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Abstract

Tight fusion frames are an emerging concept of frame theory with applications in distributed processing and com-
munications. However, very little has been determined about the existence of such frames. We completely resolve
the question of existence in the special case where the underlying space is finite-dimensional and the fusion frame’s
subspaces have equal dimension. That is, we precisely determine the conditions under which there exists a set of
equal-rank orthogonal projection matrices whose sum is a scalar multiple of the identity matrix. The characterizing
set of requirements is very mild, and as such, these frames often exist. Our methods are completely constructive,
relying on a new, flexible and elementary method for constructing unit norm tight frames.
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1. Introduction

A tight fusion frame (TFF) is a sequence of orthogonal projection operators that sum to a scalar multiple of the
identity operator. Such frames were introduced in [4], and later refined in [6]. TFFs are robust against additive
noise and erasures [2, 5, 8], and as such, are well-suited for emerging real-world applications in communications and
distributed sensing [7, 10, 11]. In particular, [2] shows that a TFF is maximally robust against the loss of a single
projection precisely when the TFF’s projection operators have equal rank; we focus exclusively on this special case.
To be precise, a sequence {Pk}

K
k=1 of N × N orthogonal projection matrices of rank L is a (K, L,N)-TFF if there exists

A > 0 such that:

AI =

K∑
k=1

Pk. (1)

In this paper, we completely characterize the triples (K, L,N) for which a corresponding TFF exists. Characterizing
the existence of such frames has proven difficult; frame potential arguments [3, 9] have shown that for any fixed α > 1
and L, there exists an index N0 = N0(α, L) such that (K, L,N)-TFFs will exist whenever N ≥ N0 and K ≥ αN. Our
work below improves upon these sufficient conditions, showing that, in truth, K only needs to be a little larger than N

L .
To be precise, our first main result is the following partial characterization:

Theorem 1. Let K, L,N ∈ N satisfy L ≤ N. If L divides N, then (K, L,N)-TFFs exist if and only if K ≥ N
L . If L does

not divide N and we further assume that 2L < N, then:

i. If (K, L,N)-TFFs exist, then K ≥ dN
L e + 1.

ii. If K ≥ dN
L e + 2, then (K, L,N)-TFFs exist.

The proof of this result is entirely constructive in the cases where TFFs exist. Next, to fully characterize the
existence of equal-rank TFFs, we employ two distinct methods of taking orthogonal complements of a TFF. This
characterization is given in our second main result:
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Theorem 2. For each K, L,N ∈ N such that L < N, the existence of (K, L,N)-TFFs can be completely resolved using
Theorem 1 along with at most one application of the fact that:

(K, L,N)-TFFs exist if and only if (K,N − L,N)-TFFs exist, provided L < N,

and at most L − 1 repeated applications of the fact that:

(K, L,N)-TFFs exist if and only if (K, (K − 1)L − N,KL − N)-TFFs exist, provided L < KL − N.

In the next section, we discuss how TFFs can be regarded as special cases of unit norm tight frames, a basic idea
which underlies nearly all of our arguments. Using this idea, we then introduce several basic methods for constructing
new TFFs from existing ones. These constructions employ either tensor products or orthogonal complements. In
Section 3, we introduce a new fundamental technique for constructing unit norm tight frames. This method resembles
the popular game TetrisTM, as it involves building a flat spectrum with blocks of fixed area. In the fourth section,
this Spectral Tetris construction is then combined with a new, modulation-based method for building TFFs, yielding
modulated fusion frames, whose existence is the key to proving Theorem 1. In the final section, we combine our
results with some new analysis to prove Theorem 2. To be precise, we provide a simple iterative algorithm, dubbed
the Tight Fusion Frame Existence Test, that quickly resolves the existence of equal-rank TFFs in the few cases where
Theorem 1 is ambiguous.

2. Basic constructions

The synthesis operator of a finite sequence of vectors { fm}Mm=1 in CN is F : CM → CN ,

Fg =

M∑
m=1

g(m) fm,

where, here and throughout, “g(m)” denotes the mth entry of the vector g. That is, F is an N × M matrix whose mth
column is fm. Generally speaking, frame theory is the study of how { fm}Mm=1 should be chosen so as to ensure that the
corresponding frame operator FF∗ is well-conditioned. In particular, { fm}Mm=1 is a tight frame if there exists A > 0
such that FF∗ = AI, namely that:

A f =

M∑
m=1

〈 f , fm〉 fm (2)

for all f ∈ CN , or equivalently, that:
M∑

m=1

fm(n) fm(n′) =

{
A, n = n′,
0, n , n′.

A unit norm tight frame (UNTF) is a tight frame { fm}Mm=1 which further satisfies ‖ fm‖ = 1 for all m = 1, . . . ,M. UNTFs
are known to exist for any M ≥ N; the standard example is the harmonic frame, whose synthesis operator is obtained
by extracting any N distinct rows from a suitably scaled M × M discrete Fourier transform matrix. UNTFs provide
Parseval-like decompositions in terms of nonorthogonal vectors of unit norm.

Fusion frame theory generalizes these concepts. In particular, when each fm is of unit norm, the summands of (2),
namely, the operators f 7→ 〈 f , fm〉 fm, are rank-one orthogonal projections. Fusion frame theory is the study of sums
of projections of arbitrary rank, leading to the definition of a tight fusion frame given in (1). In particular, recall
that {Pk}

K
k=1 is a (K, L,N)-TFF if each Pk is an N × N orthogonal projection matrix of rank L. Letting { fk,l}Ll=1 be an

orthonormal basis for the range of Pk, we classically know that:

Pk f =

L∑
l=1

〈 f , fk,l〉 fk,l

for all f ∈ CN . Summing these equations over k = 1, . . . ,K yields:

K∑
k=1

Pk f =

K∑
k=1

L∑
l=1

〈 f , fk,l〉 fk,l,

2



a fact which, in light of (1) and (2), shows that every equal-rank TFF arises from a traditional tight frame that satisfies
additional orthogonality requirements. To be precise:

Definition 3. A sequence { fk,l}Kk=1,
L
l=1 ⊂ CN generates a (K, L,N)-TFF if:

i. { fk,l}Ll=1 is orthonormal for every k = 1, . . . ,K.
ii. { fk,l}Kk=1,

L
l=1 is a tight frame for CN , that is, there exists A > 0 such that for any f ∈ CN ,

A f =

K∑
k=1

L∑
l=1

〈 f , fk,l〉 fk,l. (3)

Equivalently, the rows of the synthesis operator are mutually orthogonal with equal norm:

K∑
k=1

L∑
l=1

fk,l(n) fk,l(n′) =

{
A, n = n′,
0, n , n′. (4)

From this perspective, we see that (K, L,N)-TFFs are actually special cases of UNTFs of KL elements for CN ,
and as such, the tight frame constant in (3) is necessarily A = KL

N , where KL ≥ N, see [1]. We now exploit this
UNTF-based representation, providing several methods for constructing new TFFs from existing ones.

