow M\left(\beta \alpha^{-1}-1\right)+1 \leq \frac{M}{\beta-1} .
$$

Therefore, $T(x) \leq x$ for every $x \in\left[M \alpha^{-1}, \tau\right)$. Hence $T(x)<\tau$.
If $M=\lceil\omega(\beta-1)\rceil$, then $(M-1)(\beta-1)^{-1}$ is the largest fixed point of T. Thus for every $x>M \alpha^{-1}, T(x)<x$.

As it was just proven, $0 \leq x \leq \tau$ implies $0 \leq T(x) \leq \tau$. The iteration step is trivial.
Proposition 4. Let $1<\alpha \leq \beta$ and $\beta-\alpha<1$. Let M and τ be as in Proposition 3. For any $x \in[0, \tau)$ define $x_{0}=x$ and x_{n}, b_{n} for $n \geq 1$ by $b_{n}=\left\lfloor\alpha x_{n-1}\right\rfloor$ and $x_{n}=x_{n-1}-b_{n}$. Then $0 \leq x_{n}<\tau$ and $b_{n} \in\{0,1, \ldots, M\}$.

Proof. Notice that $x_{n}=T^{n}\left(x_{0}\right)$. By Proposition 3 we have $0<x_{n}<\tau$. Also, by $b_{n}=\left\lfloor\alpha x_{n-1}\right\rfloor$ it is enough to prove that $\tau \alpha \leq M+1$. Now, it follows from $\alpha<\beta$ that $\alpha(\beta-1)>\beta(\alpha-1)$. Thus

$$
\frac{\alpha-1}{1-(\beta-\alpha)}<\frac{\alpha(\beta-1)}{\beta[1-(\beta-\alpha)]} \leq M .
$$

Hence $\alpha-1<M[1-(\beta-\alpha)]$, which yields $\tau=M(\beta-\alpha)+\alpha<(M+1) \alpha^{-1} \Rightarrow b_{n} \leq M$.
3.2. The $\beta \alpha$-Encoder vs. the β-Encoder. The $\beta \alpha$-expansion described in the previous section leads naturally to a quantization scheme assuming a perfect quantizer. When a flaky quantizer is used, it can still yield a perfect reconstruction with suitable chioces of the parameters.

Given the conditions $1<\alpha \leq \beta, \beta-\alpha<1$ we now consider the following general $\beta \alpha$-enocder given by the scheme $x_{0}=x$,

$$
\begin{align*}
b_{n} & =\bar{Q}\left(\alpha x_{n-1}\right), \\
x_{n} & =\beta x_{n-1}-b_{n} . \tag{3.4}
\end{align*}
$$

where \bar{Q} is a quantizer that such that $\bar{Q}(t) \in\{0,1, \ldots, B-1\}$ for some integer B. The case $B>2$ corresponds to a multi-bits quantizer, which is increasingly used in applications. Note that \bar{Q} may have build-in uncertainty as in the 1-bit flasky comparator Q_{f}. Our main concern is to keep x_{N} bounded for every N.

The first natural question is: what bounds should x_{N} have to in order to have stability? Note that if $x_{0}<0$, then $x_{1}=\beta x_{0}-\bar{Q}\left(\alpha x_{0}\right) \leq \beta x_{0}$. Thus $x_{N} \leq \beta^{-N} x_{0}$, making the sequence diverge to negative infinity. Hence x_{n} should be positive. On the other hand, note that if x_{N} is bounded for all N, then by (3.2) one has that

$$
x_{N}=\lim _{K \rightarrow \infty} \sum_{n=1}^{K} b_{N+n} \beta^{-n} \leq \sum_{n=1}^{\infty}(B-1) \beta^{-n}=\frac{B-1}{\beta-1} .
$$

With $0 \leq x_{n} \leq \frac{B-1}{\beta-1}$ we have $x=\sum_{n=1}^{\infty} b_{n} \beta^{-n}$, and thus the exponential accuracy

$$
\begin{equation*}
0 \leq x-\sum_{n=1}^{N} b_{n} \beta^{-n} \leq \beta^{-N} \tag{3.5}
\end{equation*}
$$

The theorem below shows that even with an imprecise (multi-bits) quantizer \bar{Q}, which we shall denote by \bar{Q}_{f}, we can make $\left\{x_{n}\right\}$ bounded by suitably choosing the parameters β and α.

