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Abstract

In [?] Lin, Wang and Zhou propose the iterative Toeplitz filters algorithm as an

alternative iterative algorithm for EMD. In this alternative algorithm, the average

of the upper and lower envelopes is replaced by certain “moving average” obtained

through a low-pass filter. Performing the tradition sifting algorithm with such

moving averages is equivlalent to iterating certain convolution filters (finite length

Toeplitz filters). This paper studies the convergence of this algorithm for signals of

continuous variables, and proves that the limit function of this iterative algorithm

is an ideal high-pass filtering process.

Keywords: convolution filter, iterative Toeplitz filter, EMD algorithm.

1 Introduction

Signal and data analysis has been playing a very important role in practical applica-

tions. It serves two purposes: to determine the parameters needed for the construction

of a necessary model, and to conform if the model constructed represents the physical

phenomenon. Traditional data analysis methods such as Fourier analysis, based on the

linear stationary assumption have been shown to be efficient for processing of linear and

stationary data. However, data from real systems, either natural or man-made ones, are
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often both nonlinear and non-stationary. Many studies have shown that the traditional

data analysis methods are not suitable for analyzing nonlinear and non-stationary data.

Other methods have been introduced to analyze non-stationary and nonlinear data. For

example, wavelet analysis and Wigner-Ville distribution are designed for linear but non-

stationary data. Meanwhile, various nonlinear time series analysis methods are designed

for nonlinear but stationary and deterministic systems.

In 1998, Huang et al presented a new time-frequency algorithm for nonlinear and

non-stationary signal analysis: Hilbert-Huang Transform (HHT) [?, ?]. It consists of two

procedures: the Empirical Mode Decomposition (EMD) and the Hilbert spectrum. With

EMD, any complicated data set can be decomposed into a finite and often small number

of components called Intrinsic Mode Functions (IMFs). With the Hilbert transform, the

IMFs yield instantaneous frequencies as functions of time that give sharp identifications

of imbedded structures. The final presentation of the results is an energy-frequency-time

distribution, designated as the Hilbert spectrum, which possesses highly time-frequency

locality. HHT is a method for signal analysis based on the local characteristic time scale of

the data, rather than basis functions given in advance. Since it expands the data in a basis

derived from the data adaptively, it often leads to very useful decompositions. Fourier

analysis, wavelet analysis, Short-Time Fourier analysis and so on comparatively expand

the data in certain basis chosen in advance, and don’t have the adaptivity property. EMD

produces basis adaptively according to the wave shape of signals during the process, and

therefore is applicable to nonlinear and non-stationary processes. Its applications have

spread from ocean science, earthquake research, biomedicine, physics and so on [?, ?, ?].

The IMFs are obtained through the EMD algorithm which is an iteration process. The

local maxima and minima of a function (signal) are respectively connected via cubic splines

to form the so-called upper and lower envelops. The average of the two envelopes is then

subtracted from the original data. This process is iterated to obtain the first IMF. The

other IMFs are obtained by the same process on the residual signal. The EMD algorithm
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is highly adaptive. A small perturbation, however, can alter the envelopes dramatically,

raising some questions about its stability. As powerful as EMD is in many applications,

a mathematical foundation is virtually nonexistent. Many fundamental mathematical

issues such as the convergence of the EMD algorithm have never been established.

In [?] the cubic splines were replaced by B-splines, which gives an alternative way for

EMD. But the modification relying on the local extreme points is still a highly nonlinear

process, so again did not resolve those mathematical issues.

To build a mathematical foundation, an alternative approach for EMD is proposed by

Lin, Wang and H. Zhou in [?]. Instead of the average of the upper and lower envelopes, this

new approach replaces them by certain Toeplitz operators. These operators are low-pass

convolution filters that yield a “moving average” similar to the mean of the envelopes in

the original EMD algorithm. It is demonstrated in [?] that this new approach often leads

to comparable EMD as the classical EMD, and in general it serves as a useful alternative

or complement. For a periodic signal the convergence is completely characterized in [?].

However, the convergence for a non-periodic signal in l∞(Z) is a much more difficult

problem. Convergence results in this setting are obtained in Wang and Z. Zhou [?].