2.1. Tensor products

Inner products distribute multiplicatively over Kronecker tensor products. As such, the tensor product of two TFFs
is another TFF:

Theorem 4. If { fk1,l1 }
K1
k1=1,

L1
l1=1 and {gk2,l2 }

K2
k2=1,

L2
l2=1 generate (K1, L1,N1)- and (K2, L2,N2)-TFFs respectively, then:

{hk,l}
K1K2
k=1,

L1L2
l=1 , hk,l(n) := fk1,l1 (n1)gk2,l2 (n2)

generates a (K1K2, L1L2,N1N2)-TFF, where k = (k1 − 1)K2 + k2, l = (l1 − 1)L2 + l2, and n = (n1 − 1)N2 + n2.

Proof. We use (4) to show that {hk,l}
K1K2
k=1,

L1L2
l=1 is tight; writing any n, n′ ∈ [1,N1N2] uniquely in terms of n1, n

′
1 ∈ [1,N1]

and n2, n
′
2 ∈ [1,N2] as given in the statement of the result, one easily finds that:

K1K2∑
k=1

L1L2∑
l=1

hk,l(n)hk,l(n′) =

K1∑
k1=1

L1∑
l1=1

fk1,l1 (n1) fk′1,l′1 (n′1)
K2∑

k2=1

L2∑
l2=1

fk2,l2 (n2) fk′2,l′2 (n′2) =

{ K1K2L1L2
N1N2

, n = n′,
0, n , n′.

Similarly, writing k, k′, l, l′ in terms of k1, k
′
1, k2, k

′
2, l1, l

′
1, l2, l

′
2, one may easily show that:

〈hk,l, hk′,l′〉 = 〈 fk1,l1 , fk′1,l′1〉〈gk2,l2 , gk′2,l
′
2
〉. (5)

Letting k = k′ and l = l′ in (5) gives ‖hk,l‖ = 1, and so {hk,l}
K1K2
k=1,

L1L2
l=1 is, in fact, a UNTF. Moreover, if k = k′ but

l , l′, then either l1 , l′1 or l2 , l′2, and so (5) gives 〈hk,l, hk,l′〉 = 0, implying that for any fixed k = 1, . . . ,K1K2, the
subcollection {hk,l}

L1L2
l=1 is orthonormal.

Though elementary, this tensor product construction provides a simple proof of the first part of Theorem 1:

Corollary 5. If K, L,N ∈ N and L divides N, then (K, L,N)-TFFs exist if and only if K ≥ N
L .

Proof. (⇒) If a (K, L,N)-TFF exists, then any sequence that generates it consists of KL vectors that span CN , implying
KL ≥ N. (⇐) If K ≥ N

L , then there exists a UNTF of K elements for C N
L , see [1]. That is, (K, 1, N

L )-TFFs exist. Also,
any orthonormal basis for CL is a (1, L, L)-TFF. By Theorem 4, the tensor product of these two sequences generates a
(K · 1, 1 · L, N

L · L) = (K, L,N)-TFF.
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2.2. Complementary fusion frames
In this subsection, we consider two distinct orthogonal complements of a TFF. For the first complement, let

{ fk,l}Kk=1,
L
l=1 generate a (K, L,N)-TFF, and for each k = 1, . . . ,K, extend the orthonormal sequence { fk,l}Ll=1 to an

orthonormal basis for CN . We claim that the vectors from this extension generate another TFF, dubbed the spatial
complement of the original. This new TFF possesses the same number of subspaces as the original, and the dimension
of the underlying space remains the same—only the dimension of the subspaces changes:

Theorem 6. If { fk,l}Kk=1,
L
l=1 generates a (K, L,N)-TFF and L < N, then any {gk,l′ }

K
k=1,

N−L
l′=1 ⊂ CN such that:

for each k = 1, . . . ,K, { fk,l}Ll=1 ∪ {gk,l′ }
N−L
l′=1 is an orthonormal basis for CN ,

generates a (K,N − L,N)-TFF.

Proof. For any k = 1, . . . ,K, the sequence { fk,l}Ll=1 ∪ {gk,l′ }
N−L
l′=1 is an orthonormal basis for CN , implying {gk,l′ }

K
k=1,

N−L
l′=1

is orthonormal and moreover:

f =

L∑
l=1

〈 f , fk,l〉 fk,l +

N−L∑
l′=1

〈 f , gk,l′〉gk,l′

for all f ∈ CN . Since { fk,l}Kk=1,
L
l=1 generates a (K, L,N)-TFF, summing these equations over k = 1, . . . ,K yields:

K∑
k=1

N−L∑
l′=1

〈 f , gk,l′〉gk,l′ = K f −
K∑

k=1

L∑
l=1

〈 f , fk,l〉 fk,l = K f − KL
N f =

K(N−L)
N f

for all f ∈ CN , as claimed.

A second way to take an orthogonal complement of a TFF is to extend the N × KL synthesis matrix to a KL × KL
unitary matrix, and then consider the (N − KL) × KL extension. We claim these new vectors also generate a TFF,
termed the Naimark complement of the original, as the construction makes use of Naimark’s argument that every
1-tight frame is the projection of an orthonormal basis. Here, the number and dimension of the new TFF’s subspaces
are equal to those of the original, but the dimension of the underlying space changes:

Theorem 7. If { fk,l}Kk=1,
L
l=1 generates a (K, L,N)-TFF and N < KL, then any {gk,l}

K
k=1,

L
l=1 ⊂ CKL−N such that:

{
√

N
√

KL
fk,l ⊕

√
KL−N
√

KL
gk,l}

K
k=1,

L
l=1 is an orthonormal basis for CKL

generates a (K, L,KL − N)-TFF.

Proof. Letting hk,l =
√

N
√

KL
fk,l ⊕

√
KL−N
√

KL
gk,l, note that for any k = 1, . . . ,K and any l, l′ = 1, . . . , L,

〈hk,l, hk,l′〉 = N
KL 〈 fk,l, fk,l′〉 + KL−N

KL 〈gk,l, gk,l′〉.

When combined with the fact that { fk,l}Ll=1 and {hk,l}
L
l=1 are orthonormal, this equation implies that {gk,l}

L
l=1 is also

orthonormal. At the same time, since {hk,l}
K
k=1,

L
l=1 is an orthonormal basis for CKL, then its synthesis operator is

unitary. As such, the rows of this matrix are also orthonormal; for n, n′ = 1, . . . ,KL − N, we have:

KL−N
KL

K∑
k=1

L∑
l=1

gk,l(n)gk,l(n′) =

K∑
k=1

L∑
l=1

hk,l(n + KL)hk,l(n′ + KL) =

{
1, n = n′,
0, n , n′,

and so {gk,l}
K
k=1,

L
l=1 satisfies (4).