Theorem 5. Let B be a given positive integer and let $\beta, \alpha>1$ such that $1<\beta<B$, $0<\beta-\alpha<1$. For any $x \in[0,1)$ define $x_{0}^{f}=x$ and

$$
\begin{align*}
b_{n}^{f} & =\bar{Q}_{f}\left(\alpha x_{n-1}^{f}\right), \tag{3.6}\\
x_{n}^{f} & =\beta x_{n-1}^{f}-b_{n}^{f},
\end{align*}
$$

where the quantizer $\bar{Q}_{f}(t) \in\{0,1, \ldots, B-1\}$ has the property $Q_{f}(t)=j$ implies that $t \in\left[j \alpha \beta^{-1}, \alpha \beta^{-1}(\mu+j)\right]$, with $\mu=(B-1)(\beta-1)^{-1}$. Then $0 \leq x_{n}^{f} \leq \mu$ for all n and hence

$$
0 \leq x-\sum_{n=1}^{N} b_{n}^{f} \beta^{-n} \leq \mu \beta^{-N} .
$$

Proof. Note that $\beta<B$ implies $\mu>1$, and therefore $x_{0}^{f}<\mu$. Now $x_{n}^{f}=\beta x_{n-1}^{f}-b_{n}^{f}$ and (3.2) is valid regardless of how b_{n}^{f} are chosen. Therefore it suffices to prove that $0 \leq x_{n}^{f} \leq \mu$. Let's now examine the respective subintervals.

Assume that $0 \leq x_{n}^{f} \leq m u$. If $\bar{Q}_{f}\left(\alpha x_{n}^{f}\right)=j$ then $\alpha x_{n}^{f} \in\left[j \alpha \beta^{-1}, \alpha \beta^{-1}(\mu+j)\right]$. Thus $j \beta^{-1} \leq x_{n}^{f} \leq \beta^{-1}(\mu+j)$. It follows that $0=\beta\left(j \beta^{-1}\right)-j \leq x_{n+1}^{f} \leq \beta\left[\beta^{-1}(\mu+j)\right]-j=\mu$. By induction on n we have $0 \leq x_{n}^{f} \leq m u$ for all n.

By Proposition 4 we may choose $B=M+1$ where $M=\left\lceil\frac{\alpha(\beta-1)}{\beta[1-(\beta-\alpha)]}\right]$. This $\beta \alpha$-encoder gives a robust multi-bits encoder. A special case is to choose β and α so $B=2$, which leads to a robust 1 -bit $\beta \alpha$-encoder. The following theorem is a corollary of Theor.me 5, which is a generalization of the 1 -bit β-encoder.

Theorem 6. Let $1<\beta<2$ and $\alpha>1$. Let Q_{f} be as in (1.4. Assume that $\beta(\beta-1)<\alpha<\beta$ and $\alpha \beta^{-1} \leq \nu_{1}<\nu_{2} \leq \alpha \beta^{-1}(\beta-1)^{-1}$ and $)$. Then for any $x \in[0,1)$ the encoder given by

$$
\begin{align*}
x_{0}^{f} & =x, \\
b_{n}^{f} & =Q_{f}\left(\alpha x_{n-1}^{f}\right), \tag{3.7}\\
x_{n}^{f} & =\beta x_{n-1}^{f}-b_{n}^{f}
\end{align*}
$$

has the property that for all $N \in \mathbb{N}$

$$
0 \leq x-\sum_{n=1}^{N} b_{n}^{f} \beta^{-n} \leq(\beta-1)^{-1} \beta^{-N} .
$$

3.3. Imprecise α-Multiplication. An imprecise quantizer is not the only problem that can arise in a real application. The multiplication via analog circuits can potentially be another source of inaccuracy. Thus, by performing two multiplications in the $\beta \alpha$-encoder we introduce an extra source for potential errors. In this section, we show that the α multiplication in the $\beta \alpha$-encoder does not have to be very accurate, by allowing each α multiplier to multiply a different value each time. We prove the following theorem.