This paper studies the corresponding model of continuous variables. Let R denote the

set of all real numbers and Z the set of all integers, set T := R/2πZ. µI(t) is a measure on

I defined as dµI(t) := dt for I = R and dµI(t) := 1
2π

dt for I = T. For 1 ≤ p ≤ ∞, Lp(I)

stands for the space of functions whose p-th power are integrable on I endowed with the

following norm

‖f‖Lp(I) :=





(∫
I
|f(t)|pdµI(t)

)1/p
1 ≤ p < ∞,

essupt∈I |f(t)| p = ∞.
(1.1)

For a ∈ L1(I), define the convolution operator by

Taf(x) := (a ∗ f)(x) :=

∫

I

a(t)f(x− t)dµI(t), ∀f ∈ Lp(I), (1.2)

We know that, ∀f ∈ Lp(I), there holds ‖Taf‖p ≤ ‖a‖1 · ‖f‖p, so Ta is a bounded linear

operator on Lp(I).
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In this paper we study the convergence of {(I−Ta)
nf} in Lp(I) and the corresponding

limit functions. In Section 2 we study the convergence for periodic functions, that is

I = T. In Section 3 we study the convergence for non-periodic functions, that is I = R.

We give convergence conditions in Lp and corresponding limit functions, and analyze the

convergence rate.

2 Convergence for periodic signals

Given a sequence {ck}k∈Z, we define

‖{ck}‖p :=





(∑
k∈Z |ck|p

)1/p
< ∞, 1 ≤ p < ∞;

supk∈Z |ck|, p = ∞.
(2.1)

Denote by lp(Z) the space of all sequences {ck}k∈Z satisfying ‖{ck}‖p < +∞. It is well-

known that lp(Z) is a Banach space endowed with the norm (2.1).

For any f ∈ L1(T), we call

f̂(k) =
1

2π

∫

T
f(t) e−iktdt, k ∈ Z, (2.2)

the k-th Fourier coefficient of f . Let f, a ∈ L1(T), then ∀k ∈ Z, there holds (Taf )̂ (k) =

â(k)f̂(k), which yields

[(I − Ta)
nf ]̂ (k) = [1− â(k)]nf̂(k). (2.3)

Next we discuss the convergence of {(I−Ta)
nf}n∈N. For simplicity, given a a ∈ L1(T),

set 



Λ−1 := {k ∈ Z : |1− â(k)| < 1},

Λ0 := {k ∈ Z : â(k) = 0},

Λ1 := {k ∈ Z : |1− â(k)| ≥ 1, â(k) 6= 0}.

(2.4)
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2.1 Convergence of {(I − Ta)
nf} in L2(T)

It is well-know that {eikt}k∈Z constitutes a normalized orthogonal basis of L2(T), and that

if f ∈ L2(T) then it has the Fourier expansion:

f(t) =
∑

k∈Z
f̂(k) eikt, (2.5)

in L2(T). With this expansion, f 7→ (f̂(k))k∈Z is an isomorphism from L2(T) to l2(Z),

and the Parseval equality ‖f‖L2(T) = ‖(f̂(k))‖2 holds.

Theorem 2.1 Let f ∈ L2(T) and a ∈ L1(T). Then {(I − Ta)
nf}n∈N converges in L2(T)

if and only if f̂(k) = 0 holds for any k ∈ Λ1. In this case,

lim
n→∞

(I − Ta)
nf =

∑

k∈Λ0

f̂(k)eikt.

Proof. The convergence of {(I − Ta)
nf}n∈N in L2(T) is equivalent to the convergence of

its Fourier coefficients {{[(I − Ta)
nf ]̂ (k)}k∈Z}n∈N in l2(Z). ∀n ∈ N, k ∈ Z, we have

[(I − Ta)
nf ]̂ (k) = [1− â(k)]nf̂(k).

If {(I − Ta)
nf}n∈N converges in L2(T), then {{[1 − â(k)]nf̂(k)}k∈Z}n∈N converges in

l2(Z). It follows that ∀k ∈ Z, the sequence of number {[1 − â(k)]nf̂(k)}n∈Z converges.