Indeed, the relations on (K, L,N) in Theorems 6 and 7 are self-dual, an so we have the following:

Corollary 8. For each (K, L,N) ∈ N such that L ≤ N,

i. (Spatial complements) If L < N, then (K, L,N)-TFFs exist if and only if (K,N − L,N)-TFFs exist.
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ii. (Naimark complements) If N < KL, then (K, L,N)-TFFs exist if and only if (K, L,KL − N)-TFFs exist.

We have already noted that in order for (K, L,N)-TFFs to exist, one needs KL ≥ N; we now use Corollary 8 to
prove a stronger necessary condition on existence, given in Theorem 1:

Corollary 9. If (K, L,N)-TFFs exist and L does not divide N, then K ≥ dN
L e + 1.

Proof. If (K, L,N)-TFFs exist, then KL ≥ N. Since L does not divide N, then KL > N, and so (K, L,KL − N)-TFFs
exist by the previous result. Thus, there exists L orthonormal vectors in CKL−N , and as such, L ≤ KL−N. Simplifying,
we find K ≥ N

L + 1. Since K is an integer, taking the ceiling of both sides of this equation yields the result.

We note that the necessary condition of Corollary 9 is not sufficient. In particular, (3, 3, 4)-TFFs do not exist,
despite the fact that 3 ≥ d 4

3 e + 1. Indeed, if a (3, 3, 4)-TFF did exist, then its spatial complement, obtained by applying
Corollary 8.i, would be a (3, 1, 4)-TFF; such TFFs do not exist by Corollary 9, since 3 < d 4

1 e + 1.
One may preclude such simple counterexamples to the sufficiency of Corollary 9’s condition by making the fur-

ther requirement that 2L < N. However, even in this case, K ≥ dN
L e + 1 is not sufficient: (4, 4, 11)-TFFs do not exist,

despite the fact that 4 ≥ d 11
4 e + 1 and 2(4) < 11. To be precise, if a (4, 4, 11)-TFF did exist, then its Naimark comple-

ment, obtained by applying Corollary 8.ii, would be a (4, 4, 5)-TFF, whose spatial complement would, in turn, be a
(4, 1, 5)-TFF; such frames do not exist since 4 < d 5

1 e + 1.
To summarize, the conditions 2L < N and K ≥ dN

L e + 1 are not sufficient to guarantee the existence of (K, L,N)-
TFFs. However, one of the main results of this paper, as encapsulated in the final statement of Theorem 1, is to show
that a very slight strengthening of these conditions is actually sufficient for existence. Specifically, over the course of
the next two sections, we will provide an explicit construction of a (K, L,N)-TFF for each K, L,N ∈ N such that L
does not divide N, 2L < N and K ≥ dN

L e + 2. That is, we will show that TFFs indeed exist whenever the number of
subspaces K is at least two more than what is absolutely necessary. Moreover, in the final section, we will show that
the existence of equal-rank TFFs is completely resolved using this construction along with a finite number of repeated
applications of Corollary 8.

3. Spectral Tetris

In this section, we provide the first half of a general method for constructing (K, L,N)-TFFs when K ≥ dN
L e + 2.

The key idea is to revisit the simpler problem of constructing UNTFs, that is, sequences { fm}Mm=1 of unit vectors in CN

that satisfy (2). In brief, we want to construct N × M synthesis matrices F which have:

i. columns of unit norm,
ii. orthogonal rows, meaning the frame operator FF∗ is diagonal,

iii. rows of constant norm, meaning FF∗ is a constant multiple of the identity matrix.

Despite a decade of study, very few general constructions of finite-dimensional UNTFs are known. Moreover, these
known methods unfortunately manipulate all frame elements simultaneously. In this section, we show that con-
structing certain examples of UNTFs need not be so difficult. In particular, we provide a new, iterative method for
constructing UNTFs, building them one or two vectors at a time. The key idea is to iteratively build a matrix F which,
at each iteration, exactly satisfies (i) and (ii), and gets closer to satisfying (iii). We call this method Spectral Tetris, as
it involves building a flat spectrum out of blocks of fixed area. Here, an illustrative example is helpful:

Example 10. In the previous section, we showed that (4, 4, 11)-TFFs did not exist, despite the fact that these K, L
and N satisfy the necessary condition for existence given in Corollary 9. At the same time, we claim in Theorem 1
that a slightly stronger requirement, K ≥ dN

L e + 2, is indeed sufficient for existence, provided L does not divide N
and 2L < N. In particular, Theorem 1 asserts that (5, 4, 11)-TFFs exist. In this and the following sections, we will
show how to explicitly construct such a TFF, so as to illustrate the simple ideas behind the proof of Theorem 1.ii.
The construction is performed over two stages. The first stage, given in the present example, is to play Spectral
Tetris, yielding a sparse UNTF of 11 elements for C4. In the second stage, this UNTF is then modulated to produce a
(5, 4, 11)-TFF, as described in Example 15.
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Our immediate goal is to create a 4× 11 matrix F such that FF∗ = 11
4 I. As such, we begin with an arbitrary 4× 11

matrix, and let the first two frame elements be copies of the first standard basis element e1:

F =


1 1 ? ? ? ? ? ? ? ? ?
0 0 ? ? ? ? ? ? ? ? ?
0 0 ? ? ? ? ? ? ? ? ?
0 0 ? ? ? ? ? ? ? ? ?

 . (6)

If the remaining unknown entries are chosen so that F has orthogonal rows, then FF∗ will be a diagonal matrix.
Currently, the diagonal entries of FF∗ are mostly unknown, having the form {2+?, ?, ?, ?}. Also note that if the
remainder of the first row of F is set to zero, then the first diagonal entry of FF∗ would be 2 < 11

4 . Thus, we need
to add more weight to this row. However, making the third column of F another copy of e1 would add too much
weight, as 3 > 11

4 . Therefore, we need a way to put 11
4 − 2 = 3

4 more weight in the first row without compromising the
orthogonality of the rows of F nor the normality of its columns. The key idea is to realize that for any 0 ≤ x ≤ 2, there
exists a 2×2 matrix T (x) with orthogonal rows and unit-length columns such that T (x)T ∗(x) is a diagonal matrix with
diagonal entries {x, 2 − x}. Specifically, we have:

T (x) := 1
√

2

[ √
x

√
x

√
2 − x −

√
2 − x

]
, T (x)T ∗(x) =

[
x 0
0 2 − x

]
.

We define the third and fourth columns of F according to such a matrix T (x), where x = 11
4 − 2 = 3

4 :

F =


1 1

√
3
√

8

√
3
√

8
0 0 0 0 0 0 0

0 0
√

5
√

8
−
√

5
√

8
? ? ? ? ? ? ?

0 0 0 0 ? ? ? ? ? ? ?
0 0 0 0 ? ? ? ? ? ? ?