Theorem 7. Let B be a given positive integer and let $\beta, \alpha_{n}>1$ such that $1<\beta<B$, $\frac{\beta}{B}<\beta-\alpha_{n}<1$. For any $x \in[0,1)$ let $x_{0}^{f}=x$ and

$$
\begin{aligned}
b_{n}^{f} & =\bar{Q}_{f}\left(\alpha_{n} x_{n-1}^{f}\right), \\
x_{n}^{f} & =\beta x_{n-1}^{f}-b_{n}^{f},
\end{aligned}
$$

where the quantizer $\bar{Q}_{f}(t) \in\{0,1, \ldots, B-1\}$ has the property $Q_{f}(t)=j$ implies that $t \in\left[j\left(\sup \alpha_{k}\right) \beta^{-1},\left(\inf \alpha_{k}\right) \beta^{-1}(\mu+j)\right]$ and $Q_{f}(t)=B-1$ if $t \geq\left(\inf \alpha_{k}\right) \mu$, with $\mu=$ $(B-1)(\beta-1)^{-1}$. Then, $0 \leq x_{n}^{f} \leq \mu$ for all n and hence

$$
0 \leq x-\sum_{n=1}^{N} b_{n}^{f} \beta^{-n} \leq \mu \beta^{-N} .
$$

Proof. Note that trivally, for any integer n and $0 \leq j<B$ one has that

$$
\left[j\left(\sup \alpha_{k}\right) \beta^{-1},\left(\inf \alpha_{k}\right) \beta^{-1}(\mu+j)\right] \subseteq\left[j \alpha_{n} \beta^{-1}, \alpha_{n} \beta^{-1}(\mu+j)\right] .
$$

Then, using the same argument as in the proof of Theorem 5 we only need to prove the set of intervals $I_{j}=\left[j\left(\sup \alpha_{k}\right),\left(\inf \alpha_{k}\right)(\mu+j)\right]$ cover $\left[0,\left(\inf \alpha_{k}\right) \mu \beta\right]$. Note that $0 \in I_{0}$ and $\left(\inf \alpha_{k}\right) \mu \in I_{B-1}$, and the lower endpoints (as well as the upper endpoints) are in an increasing order. Thus the only thing left to prove is that $I_{j} \cap I_{j+1} \neq \emptyset$. For this it suffices to prove $(j+1) \sup \alpha_{k} \leq(\mu+j) \inf \alpha_{k}$. Note that by assumption we have

$$
\frac{\mu+j}{j+1} \inf \alpha_{k} \geq \frac{\mu+(B-1)}{B}(\beta-1)=\frac{(B-1) \beta}{B} \geq \sup \alpha_{k} .
$$

4. Ergodic Properties of the $\beta \alpha$-Encoder

In the previous chapter we discussed the $\beta \alpha$-Encoder. The scheme defined in (3.1) gives rise to the dynamical system $x_{n+1}=T\left(x_{n}\right)$, where $T(x)=\beta x-\lfloor\alpha x\rfloor$. Beyond its practical applications, this system is interesting on its own from a mathematical point of view, specifically, the ergodicity of T, on which we will focus in this section.
4.1. Invariant Sets for T. Let $1<\beta, \alpha \leq \beta$ and $\beta-\alpha<1$. As in Lemma 2, denote $T(x)=\beta x-\lfloor\alpha x\rfloor, \omega=[1-(\beta-\alpha)]^{-1}$ and $K=\lceil\omega(\beta-1)\rceil$.

For simplicity we will introduce the following additional notation. For $0<k \leq K$ let

$$
\begin{equation*}
\lambda_{k}=\frac{k}{(\beta-1)}, \quad \xi_{k}=k\left(\frac{\beta-\alpha}{\alpha}\right)+1, \quad \zeta_{k}=k\left(\frac{\beta-\alpha}{\alpha}\right) . \tag{4.1}
\end{equation*}
$$

By Lemma 2, λ_{k} are the nonzero fixed points of T. Observe that the map $T(x)=(\beta-$ $\alpha) x+\{\alpha x\}$ is piecewise linear with discontinuities at $y_{k}=k / a l p h a$. It is easy to see that $\xi_{k}=\lim _{x \rightarrow y_{k}^{-}} T(x)$ and $\zeta_{k}=\lim _{x \rightarrow y_{k}^{+}} T(x)$.
Proposition 8. If i and j are indices such that $\lambda_{i-1} \leq \zeta_{i}$ and $\xi_{j} \leq \lambda_{j}$, then $\zeta_{i}<\xi_{j}$. Furthermore the interval $\Psi=\left[\zeta_{i}, \xi_{j}\right]$ is T-invariant in the sense that $\overline{T(\Psi)}=\Psi$.