Consequently, the difference between adjacent two terms of this sequence of number con-

verges to 0, that is, ∀k ∈ Z, there holds

[1− â(k)]nâ(k)f̂(k) → 0, n →∞.

Thus â(k)f̂(k) = 0 (∀k ∈ Λ0 ∪ Λ1), which implies f̂(k) = 0 (∀k ∈ Λ1).

Conversely, suppose f̂(k) = 0 (∀k ∈ Λ1). Denote ck := f̂(k)χΛ0(k) (∀k ∈ Z), where

χΛ0 stands for the characteristic function of set Λ0. Then

∑

k∈Z
|[1− â(k)]nf̂(k)− ck|2 =

∑

k∈Λ−1

|[1− â(k)]nf̂(k)|2.
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∀ε > 0, choose K ∈ N such that
∑

|k|>K |f̂(k)|2 < ε. Then

∑

k∈Z
|[1− â(k)]nf̂(k)− ck|2 <

∑

k∈Λ−1,|k|≤K

|[1− â(k)]nf̂(k)|2 + ε ≤ λ2n‖{f̂(k)}‖2 + ε.

where λ := max
k∈Λ−1,|k|≤K

|1− â(k)| < 1. Thus {{[1−â(k)]nf̂(k)}k∈Z}n∈N converges to {ck}k∈Z

in l2(Z), which implies {(I − Ta)
nf}n∈N converges to

∑
k∈Z cke

ikt =
∑

k∈Λ0
f̂(k)eikt in

L2(T).

Corollary 2.2 Let a ∈ L1(T) with |1 − â(k)| < 1 or â(k) = 0 for all k ∈ Z. Then

{(I − Ta)
nf} converges to

∑
k∈Λ0

f̂(k)eikt in L2(T) for all f ∈ L2(T).

2.2 Convergence of {(I − Ta)
nf} in Lp(T), 1 ≤ p ≤ ∞

We first discuss the necessary condition for the convergence of {(I −Ta)
nf} in Lp(T)(1 ≤

p ≤ ∞).

Theorem 2.3 Let f ∈ Lp(T) where 1 ≤ p ≤ ∞ and a ∈ L1(T). If {(I−Ta)
nf} converges

in Lp(T), then f̂(k) = 0 holds for any k ∈ Λ1.

Proof. Since the convergence of {(I − Ta)
nf} in Lp(T) implies its convergence in L1(T),

without loss of generality we assume that p = 1. ∀k ∈ Z, we have

|[1− â(k)]n+1f̂(k)− [1− â(k)]nf̂(k)| = |[(I − Ta)
n+1f ]̂ (k)− [(I − Ta)

nf ]̂ (k)|
≤ ‖(I − Ta)

n+1f − (I − Ta)
nf‖L1(T) → 0

as n → ∞, that is |[1 − â(k)]nâ(k)f̂(k)| → 0. It follows that f̂(k) = 0 for all k ∈ Λ1.

Below is a sufficient condition for convergence:

Theorem 2.4 Let a ∈ L1(T) and f ∈ Lp(T) with 1 ≤ p ≤ ∞ such that f̂(k) = 0

for all k ∈ Λ1 and
∑

k∈Λ−1
|f̂(k)| < ∞. Then there exists an fa ∈ Lp(T), such that

f̂a(k) = f̂(k)χΛ0(k) and

‖(I − Ta)
nf − fa‖L∞(T) → 0 (n →∞).
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Proof. For all n ∈ N, denote

fn(x) :=
∑

k∈Λ−1

[1− â(k)]nf̂(k)eikx,

then fn is a continuous function on T, and f̂n(k) = [1− â(k)]nf̂(k)χΛ−1(k) (∀k ∈ Z). Thus

∀k ∈ Z, we have

[(I − Ta)
nf − fn ]̂ (k) = [1− â(k)]nf̂(k)[1− χΛ−1(k)] = f̂(k)χΛ0(k).

The right side of the above equation is clearly independent of n, so

[(I − Ta)
nf − fn ]̂ (k) = [(I − Ta)f − f1 ]̂ (k) ∀k ∈ Z, n ∈ Z.