 . (7)

The diagonal entries of FF∗ are now { 11
4 ,

5
4 +?, ?, ?}. The first row now has sufficient weight, and so its remaining

entries are set to zero. The second entry is currently falling short by 11
4 −

5
4 = 6

4 = 1 + 2
4 , and as such, we make the

fifth column e2, while the sixth and seventh arise from T ( 2
4 ):

F =


1 1

√
3
√

8

√
3
√

8
0 0 0 0 0 0 0

0 0
√

5
√

8
−
√

5
√

8
1

√
2
√

8

√
2
√

8
0 0 0 0

0 0 0 0 0
√

6
√

8
−
√

6
√

8
? ? ? ?

0 0 0 0 0 0 0 ? ? ? ?


. (8)

The diagonal entries of FF∗ are now { 11
4 ,

11
4 ,

6
4 +?, ?}, where the third diagonal entry is falling short by 11

4 −
6
4 = 5

4 =

1 + 1
4 . We therefore take the eighth column of F as e3, let the ninth and tenth columns arise from T ( 1

4 ), and make the
final column be e4, yielding the desired UNTF:

F =


1 1

√
3
√

8

√
3
√

8
0 0 0 0 0 0 0

0 0
√

5
√

8
−
√

5
√

8
1

√
2
√

8

√
2
√

8
0 0 0 0

0 0 0 0 0
√

6
√

8
−
√

6
√

8
1

√
7
√

8

√
7
√

8
0

0 0 0 0 0 0 0 0
√

7
√

8
−
√

7
√

8
1


. (9)

In this construction, column vectors are either introduced one at a time, such as { f1}, { f2}, { f5}, { f8} or { f11}, or in pairs,
such as { f3, f4}, { f6, f7} or { f9, f10}. Each singleton contributes a value of 1 to a particular diagonal entry of FF∗, while
each pair spreads two units of weight over two entries. Overall, we have formed a flat spectrum, { 11

4 ,
11
4 ,

11
4 ,

11
4 }, from

blocks of area 1 or 2. This construction is reminiscent of the game Tetris, as illustrated in Figure 1.
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0

11
4

1 2 3 4

f1

f2

f3, f4

f5

f6, f7

f8 f9, f10

f11

Figure 1: The Spectral Tetris construction of a UNTF of 11 elements for C4, as detailed in Example 10. Each of the four columns corresponds to
a diagonal entry of the frame operator FF∗, and each block represents the contribution made to these entries by the corresponding frame elements.
For example, the single frame element { f2} contributes {1, 0, 0, 0} to the diagonal, while the pair { f6, f7} contributes {0, 2

4 ,
6
4 , 0}. The area of the

blocks is determined by the number of frame elements that generate them: blocks that arise from a single element have unit area, while blocks that
arise from two elements have an area of 2. In order for { fm}11

m=1 to be a UNTF for C4, these blocks needed to stack to a uniform height of 11
4 . By

building a rectangle from blocks of given areas, we are essentially playing Tetris with the spectrum of FF∗.

We conclude this example by pointing out a crucial consequence of this Spectral Tetris construction: the frame
vectors are extremely sparse, with many pairs of vectors having mutually disjoint support. In particular, we have
that fm and fm′ are orthogonal whenever m − m′ ≥ 5. More generally, we shall show that whenever Spectral Tetris
is played to form a UNTF, the resulting frame elements satisfy 〈 fm, fm′〉 = 0 whenever m′ − m ≥ bM

N c + 3. These
orthogonality relations will play a critical role in the next section, where Spectral Tetris UNTFs will be modulated to
form modulated TFFs.

In order to formalize the Spectral Tetris argument used in the previous example, we introduce the following notion:

Definition 11. We say that a sequence { fm}Mm=1 is an (m0, n0)-proto unit norm tight frame (PUNTF) for CN if:

i.
N∑

n=1

| fm(n)|2 =

{
1, m ≤ m0,
0, m > m0,

ii.
M∑

m=1

fm(n) fm(n′) = 0 for all n, n′ = 1, . . . ,N, n , n′,

iii.
M∑

m=1

| fm(n)|2 =

{ M
N , n < n0,
0, n > n0,

iv. 1 ≤
M∑

m=1

| fm(n0)|2 ≤ M
N .

That is, { fm}Mm=1 is an (m0, n0)-PUNTF for CN precisely when its N × M synthesis matrix F vanishes off of its
upper-left n0 × m0 submatrix, its nonzero columns have unit norm, and its frame operator FF∗ is diagonal, with the
first n0 − 1 diagonal entries being M

N , the n0th entry lying in [1, M
N ], and the remaining entries being zero. In particular,

setting “?” entries to zero in (6), (7), (8) and (9) results in (2, 1)-, (4, 2)-, (7, 3)- and (11, 4)-PUNTFs, respectively. As
seen in Example 10, the goal of Spectral Tetris is to iteratively create larger PUNTFs from existing ones, continuing
until (m0, n0) = (M,N), at which point the PUNTF is a UNTF. We now give the precise rules for enlarging a given
PUNTF; here, as in the preceding example, {en}

N
n=1 is the standard basis of CN :

Theorem 12. Let 2N ≤ M, let { fm}Mm=1 be an (m0, n0)-PUNTF for CN , and let λ :=
M∑

m=1

| fm(n0)|2.

7



i. If λ ≤ M
N − 1, then m0 < M and {gm}

M
m=1,

gm :=


fm, m ≤ m0,
en0 , m = m0 + 1,
0, m > m0 + 1,

is an (m0 + 1, n0)-PUNTF for CN .

ii. If M
N − 1 < λ < M

N , then m0 < M − 2, n0 < N and {gm}
M
m=1,

gm :=


fm, m ≤ m0,√

1
2 ( M

N − λ)en0 +

√
1 − 1

2 ( M
N − λ)en0+1, m = m0 + 1,√

1
2 ( M

N − λ)en0 −

√
1 − 1

2 ( M
N − λ)en0+1, m = m0 + 2,

0, m > m0 + 2,

is an (m0 + 2, n0 + 1)-PUNTF for CN .

iii. If λ = M
N and n0 < N, then m0 < M and {gm}

M
m=1,

gm :=


fm, m ≤ m0,
en0+1, m = m0 + 1,
0, m > m0 + 1,

is an (m0 + 1, n0 + 1)-PUNTF for CN .

iv. If λ = M
N and n0 = N, then { fm}Mm=1 is a UNTF for CN .