Proof. Note that

$$
\begin{aligned}
\lambda_{i-1} & \leq \zeta_{i} \\
& <\zeta_{i}+1-(\beta-\alpha) \\
& =\zeta_{i-1}+1 \\
& =\xi_{i-1} .
\end{aligned}
$$

Hence $j>i-1$, i.e. $i \leq j$, and therefore $\zeta_{i}<\xi_{j}$.
Now for any $0 \leq i \leq n, \zeta_{i} \leq i \alpha^{-1}<(i+1) \alpha^{-1}<\xi_{i+1}$, and also we have

$$
T\left(\left[i \alpha^{-1},(i+1) \alpha^{-1}\right]\right)=\left[\zeta_{i}, \xi_{i+1}\right) .
$$

Thus regardless of how i and j are chosen, as long as $0 \leq i \leq j \leq n$ we would have $\overline{T(\Psi)} \supseteq \Psi$. Now, as $\zeta_{i}<\zeta_{i+1}$ and $\xi_{i}<\xi_{i+1}$ for any i, we only have to prove that for the i and j described in the statement, $T\left(\left[\zeta_{i}, i \alpha^{-1}, \xi_{j}\right]\right) \subseteq \Psi$ and $T\left(\left[j \alpha^{-1}, \xi_{j}\right]\right) \subseteq \Psi$.

Note that

$$
\sup _{x<i \alpha^{-1}} T(x)=\xi_{i} \leq \xi_{j} .
$$

Also, as $\lambda_{i-1} \leq \zeta_{i} \leq i \alpha^{-1}$, if one takes $\zeta_{i} \leq \tilde{x}<i \alpha^{-1}$ then $T\left(\zeta_{i}\right) \leq T(\tilde{x})<\xi_{i}$. Observe that $T(x)-x$ is continuous and increasing on ($\zeta_{i}, i \alpha^{-1}$) interval, and because $\lambda_{i-1} \leq \tilde{x}$ and λ_{i-1} is a fixed point, one has that $T\left(\zeta_{i}\right)>\zeta_{i}$. Therefore if $\zeta_{i} \leq \tilde{x} \leq i \alpha^{-1}$ then $T(\tilde{x}) \in \Psi$. An analogous argument proves that $T\left(\left[j \alpha^{-1}, \xi_{j}\right]\right) \subseteq \Psi$. Note that by definition, Ψ is a closed set and we have $T(\Psi) \subseteq \Psi \subseteq \overline{T(\Psi)}$, so $\overline{T(\Psi)}=\Psi$.

Of the invariant sets described by Proposition 8, the smallest of them is $\left[\zeta_{m}, \xi_{n}\right]$ where $m=\max \left\{i: \lambda_{i-1} \leq \zeta_{i}\right\}$ and $n=\min \left\{i: \xi_{i} \leq \lambda_{i}\right\}$. We shall denote it by $\Omega_{\beta \alpha}$ or Ω where the choice of α and β is clear from the context.
4.2. Li-Yorke Theorem and Ergodicity of T for $K=1$. As it has already been proved, given α and β with $\beta>1, \alpha \leq \beta$ and $\beta-\alpha<1$ we have $\overline{T\left(\Omega_{\beta \alpha}\right)}=\Omega_{\beta \alpha}$. Note that T is a piecewise monotone C^{∞} function. Furthermore, let Ω^{*} be the set where both T and $d T / d x$ are continuous. Then

$$
\inf _{x \in \Omega^{*}}\left|\frac{d}{d x} T(x)\right|>1
$$

In [7], Lasota and Yorke proved that under these conditions there exist at least one nonnegative function f of bounded variation such that the measure μ with $d \mu=f d m$ (where m is the Lebesgue measure) is invariant under T, in the sense that

$$
\mu(E)=\int_{E} f d m=\int_{T^{-1}(E)} f d m=\mu\left(T^{-1}(E)\right) .
$$

In a more general setting, let $\tau: I \rightarrow I$ be piecewise twice continuously differentiable. Denote I^{*} the set of points where $d \tau / d x$ exists, and assume that

$$
\begin{equation*}
\inf _{x \in I^{*}}\left|\frac{d}{d x} \tau(x)\right|>1 . \tag{4.2}
\end{equation*}
$$