By the uniqueness of Fourier coefficients of functions in Lp(T), we have (I−Ta)
nf − fn =

(I − Ta)f − f1 (∀n ∈ N). Now denote fa := (I − Ta)f − f1, then fa ∈ Lp(T) and

f̂a(k) = f̂(k)χΛ0(k). There holds

‖(I − Ta)
nf − fa‖L∞(T) = ‖fn‖L∞(T) ≤

∑

k∈Λ−1

|1− â(k)|n|f̂(k)| → 0 (n →∞).

Remark: (1) For 1 < p ≤ ∞, L.Carleson’s theorem showed that for any function in Lp(T),

its Fourier series converges to itself almost everywhere, so fa(x) =
∑

k∈Λ0
f̂(k)eikx a.e. x ∈

T. For p = 1, by the (C, 1) method, fa(x) = limn→∞
∑

k∈Λ0,|k|≤n(1− |k|
n+1

)f̂(k)eikx a.e. x ∈
T.

(2) Under the condition of the theorem, it is obvious that ‖(I − Ta)
nf − fa‖Lp(T) →

0 (n →∞).

(3) By the expression of the limit function fa, we conclude that the consequence of

iteration is a filtering process using the ideal filter χΛ0 . When a is low-pass filter, the

consequence of iteration is a ideal high-pass filtering process; When a is high-pass filter,

the consequence of iteration is a ideal low-pass filtering process.

When a is a trigonometric polynomial, {k ∈ Z : â(k) 6= 0} is clearly a set with finite

elements, thus so is its subset Λ−1. At this time,
∑

k∈Λ−1
|f̂(k)| < +∞ holds naturally, so

we have the following corollary.
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Corollary 2.5 Let a ∈ L1(T) be a trigonometric polynomial and f ∈ Lp(T), 1 ≤ p ≤ ∞.

Then {(I − Ta)
nf}n∈N converges in Lp(T) if and only if f̂(k) = 0 holds for any k ∈ Λ1.

Particularly, if |1 − â(k)| < 1 or â(k) = 0 hold for all k ∈ Z, then {(I − Ta)
nf}n∈N

converges in Lp(T) for all f ∈ Lp(T).

2.3 Convergence Rate of {(I − Ta)
nf}n∈N

Theorem 2.6 Let a ∈ L1(T) be a even real function satisfying either |1 − â(k)| < 1 or

â(k) = 0 for all k ∈ Z. Assume that f ∈ Lp(T), 1 ≤ p ≤ ∞, satisfies
∑

k∈Λ−1
|f̂(k)| <

+∞. Then there exists an fa ∈ Lp(T) such that f̂a(k) = f̂(k)χΛ0(k). Furthermore for all

n ∈ N we have

‖(I − Ta)
nf − fa‖L∞(T) ≤ (1− δ)n

∑

k∈Λ−1

|f̂(k)|+
∑

k∈Z,0<â(k)<δ

|f̂(k)|.

Proof. By the condition of the theorem, it’s clear that 0 ≤ â(k) < 2 (∀k ∈ Z). Since

lim|k|→∞ â(k) = 0, there exists 0 < δ < 1, such that 0 ≤ â(k) ≤ 2 − δ (∀k ∈ Z). By the

proof of theorem 2.4, we have

‖(I − Ta)
nf − fa‖L∞(T) ≤

∑

k∈Λ−1

|1− â(k)|n|f̂(k)|

≤ (1− δ)n
∑

k∈Λ−1

|f̂(k)|+
∑

k∈Z,0<â(k)<δ

|f̂(k)|.