Proof. We first determine a relationship between m0, n0 and λ. In particular, the square of the Hilbert-Schmidt norm
of the synthesis operator of the (m0, n0)-PUNTF { fm}Mm=1 is:

M∑
m=1

N∑
n=1

| fm(n)|2 =

m0∑
m=1

N∑
n=1

| fm(n)|2 +

M∑
m=m0+1

N∑
n=1

| fm(n)|2 =

m0∑
m=1

1 +

M∑
m=m0+1

0 = m0. (10)

We may alternatively evaluate this sum by interchanging summations:

N∑
n=1

M∑
m=1

| fm(n)|2 =

n0−1∑
n=1

M∑
m=1

| fm(n)|2 +

M∑
m=1

| fm(n0)|2 +

N∑
n=n0+1

M∑
m=1

| fm(n)|2 =

n0−1∑
n=1

M
N + λ +

N∑
n=n0+1

0 = (n0 − 1) M
N + λ. (11)

Equating (10) and (11) then gives:
λ = m0 − n0

M
N + M

N . (12)

Having (12), we turn to proving (i), (ii), (iii) and (iv).
We focus on (ii), as it is the least trivial. In particular, if M

N − 1 < λ < M
N , then (12) gives:

0 < n0
M
N − m0 < 1. (13)

If n0 = N, then (13) implies 0 < M − m0 < 1, a contradiction of the fact that M,m0 ∈ N. Thus, n0 < N, as claimed.
Moreover, substituting the fact that n0 ≤ N − 1 into the left-hand inequality of (13) gives:

0 < n0
M
N − m0 ≤ (N − 1) M

N − m0 = M − M
N − m0 ≤ M − 2 − m0,

where the last inequality follows from the global assumption that 2N ≤ M. Thus, m0 < M − 2, as claimed. To
continue, note that since m0 < M − 2 and n0 < N, then m0 + 1 < M, m0 + 2 < M and n0 + 1 ≤ N, and so the
sequence {gm}

M
m=1 given in (ii) is well-defined. We now verify that {gm}

M
m=1 indeed satisfies the four properties of an

8



(m0 + 2, n0 + 1)-PUNTF. Indeed, since { fm}Mm=1 is an (m0, n0)-PUNTF and since fm = gm for all m , m0 + 1 and
m , m0 + 2, then Definition 11.i must only be verified for m = m0 + 1 and m = m0 + 2:

N∑
n=1

| fm0+1(n)|2 = 1
2 ( M

N − λ) +
[
1 − 1

2 ( M
N − λ)

]
= 1 = 1

2 ( M
N − λ) +

[
1 − 1

2 ( M
N − λ)

]
=

N∑
n=1

| fm0+2(n)|2.

Next, since { fm}Mm=1 is an (m0, n0)-PUNTF, then we already know that {gm}
M
m=1 satisfies Definition 11.ii for any distinct

n, n′ not equal to either n0 or n0 + 1. Definition 11.ii is also immediately satisfied in the case where n > n0 + 1, as
fm(n) = 0 for all m = 1, . . . ,M, as well as in the case where n = 1, . . . , n0 − 1 and n′ = n0 + 1, as the supports of the
corresponding row vectors are disjoint. The two cases that remain are when n = 1, . . . , n0 − 1, and n′ = n0, in which:

M∑
m=1

gm(n)gm(n0) =

m0+2∑
m=1

gm(n)gm(n0) =

m0∑
m=1

fm(n) fm(n0) +

m0+2∑
m=m0+1

0 · gm(n0) = 0 + 0 = 0,

and the case n = n0 and n′ = n0 + 1, in which:

M∑
m=1

gm(n0)gm(n0 + 1) =

m0∑
m=1

gm(n0) · 0 +

√
1
2 ( M

N − λ)
√

1 − 1
2 ( M

N − λ) −
√

1
2 ( M

N − λ)
√

1 − 1
2 ( M

N − λ) = 0.

We next show that {gm}
M
m=1 satisfies Definition 11.iii in the case where “n0” is n0 + 1. For n < n0 or n > n0 + 1, this

follows immediately from the fact that { fm}Mm=1 is an (m0, n0)-PUNTF. Else, when n = n0, we have:

M∑
m=1

|gm(n0)|2 =

m0∑
m=1

| fm(n0)|2 + 1
2 ( M

N − λ) + 1
2 ( M

N − λ) = λ + M
N − λ = M

N ,

as needed. Finally, we verify that {gm}
M
m=1 satisfies Definition 11.iv where “n0” is n0 + 1. Indeed, since:

λ∗ :=
M∑

m=1

|gm(n0 + 1)|2 =
[
1 − 1

2 ( M
N − λ)

]
+

[
1 − 1

2 ( M
N − λ)

]
= 2 − ( M

N − λ),

the assumption that M
N − 1 < λ < M

N implies that 1 < λ∗ < 2. In particular, since 2N ≤ M, then 1 ≤ λ∗ ≤ M
N , as needed.

Having proven (ii), we return to (i), noting that since λ ≤ M
N − 1, then (12) gives m0 − n0

M
N + M

N ≤
M
N − 1, and so:

m0 ≤ n0
M
N − 1 ≤ N M

N − 1 = M − 1 < M.

That is, m0 < M as claimed, and as such, {gm}
M
m=1 is well-defined. The proof of the fact that {gm}

M
m=1 is a UNTF is very

similar to, but simpler than, the parallel argument above in the proof of (ii), and as such, is omitted. Similarly, to show
(iii), note that (12) gives M

N = λ = m0 − n0
M
N + M

N , and thus m0 = n0
M
N < N M

N = M, as claimed. Therefore, {gm}
M
m=1

is well-defined; the proof that it is a UNTF is also left to the reader. To conclude, note that (iv) follows immediately
from the definition of an (M,N)-PUNTF where λ = M

N .

Note that the assumption 2N ≤ M is crucial to the proof of Theorem 12; in the case where λ is slightly smaller
than M

N , the (n0 + 1)th diagonal entry of FF∗ must accept nearly two spectral units of weight, which is only possible
when the desired Spectral Tetris height M

N is at least 2. At the same time, we note that playing Spectral Tetris can
also result in matrices of lesser redundancy, provided larger blocks are used. Indeed, UNTFs of redundancy M

N ≥
3
2

can be constructed using 3 × 3 Spectral Tetris submatrices, as we now have two diagonal entries over which to spread
at most three units of spectral weight; the blocks themselves are obtained by scaling the rows of a 3 × 3 discrete
Fourier transform matrix. More generally, UNTFs with redundancy greater than J

J−1 can be constructed using J × J
submatrices. Note that these lower levels of redundancy are only bought at the expense of a loss in sparsity, and in
particular, a loss of orthogonality relations between the frame elements themselves. We have focused on the use of
2× 2 submatrices since, as we shall see in the next section, it is precisely these orthogonality relations which facilitate
our modulated TFF construction. In particular, by playing Spectral Tetris with only 1 × 1 and 2 × 2 submatrices, that
is, by repeatedly applying the rules of Theorem 12, one obtains a UNTF in which many frame elements are mutually
orthogonal:
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Theorem 13. For any M,N ∈ N such that 2N ≤ M, there exists a unit norm tight frame { fm}Mm=1 for CN with the
property that 〈 fm, fm′〉 = 0 whenever m′ − m ≥ bM

N c + 3.