We will refer to the points of $I-I^{*}=\left\{x_{1}, \ldots, x_{k}\right\}$ as the points of discontinuity. For $x \in I$, let $\Lambda(x)$ be the set of limit points of $\tau^{n}(x)$, that is

$$
\begin{equation*}
\Lambda(x)=\bigcap_{N=1}^{\infty} \overline{\left\{\tau^{n}(x)\right\}_{n=N}^{\infty}} . \tag{4.3}
\end{equation*}
$$

An important property of this set is that it is fixed under τ, i.e. $\tau(\Lambda(x))=\Lambda(x)$. Let \mathcal{F} be the set of $f \in L^{1}(I)$, such that f is an invariant density under τ. In [8], Li and Yorke proved the following theorem.

Theorem 9. Let $\tau: I \rightarrow I$ be a piecewise continuous and twice continuous differentiable interval map satisfying (4.2). Then, there exists a finite collection of sets $L_{1}, L_{2}, \ldots, L_{n}$ and a set of functions $\left\{f_{1}, f_{2}, \ldots, f_{n}\right\}$ such that
(1) Each L_{i} is a finite union of closed intervals,
(2) $L_{i} \cap L_{j}$ contains at most a finite number of points when $i \neq j$;
(3) each L_{i} contains at least one point of discontinuity $x_{j}, 1 \leq j \leq k$ on its interior; hence $n \leq k$;
(4) $f_{i}(x)=0$ for $x \notin L_{i}$ and $f(x)>0$ for almost all x in L_{i};
(5) $\int_{L_{i}} f_{i}(x) d x=1$ for $1 \leq i \leq n$;
(6) if $g \in \mathcal{F}$ satisfy both (4) and (5), then $g=f_{i}$ almost everywhere;
(7) every $f \in \mathcal{F}$ can be written as $f=\sum_{i=1}^{n} a_{i} f_{i}$ for suitably chosen $\left\{a_{i}\right\}_{i=1}^{n}$;
(8) for almost every $x \in I$ there is an index i such that $\Lambda(x)=L_{i}$.

Now assume that $1<\beta<2$ and $\beta(\beta-1)<\alpha<\beta$. Then $T(x)=\beta x-\lfloor\alpha x\rfloor$ generates a 1bit quantization for every $x \in[0,1)$. Now, by Proposition 8 we have $\Omega_{\beta \alpha}=\left[\alpha^{-1} \beta-1, \alpha^{-1} \beta\right]$. This interval contains a unique point of discontinuity for T and T^{\prime}. By Theorem 9 , up to
normalization, there exists a unique non-negative function $f \in L^{1}$ such that the measure $d \mu=f d m$ is invariant under T. As this measure is unique, T is ergodic with respect to μ.

Indeed, the density of this function can be given in a closed form. In [9], Parry proved that if τ is a linear transformation $(\bmod 1)$, (i.e. $\tau(x)=b x+a(\bmod 1)$ for real numbers a and b), then the function

$$
h(x)=\sum_{x<\tau^{n}(1)} \frac{1}{\beta^{n}}-\sum_{x<\tau^{n}(0)} \frac{1}{\beta^{n}},
$$

where $\tau^{0}(x)=x$ by definition, is the density of an invariant measure of τ (potentially signed). Now if α and β are the parameters of a 1 -bit $\beta \alpha$-encoder, we can define $b=\beta$, $a=(\beta-1)(\beta-\alpha) \alpha^{-1}$, and $f(x)=x-(\beta-\alpha) \alpha^{-1}$. Then $T(x)=f^{-1}(\tau(f(x)))$. By Parry's theorem, the function