This theorem shows that the less information f possesses in the frequency domain

{k ∈ Z|0 < â(k) < δ}, the faster convergence rate the iteration has. If the set {k ∈
Z|â(k) 6= 0} is of finite elements, as long as δ is sufficiently small, {k ∈ Z|0 < â(k) < δ}
is an empty set, thus ‖(I − Ta)

nf − fa‖L∞(T) decays in exponential order (1− δ)n.
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3 Convergence For Non-Periodic Signals

For any f ∈ L1(R) we shall use

f̂(ξ) =

∫

R
f(t) e−iξtdt, ξ ∈ R, (3.1)

to denote the Fourier transform of f . Utilizing the fact that L1(R) ∩ L2(R) is a dense

linear subspace of L2(R), the definition of the Fourier transform can be extended to

L2(R), and furthermore, to L1(R) + L2(R). Since Lp(R) ⊂ L1(R) + L2(R) := {f + g|f ∈
L1(R), g ∈ L2(R)} the Fourier transform of f ∈ Lp(R) is well-defined for 1 ≤ p ≤ 2, with

the Hausdorff-Young inequality ‖f̂‖Lq(R) ≤ ‖f‖Lp(R) holds, where 2 ≤ q ≤ ∞ satisfying

p−1 + q−1 = 1 (see [?]).

For all a ∈ L1(R) and f ∈ Lp(R) with 1 ≤ p ≤ 2 we have (Taf )̂ = âf̂ . Thus

[(I − Ta)
nf ]̂ (ξ) = [1− â(ξ)]nf̂(ξ). (3.2)

For simplicity, given an a ∈ L1(R) we set





E−1 := {ξ ∈ R : |1− â(ξ)| < 1},

E0 := {ξ ∈ R : â(ξ) = 0},

E1 := {ξ ∈ R : |1− â(ξ)| ≥ 1, â(ξ) 6= 0},

(3.3)

3.1 Convergence of {(I − Ta)
nf} in L2(R)

Below we discuss the Convergence of {(I−Ta)
nf} in L2(R). We have the following result.

Theorem 3.1 Let a ∈ L1(R) and f ∈ L2(R). Then {(I − Ta)
nf} converges in L2(R) if

and only if f̂(ξ) = 0 a.e. ξ ∈ E1. In this case, the limit of {(I − Ta)
nf} is the inverse

Fourier transform of f̂χE0, where χE0 denotes the characteristic function of set E0.

Proof. Since Fourier transform is an isomorphism on L2(R), the convergence of {(I −
Ta)

nf} is equivalent to the convergence of its Fourier transform {[(I − Ta)
nf ]̂ }.
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If {[1 − â]nf̂} converges in L2(R), by Riesz’s theorem [?], there exists a subsequence

{[1 − â]nk f̂}∞k=1 converges almost everywhere on R. Clearly, {[1 − â]nk+1f̂}∞k=1 converges

in L2(R), so again there exists a subsequence of {[1− â]nk+1f̂}∞k=1 converges almost every-

where on R, without loss of generality we assume that {[1− â]nk+1f̂}∞k=1 converges almost

everywhere on R. Then, the difference between [1 − â]nk+1f̂ and [1 − â]nk f̂ converges to

0 almost everywhere on R. That is

|[1− â(ξ)]nk â(ξ)f̂(ξ)| → 0 a.e. ξ ∈ R.

It follows that â(ξ)f̂(ξ) = 0 a.e. ξ ∈ E0 ∪ E1, thus f̂(ξ) = 0 a.e. ξ ∈ E1.

Conversely, suppose f̂(ξ) = 0 a.e. ξ ∈ E1. Denote f̂a := f̂χE0 . Then

‖(I − T )nf − fa‖2
L2(R) = ‖[1− â]nf̂ − f̂a‖2

L2(R) =

∫

E−1

|[1− â(ξ)]n|2 · |f̂(ξ)|2dξ.

By the Lebesgue dominated convergence theorem, there holds limn→∞ ‖(I − T )nf −
fa‖L2(R) = 0.

Based on the theorem above, we immediately have the following corollary.

Corollary 3.2 Let a ∈ L1(R) such that either |1 − â(ξ)| < 1 or â(ξ) = 0 a.e. ξ ∈ R.

Then {(I − T )nf} converges to the inverse Fourier transform of f̂χE0 in L2(R) for all

f ∈ L2(R)..

When the iterative algorithm is convergent, by the expression of the limit function, the

consequence of iteration is essentially a reverse filter with regards to a. That is, when a is

a low-pass filter, the consequence of iteration is a high-pass filtering process; conversely,

when a is a high-pass filter, the consequence of iteration is a low-pass filtering process.