Proof. Define { f (1)
m }

M
m=1 in CN by letting f (1)

1 = e1 and setting the rest of the vectors to zero. One may quickly verify
that this sequence is a (1, 1)-PUNTF. Next, construct each successive (m0( j), n0( j))-PUNTF { f ( j)

m }
M
m=1 for j = 1, . . . , J

according to Theorem 12. Note that there is no uncertainty in this process; at each step, we must apply Theorem 12’s
rule (i), (ii) or (iii), resulting in an increase in m0 by either 1 or 2. Take J ≤ M to be the last iteration, namely the
first j such that m0( j) ≥ M. The contrapositives of (i), (ii) and (iii) imply λ(J) = M

N and n0(J) = N, and so by (iv),
{ fm}Mm=1 := { f (J)

m }
M
m=1 is indeed a UNTF { f (J)

m }
M
m=1 for CN .

Now, fix m = 1, . . . ,M, and suppose the j∗ is the first index j for which f ( j)
m is found in its final form, that is,

j∗ := min{ j : m0( j) ≥ m}. Considering (i), (ii) and (iii), we see that either m0( j∗) = m or m0( j∗) = m + 1. In either
case, m0( j∗) ≤ m + 1. Recall that after constructing fm, we proceeded to construct fm′ for m′ > m using repeated
applications of (i), (ii) and (iii). If needed, we repeatedly applied (i), continually increasing λ( j∗) by 1, until the
new value was strictly greater than M

N − 1. Therefore, we applied (i) precisely bM
N − λ( j∗)c times. At this point, we

were either finished, by (iv), or continued our construction using (ii) or (iii); in either of these two latter cases, we thus
increased n0( j∗) by 1, thereby ensuring that any newly constructed fm′ ’s were orthogonal to fm, having disjoint support.
That is, 〈 fm, fm′〉 = 0 whenever m′ is greater than the value obtained by first increasing m0( j∗) by bM

N − λ( j∗)c and then
further increasing m0( j∗) by either 1 or 2, using rules (iii) or (ii), respectively. In short, 〈 fm, fm′〉 = 0 whenever:

m0( j∗) + bM
N − λ( j∗)c + 2 < m′. (14)

Noting that the definition of a PUNTF gives λ( j∗) ≥ 1 and recalling that m0( j∗) ≤ m + 1, the left hand side of (14) can
be bounded above by:

m0( j∗) + bM
N − λ( j∗)c + 2 ≤ (m + 1) + bM

N − 1c + 2 = m + bM
N c + 2.

Thus, in order to satisfy (14), it suffices to have m + bM
N c + 2 < m′, that is, m′ − m ≥ bM

N c + 3, as claimed.

When M = 11, N = 4, the previous result states that the UNTF of Example 10 satisfies 〈 fm, fm′〉 = 0 whenever
m′ − m ≥ 5. Moreover, since 〈 f7, f3〉 , 0, we see that Theorem 13’s condition on m′ − m is, in fact, the best possible.

Also note that although this section’s results were proved in complex Euclidean space for the sake of consistency,
the frames obtained by playing Spectral Tetris with 1 × 1 and 2 × 2 submatrices are, in fact, real-valued. We believe
the simplicity of this construction rivals that of real harmonic frames, consisting of samples of sines and cosines. In
particular, Spectral Tetris provides a very simple proof of the existence of real UNTFs for any M ≥ N: when 2N ≤ M,
the construction is direct; Naimark complements then give real UNTFs with redundancy less than two.

4. Modulated fusion frames

In this section, we provide the second half of a general method for constructing (K, L,N)-TFFs when K ≥ dN
L e+2.

The key idea is to modulate UNTFs whose frame elements satisfy certain orthogonality relations, such as those
provided by Theorem 13:

Theorem 14. If { fn}Nn=1 is a UNTF for CL and 〈 fn, fn′〉 = 0 whenever K divides n′ − n , 0, then {gk,l}
K
k=1,

L
l=1 ⊆ CN

gk,l(n) =
√

L
√

N
e2πi(k−1)n/K fn(l)

generates a (K, L,N)-TFF for CN .

Proof. We show that {gk,l}
K
k=1,

L
l=1 satisfies Definition 3. In particular, for any k = 1, . . . ,K, the fact that { fn}Nn=1 is a

UNTF for CL implies:

〈gk,l, gk,l′〉 = L
N

N∑
n=1

e2πi(k−1)n/K fn(l)e2πi(k−1)n/K fn(l′) = L
N

N∑
n=1

fn(l) fn(l′) =

{
1, l = l′,
0, l , l′,
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as needed. Furthermore, (4) is also satisfied:

K∑
k=1

L∑
l=1

gk,l(n)gk,l(n′) = L
N

K∑
k=1

L∑
l=1

e2πi(k−1)n/K fn(l)e2πi(k−1)n′/K fn′ (l)

= L
N

L∑
l=1

fn(l) fn′ (l)
K−1∑
k=0

e2πik(n−n′)/K

= L
N 〈 fn, fn′〉

{
K, K | n′ − n,
0, K - n′ − n,

=

{ KL
N , n = n′,
0, n , n′,

where the final equality follows from the assumption that 〈 fn, fn′〉 = 0 whenever K divides n′ − n , 0.

We note that the frame vectors produced by Theorem 14 are not modulates of the original frame vectors them-
selves, but rather their coordinate vectors. That is, the analysis operator of {gk,l}

K
k=1,

L
l=1 is obtained by vertically stacking

modulated copies of the synthesis operator of { fn}Nn=1, as illustrated in the following example.

Example 15. Recall that, by Theorem 13, the UNTF { fm}11
m=1 for C4 constructed in Example 10 satisfies 〈 fm, fm′〉 = 0

whenever m′ −m ≥ 5. Applying Theorem 14 to this UNTF with K = 5 produces a (5, 4, 11)-TFF, as given in Table 1.

We now apply this idea in general, using Theorem 14 to modulate the Spectral Tetris constructions of Theorem 13.
As seen in Table 1, this results in a collection of vectors which, from afar, appear as translates and modulates of a
single function. These modulated fusion frames provide the final ingredient for the proof of our first main result:

Proof of Theorem 1. Take any K, L,N ∈ N such that L ≤ N. The case where L divides N is resolved in Corollary 5.
Assuming 2L < N, where L does not divide N, the necessary condition on the existence of (K, L,N)-TFFs is given
by Corollary 9. For the sufficient condition, further assume that K ≥ dN

L e + 2. Since 2L < N, Theorem 13 provides a
UNTF { fn}Nn=1 for CL that has the property that 〈 fn, fn′〉 = 0 whenever n′−n ≥ bN

L c+3 = dN
L e+2. For any K ≥ dN

L e+2,
applying Theorem 14 to this UNTF produces a (K, L,N)-TFF.