$$
g(x)=\sum_{x<T^{n}\left(\beta \alpha^{-1}\right)} \frac{1}{\beta^{n}}-\sum_{x<T^{n}\left((\beta-\alpha) \alpha^{-1}\right)} \frac{1}{\beta^{n}}
$$

is the density of an absolutely continuous signed measure on $\Omega_{\beta \alpha}$, and by Li-Yorke's Theorem, such a measure is necessarily unique up to a re-scaling factor. Therefore, the density of the unique normalized invariant measure under T is

$$
f(x)=\frac{1}{F}\left(\sum_{x<T^{n}\left(\beta \alpha^{-1}\right)} \frac{1}{\beta^{n}}-\sum_{x<T^{n}\left((\beta-\alpha) \alpha^{-1}\right)} \frac{1}{\beta^{n}}\right),
$$

where F is a normalizing factor.
4.3. Invariant Sets of T for $K>1$. A natural question at this point is: If $K>1$, is there a unique (up to scaling) measure μ, that is absolutely continuous with respect to the Lebesgue measure and ergodic with respect to T ? The answer in general is no.

Consider the $\beta \alpha$-encoder with $\alpha=3 / 4$ and $\beta=3 / 2$. In this case it is easy to show that $K=2$ and $\Omega_{\beta \alpha}=[1,3]$. One may check that T has two different invariant sets, namely $[1,2]$ and $[2,3]$. Therefore, by the theorem of Li and Yorke, there is a measure invariant under T for each of these intervals, each one independent of the other.

Notice that in this case, λ_{1}, ξ_{1} and ζ_{2}, as defined in (4.1), are all equal. Our simulations suggesst that if for every index i the three numbers λ_{i}, ξ_{i} and ζ_{i+1} are distinct, then the system is indeed ergodic. One may conjecture that in this case there is a unique invariant measure which is ergodic. We leave this as an open question.

References

[1] I. Daubechies, R. DeVore, S. Güntürk and V. Vaishampayan, Beta Expansions: A New Aproach to Digitally Corrected AD Conversion, IEEE International Symposium on Circuits and Systems, 2 (2002), 784-787.
[2] I. Daubechies, R. DeVore, S. Güntürk and V. Vaishampayan, A/D Conversion with Imperfect Quantizers, IEEE Transactions on Information Theory, 52 (2006), 874-885.
[3] I. Daubechies, S. Güntürk, Y. Wang and Ö. Yılmaz, The golden ratio encoder, preprint.
[4] I. Daubechies, Ö. Yılmaz, Robust and Practical Analog-to-Digital Conversion With Exponential Precision, IEEE Transactions on Information Theory, 52 (2006), 3533-3545.
[5] A. Gersho and R. Gray, Vector Quantization and Singal Compression, Kluwer Academic Publishers, Boston, 1991.
[6] A. Lasota and M. C. Mackey, Chaos, Fractals and Noise: Stochastic Aspects of Dynamics, SpringerVerlag, New York, 1994.
[7] A. Lasota and J. A. Yorke, On the existence of invariant Measures for Piecewise Monotonic Transformations, Transactions of the American Mathematical Society, 186 (1973), 481-486.
[8] T. Li and J. A. Yorke, Ergodic Transformations from an Interval Into Itself, Transactions of the American Mathematical Society, 235, (1978), pp. 183-192.
[9] W. Parry, Representations for Real Numbers, Acta Mathematica Hungarica, 15 (1964), 95-105.
[10] A Rényi, Representations for Real Numbers and their Ergodic Properties, Acta Mathematica Hungarica, 8 (1957), 477-493.
[11] N. Sidorov, Almost every number has a continuum of β-espansions, American Mathematical Monthly, 110 (2003), 838-842.
[12] M. Tsujii, Absolutely continuous invariant measures for expanding piecewise linear maps, Inventiones Mathematicae, 143 (2001), 349-373.

Department of Mathematics, Texas A\&M University, College Station, Texas 77843, USA.
E-mail address: djimenez@tamu.edu

Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA.
E-mail address: ywang@math.msu.edu

[^0]: The second author is partially supported by the the grant DMS-0813750 from National Science Foundation.