3.2 Convergence of {(I − Ta)
nf}n∈N in the Fourier domain

The theorem below discusses the convergence of {(I − Ta)
nf}n∈N in Fourier domain, that

is, the convergence of {[(I − Ta)
nf ]̂ }n∈N.
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Theorem 3.3 Let a ∈ L1(R) and f ∈ Lp(R) with 1 ≤ p ≤ 2. Then {[(I − Ta)
nf ]̂ }n∈N

converges in Lq(R), p−1 + q−1 = 1 if and only if f̂(ξ) = 0 a.e. ξ ∈ E1. In this case the

limit is f̂χE0.

Proof. Necessity: The proof is similar to the proof of necessity of Theorem 3.1.

Sufficiency: If f̂(ξ) = 0 a.e. ξ ∈ E1, it’s easy to check that

[(I − Ta)
nf ]̂ (ξ)− f̂(ξ)χE0(ξ) = [1− â(ξ)]nf̂(ξ)χE−1(ξ) a.e. ξ ∈ R,

Since f̂ ∈ Lq(R), it follows from the Lebesgue Dominated Convergence Theorem that

‖[(I − Ta)
nf ]̂ − f̂χE0‖Lq(R) → 0 (n →∞).

Remark: It’s easy to see that Theorem 3.1 is a special case of this theorem.

Corollary 3.4 Let a ∈ L1(R) and f ∈ Lp(R) with 1 ≤ p ≤ 2. If {(I − Ta)
nf}n∈N

converges in Lp(R), then f̂(ξ) = 0 a.e. ξ ∈ E1.

Proof. By Hausdorff-Young inequality, {[(I−Ta)
nf ]̂ }n∈N converges in Lq(R), p−1+q−1 =

1. The proof is completed.

3.3 Convergence of {(I − Ta)
nf}n∈N in Ls(R)

It’s well-known that the convergence of a sequence of functions in Lp(R) (1 ≤ p ≤ 2)

implies the convergence of its sequence of Fourier transform in Lq(R), p−1 + q−1 = 1,

but it’s not true conversely. Therefore, although theorem 3.3 gives a condition for the

convergence of {[(I − Ta)
nf ]̂ }n∈N in Lq(R), we can’t deduce the convergence of {(I −

Ta)
nf}n∈N in Lp(R). However, under certain conditions, we can ensure the convergence

of {(I − Ta)
nf}n∈N in Ls(R), 2 ≤ s ≤ ∞. We denote Lp(R) + L2(R) := {f + g|f ∈

Lp(R), g ∈ L2(R)}.

Theorem 3.5 Let a ∈ L1(R) and f ∈ Lp(R), 1 ≤ p ≤ 2, such that f̂(ξ) = 0 a.e. ξ ∈ E1

and f̂ ∈ Lr(E−1), 1 ≤ r ≤ 2. Then there exists an fa ∈ Lp(R) + L2(R) such that

f̂a = f̂χE0 and

‖(I − Ta)
nf − fa‖Ls(R) → 0 (n →∞),
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where s−1 + r−1 = 1.

Proof. Since f ∈ Lp(R), 1 ≤ p ≤ 2, f̂ ∈ Lq(R), where 2 ≤ q ≤ ∞, p−1 + q−1 = 1. Also

note that f̂ ∈ Lr(E−1), so f̂χE−1 ∈ Lr(R) ∩ Lq(R), which yields ∀n ∈ N, [1− â]nf̂χE−1 ∈
Lr(R) ∩ Lq(R) ⊂ L2(R). Denote by fn the inverse Fourier transform of [1 − â]nf̂χE−1 .

Then fn ∈ L2(R) ∩ Ls(R), where s−1 + r−1 = 1, and f̂n = [1 − â]nf̂χE−1 . Through a

simple computation, we obtain

[(I − Ta)
nf ]̂ (ξ)− f̂n(ξ) = f̂(ξ)χE0(ξ) a.e. ξ ∈ R.