We note that the proof of Theorem 1 is entirely constructive, building TFFs either in terms of tensor products or
as modulated fusion frames. However, this result is not a comprehensive characterization of existence. In the next
section, we resolve any remaining ambiguity by proving our second main result, namely Theorem 2.

5. The Tight Fusion Frame Existence Test

In this section, we complete the characterization of the existence of equal-rank TFFs. In particular, we prove
Theorem 2 by showing that for a given K, L,N ∈ N with L < N, the Tight Fusion Frame Existence Test (TFFET)
given in Table 2 will terminate in at most L iterations of its “while” loop. In particular, TFFET resolves the question
of existence of (K, L,N)-TFFs in the case where the triple (K, L,N) is ambiguous with respect to Theorem 1, that is,
when (K, L,N) satisfies 2L < N, L does not divide N, and K = dN

L e + 1. In short, we now show that no more than L
successive applications of Naimark and spatial complements will inevitably relate an ambiguous triple to one that is
not ambiguous:

Proof of Theorem 2. Pick K, L,N ∈ N such that L < N. As seen in Line 2 of TFFET, let (K, L0,N0) = (K, L,N) if
2L ≤ N, and let (K, L0,N0) = (K,N − L,N) otherwise. By invoking Corollary 8.i if necessary, we have that (K, L,N)-
TFFs exist if and only if (K, L0,N0)-TFFs exist. For the ( j + 1)st iteration of the loop that begins on Line 4, note that
if L j divides N j, then the existence of (K, L j,N j)-TFFs is characterized by Theorem 1, as implemented in Lines 5–7
of TFFET. Moreover, Theorem 1 also characterizes existence whenever L j does not divide N j and K , dN j

L j
e + 1, as

seen in TFFET Lines 8–10. All that remains to be resolved is the ambiguous case where 2L j < N j, L j does not divide
N j, and K = d

N j

L j
e + 1.
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Table 1: The analysis operator of a (5, 4, 11)-TFF, as described in Example 15. Here, w := e−2πi/5. The rows of this matrix form a TFF for C11

consisting of 5 subspaces, each of dimension 4. Here, a given pair of rows belong to the same subspace if their indices differ by a multiple of 5.

1 1
√

3
√

8

√
3
√

8
0 0 0 0 0 0 0

1 w
√

3
√

8
w2

√
3
√

8
w4 0 0 0 0 0 0 0

1 w2
√

3
√

8
w4

√
3
√

8
w3 0 0 0 0 0 0 0

1 w3
√

3
√

8
w

√
3
√

8
w2 0 0 0 0 0 0 0

1 w4
√

3
√

8
w3

√
3
√

8
w 0 0 0 0 0 0 0

0 0
√

5
√

8
−
√

5
√

8
1

√
2
√

8

√
2
√

8
0 0 0 0

0 0
√

5
√

8
w2 −

√
5
√

8
w3 w4

√
2
√

8

√
2
√

8
w 0 0 0 0

0 0
√

5
√

8
w4 −

√
5
√

8
w w3

√
2
√

8

√
2
√

8
w2 0 0 0 0

0 0
√

5
√

8
w −

√
5
√

8
w4 w2

√
2
√

8

√
2
√

8
w3 0 0 0 0

0 0
√

5
√

8
w3 −

√
5
√

8
w2 w

√
2
√

8

√
2
√

8
w4 0 0 0 0

0 0 0 0 0
√

6
√

8
−
√

6
√

8
1

√
7
√

8

√
7
√

8
0

0 0 0 0 0
√

6
√

8
−
√

6
√

8
w w2

√
7
√

8
w3

√
7
√

8
w4 0

0 0 0 0 0
√

6
√

8
−
√

6
√

8
w2 w4

√
7
√

8
w

√
7
√

8
w3 0

0 0 0 0 0
√

6
√

8
−
√

6
√

8
w3 w

√
7
√

8
w4

√
7
√

8
w2 0

0 0 0 0 0
√

6
√

8
−
√

6
√

8
w4 w3

√
7
√

8
w2

√
7
√

8
w 0

0 0 0 0 0 0 0 0
√

7
√

8
−
√

7
√

8
1

0 0 0 0 0 0 0 0
√

7
√

8
w3 −

√
7
√

8
w4 1

0 0 0 0 0 0 0 0
√

7
√

8
w −

√
7
√

8
w3 1

0 0 0 0 0 0 0 0
√

7
√

8
w4 −

√
7
√

8
w2 1

0 0 0 0 0 0 0 0
√

7
√

8
w2 −

√
7
√

8
w 1



Table 2: The Tight Fusion Frame Existence Test (TFFET). As shown in the proof of Theorem 2, applying this test to any given K, L,N ∈ N, L < N,
will resolve the existence of (K, L,N)-TFFs in no more than L iterations of its “while” loop.

01 set K, L,N ∈ N, L < N
02 if 2L > N, L := N − L
03 exists := ‘unknown’

04 while exists := ‘unknown’

05 if L | N
06 if K ≥ N

L , exists := ‘true’

07 else exists := ‘false’

08 else

09 if K > dN
L e + 1, exists := ‘true’

10 else if K < dN
L e + 1, exists := ‘false’

11 else N := KL − N, L := N − L
12 end while
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In this case, we necessarily have L j < KL j−N j, and so we can apply Corollary 8.ii and then Corollary 8.i to obtain
that (K, L j,N j)-TFFs exist if and only if (K, L j+1,N j+1) := (K, (K − 1)L j − N j,KL j − N j)-TFFs exist. In TFFET, the
reduction of (K, L j,N j) to (K, L j+1,N j+1) is accomplished in Line 11. In essence, TFFET’s “while” loop first checks
whether Theorem 1 resolves the existence of (K, L j,N j)-TFFs; in the case where it does not, TFFET instead calculates
the alternative triple (K, L j+1,N j+1) for which the question of TFF existence is equivalent to that of the original. Note
that the full utility of Theorem 1 is predicated upon whether 2L < N; it is therefore important to note that whenever a
given triple (K, L j,N j) is ambiguous, we have K = d

N j

L j
e + 1 < N j

L j
+ 2, and so 2L < N also holds for the new triple:

2L j+1 = 2[(K − 1)L j − N j] = KL j + [(K − 2)L j − 2N j)] < ( N j

L j
+ 2)L j + [(K − 2)L j − 2N j)] = KL j − N j = N j+1.

Thus, we see that TFFET, starting from a given (K, L,N), will produce a sequence of triples for which the question of
TFF existence is equivalent to that of (K, L,N). To show that TFFET completely characterizes the existence of equal-
rank TFFs, we therefore need only show that its “while” loop terminates after a finite number of steps. Indeed, we
claim that for some J = 0, . . . , L0 − 1, the existence of (K, LJ ,NJ)-TFFs is resolved by Theorem 1. To see this, recall
that L j+1 = (K − 1)L j − N j = d

N j

L j
eL j − N j where L j does not divide N j, and so 0 < L j+1 < L j. As such, L j decreases

by at least 1 at each iteration, and remains positive. Thus, TFFET terminates within L0 iterations of its “while” loop:
if it does not terminate before the L0th step, the final iteration simply determines whether (K, 1,NL0−1)-TFFs exist, by
invoking Lines 5–7.