Set fa := (I−Ta)f −f1 ∈ Lp(R)+L2(R). Then f̂a = f̂χE0 . It follows that [(I−Ta)
nf ]̂ −

f̂a = f̂n, which yields

(I − Ta)
nf(x)− fa(x) = fn(x) =

1

2π
ˆ̂
fn(−x) a.e. x ∈ R.

Applying the Hausdorff-Young inequality, we obtain

‖(I − Ta)
nf − fa‖Ls(R) ≤ 1

2π
‖f̂n‖Lr(R) =

1

2π
‖[1− â]nf̂‖Lr(E−1).

By the Lebesgue dominated convergence theorem, there holds ‖(I − Ta)
nf − fa‖Ls(R) →

0 (n →∞).

Corollary 3.6 Let a ∈ L1(R) such that â has compact support. Let f ∈ Lp(R), 1 ≤ p ≤ 2,

satisfy f̂(ξ) = 0 a.e. ξ ∈ E1. Then there exists an fa ∈ Lp(R)+L2(R) such that f̂a = f̂χE0,

and for all 2 ≤ s ≤ ∞, there holds ‖(I − Ta)
nf − fa‖Ls(R) → 0 (n →∞).

Proof. By hypothesis, E−1 is a bounded subset of R, thus f̂ ∈ Lq(E−1) ⊂ Lr(E−1),

where p−1 + q−1 = 1, r−1 + s−1 = 1. So the condition of Theorem 3.5 is satisfied, and the

proof is completed.

3.4 Convergence Rate of {(I − Ta)
nf}n∈N

Theorem 3.7 Let a ∈ L1(R) be an even real function such that either |1− â(ξ)| < 1 or

â(ξ) = 0 for a.e. ξ ∈ R. Let f ∈ Lp(R), 1 ≤ p ≤ 2. If f̂ ∈ Lr(E−1), 1 ≤ r ≤ 2, then
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there exists an fa ∈ Lp(R) + L2(R) such that f̂a = f̂χE0 and

‖(I − Ta)
nf − fa‖r

Ls(R) ≤
1

2π

[
(1− δ)rn‖f̂‖r

Lr(E−1) +

∫

{0<â(ξ)<δ}
|f̂(ξ)|rdξ

]
,

where s−1 + r−1 = 1, 0 < δ < 1 satisfying δ ≤ 2− supξ∈R |â(ξ)|.

Proof. Using the hypothesis it’s easy to prove that â is a continuous function on R of

real valued, and 0 ≤ â(ξ) < 2 holds for all ξ ∈ R. Since lim|ξ|→∞ â(ξ) = 0, there exists

0 < δ < 1, such that 0 ≤ â(ξ) ≤ 2− δ (∀ξ ∈ R), so

‖(I − Ta)
nf − fa‖r

Ls(R) ≤ 1

2π

∫

E−1

|[1− â(ξ)]nf̂(ξ)|rdξ

=
1

2π

∫

{δ≤â(ξ)≤2−δ}
|[1− â(ξ)]n|r · |f̂(ξ)|rdξ

+
1

2π

∫

{0<â(ξ)<δ}
|[1− â(ξ)]n|r · |f̂(ξ)|rdξ

≤ 1

2π

[
(1− δ)rn‖f̂‖r

Lr(E−1) +

∫

{0<â(ξ)<δ}
|f̂(ξ)|rdξ

]
.

This theorem shows that the less information f possesses in the frequency domain {ξ ∈
R|0 < â(ξ) < δ}, the faster convergence rate the iteration has. If the Lebesgue measure

of set {ξ ∈ R|0 < â(ξ) < δ} converges to 0 as δ → 0, then for any given error ε > 0, as

long as δ > 0 is sufficiently small, there holds
∫
{0<â(ξ)<δ} |f̂(ξ)|rdξ < εr/2. The error of the

other part (1− δ)rn‖f̂‖r
Lr(E−1) decays exponentially, when n > ln ε

21/r‖f̂‖Lr(R)
/ ln(1− δ), we

have (1− δ)rn‖f̂‖r
Lr(E−1) < εr/2. These combine to yield ‖(I − T )nf − fa‖Ls(R) < ε.
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