We conclude this paper by using TFFET to find a closed form expression of all K, L,N ∈ N for which (K, L,N)-
TFFs do not exist.

5.1. Levels of ambiguity
Take any K, L,N ∈ N where, in light of Corollary 8.i, we assume without loss of generality that 2L ≤ N. We

define the level of ambiguity of (K, L,N) to be one less than the number of iterations of TFFET’s “while” loop that
is necessary to resolve the existence of corresponding TFFs. In particular, (K, L,N) is 1-ambiguous whenever it is
ambiguous but the spatial complement of its Naimark complement is not ambiguous. Triples of higher ambiguity may
be characterized by reversing TFFET’s analysis, that is, by repeatedly taking the Naimark complements of the spatial
complements of 1-ambiguous triples:

Theorem 16. Take any K, L,N ∈ N such that 2L ≤ N. If (K, L,N) is ambiguous, then K ≥ 4. Moreover, all
J-ambiguous triples (K, L,N) for which (K, L,N)-TFFs do not exist are of the form (K,NJ , LJ),

LJ =


αJ−1−βJ−1

α−β
N1 −

(α+1)αJ−2−(β+1)βJ−2

α−β
L1, K > 4,

L1 + (J − 1)(N1 − 2L1), K = 4,
(15)

NJ =


(α+1)αJ−1−(β+1)βJ−1

α−β
N1 −

(α+1)2αJ−2−(β+1)2βJ−2

α−β
L1, K > 4,

N1 + 2(J − 1)(N1 − 2L1), K = 4,
(16)

where K, L1,N1 ∈ N are any numbers for which K ≥ 4, L1 does not divide N1, 2L1 < N1, and:

1 ≤ (K − 2)[(K − 1)L1 − N1] < L1, (K − 1)[(K − 1)L1 − N1] , L1. (17)

Here, α := 1
2

(
K − 2 +

√
K2 − 4K

)
, β := 1

2

(
K − 2 −

√
K2 − 4K

)
.

Proof. Recall that if (K, L,N) is ambiguous, then 2L < N, L does not divide N and K = dN
L e + 1. In particular, since

N
L > 2, then K ≥ 4. Having this fact, we next characterize all 1-ambiguous blank triples (ABT) (K, L1,N1), that is,
1-ambiguous triples for which a corresponding TFF does not exist.

Indeed, fixing L1,N1 ∈ N such that L1 does not divide N1 and 2L1 < N1, note that (K, L1,N1) is ambiguous if and
only if K = dN1

L1
e + 1, that is, if and only if 0 < R < L, where R := (K − 1)L1 − N1. At the same time, taking Naimark

and then spatial complements of (K, L1,N1) yields (K, (K−1)L1−N1,KL1−N1) = (K,R, L1 +R). As such, (K, L1,N1)
is a 1-ABT if and only if 0 < R < L and either K < L1+R

R = L1
R + 1 when R divides L1 or K < d L1+R

R e + 1 = d L1
R e + 2

when R does not divide L1. Since K ≥ 4 and R is an integer, we may reduce these three conditions to two: either
13



1 ≤ R < L1
K−1 when R divides L1 or 1 ≤ R < L1

K−2 when R does not. Moreover, a basic arithmetic argument shows if
R divides L1 and L1

K−1 ≤ R < L1
K−2 , then K − 1 necessarily divides L1 and R = L1

K−1 . Thus, we see that (K, L1,N1) is a
1-ABT if and only if 1 ≤ R < L1

K−2 and R , L1
K−1 , namely (17).

We now use this characterization of 1-ABTs to find all ABTs. Indeed, recalling TFFET, the spatial complement
of the Naimark complement of a j-ABT is a ( j − 1)-ABT. Reversing this process, we see that every J-ABT may be
obtained by taking J − 1 Naimark-of-spatial complements of a 1-ABT. We therefore can use induction to verify (15)
and (16) for all J ≥ 1. Indeed (15) and (16) are tautologies when J = 1, as they state L1 = L1 and N1 = N1,
respectively; the only conditions on L1 and N1 are those given in (17). To elaborate, (15) and (16) obviously hold
when J = 1 and K = 4. Moreover, since αβ = 1, the coefficients of L1 in (15) and (16) have the following numerators,
respectively:

(α + 1)α1−2 − (β + 1)β1−2 =
β−α
αβ

= −(α − β), (α + 1)2α1−2 − (β + 1)2β1−2 = (α − β)(1 − 1
αβ

) = 0.

Thus (15) and (16) also hold when J = 1 and K > 4.
Now assume that (15) and (16) hold for a given J. Taking Naimark-of-spatial complements of (K, LJ ,NJ) produces

(K, LJ+1,NJ+1) = (K,NJ − LJ ,K(NJ − LJ) − NJ). When K = 4, one may quickly verify that LJ+1 and NJ+1 are indeed
given by (15) and (16), respectively. Next, for K > 4, a straightforward computation reveals that LJ+1 = NJ − LJ

satisfies (15). Finally, since α and β are the solutions of the quadratic equation (K − 1)γ − 1 = γ(γ + 1), we have that
NJ+1 = KLJ+1 − NJ is:

NJ+1 = K αJ−βJ

α−β
N1 − K (α+1)αJ−1−(β+1)βJ−1

α−β
L1 −

(α+1)αJ−1−(β+1)βJ−1

α−β
N1 +

(α+1)2αJ−2−(β+1)2βJ−2

α−β
L1

=
αJ−1[(K−1)α−1]−βJ−1[(K−1)β−1]

α−β
N1 −

(α+1)αJ−2[(K−1)α−1]−(β+1)βJ−2[(K−1)β−1]
α−β

L1

=
(α+1)αJ−(β+1)βJ

α−β
N1 −

(α+1)2αJ−1−(β+1)2βJ−1

α−β
L1,

as claimed in (16).

We conclude with an example of TFFET and the characterization provided by Theorem 16, noting that in the
special case of K = 4, even small-valued triples can have high levels of ambiguity. In particular, (4, 25, 53) has
8-ambiguity, meaning TFFET’s “while” loop runs for 9 iterations:

(4, 25, 53)→ (4, 22, 47)→ (4, 19, 41)→ (4, 16, 35)→ (4, 13, 29)→ (4, 10, 23)→ (4, 7, 17)→ (4, 4, 11)→ (4, 1, 5).

If, on the other hand, K > 4, the entries of ambiguous blank triples grow geometrically in terms of the ambiguity.
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