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Abstract. Source extraction in audio is an important problem in the study of blind source
separation (BSS) with many practical applications. It is a challenging problem when
the foreground sources to be extracted are weak compared to the background sources.
Traditional techniques often do not work in this setting. In this paper we propose a
novel technique for extracting foreground sources. This is achieved by an interval of
silence for the foreground sources. Using this silence interval one can learn the background
information, allowing the removal or suppression of background sources. Very effective
optimization schemes are proposed for the case of two sources and two mixtures.

1. Introduction

Blind source separation (BSS) is a major area of research in signal processing with a

vast literature, particularly in audio signal processing. It aims to separate source signals

from their mixtures without assuming detailed knowledge about the sources and the mixing

process. One particular application of BSS in audio is to extract a desired audio source from

mixtures involving noise, background or unwanted sources. In many practical applications

such as mobile and car phones the background may in fact be stronger, even much stronger

sometimes, than the desired signal. This can pose a daunting challenge.

The basic setup for BSS in audio has n audio sources S1(t), . . . , Sn(t) and m mixtures

X1(t), . . . , Xm(t), with the model

(1.1) Xk(t) =
L∑

i=1

Nk,i∑

j=1

ak,i,jSi(t− dk,i,j), k = 1, . . . , M

where ak,i,j are the mixing coefficients and dk,i,j are the delays from the source i to the

recording or sensing device k. The multiple delays are a result of reverberations in the

ambient environment. In audio applications these mixtures are recordings made by placing

m microphones in various locations. In BSS these coefficients are unknown. With the
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presence of reverberations we often refer to the mixtures Xk in (1.1) as convolutive mixtures.

A more concise way to formulate the model (1.1) is

(1.2) Xk =
L∑

i=1

Ak,i ∗ Si, k = 1, . . . , M

where ∗ denotes convolution and

(1.3) Ak,i(t) =
Nk,i∑

j=1

ak,i,jδ(t− dk,i,j)

are the convolutive kernels that represent the mixing of both the direct signals and their

reverberations. BSS techniques aim to compute these convolutive kernels Ak,i.

The bulk of the studies in BSS employ the independent component analysis (ICA) model,

where the source signals Sk, modeled as random variables, are assumed to be independent,

see the reviews [3, 5] and the references therein for more details. Under this model, many

techniques such as Joint Approximate Diagonalization Eigenmatrices (JADE) [2] and In-

formation Maximization (Infomax) [1, 4], as well as their refinements, have been developed.

An alternative technique is the Degenerative Unmixing and Estimation Technique (DUET),

which uses time-frequency separations to achieve BSS and has the advantage that it can

work in the degenerative case M < L, see e.g. [6, 9]. All these techniques have their re-

spective strengths and weaknesses, which are well documented in the literature so we will

not go into details here. While these techniques can yield good results in BSS, they all

have certain limitations that pose challenges for many source extraction and background

removal applications. One of the major challenges is that they do not work well for source

extraction if the desired source signals are very weak in comparison to the unwanted sources

in the mixtures. Computational cost can be another issue for many practical applications

such as mobile and car phone where removing background sources must be done in real

time. The batch processing techniques used by many of the ICA techniques do not adapt

well to dynamic real-time processing.

In source extraction problems we are given mixtures that contain several sources. We

shall call those sources that we wish to extract foreground sources and those we wish to

remove background sources. In this paper we propose a novel method for removing or

suppressing background sources in audio mixtures, thus allowing us to bring out or enhance

the foreground sources. The method requires that the foreground sources have an interval of
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silence, i.e. during an interval of time the foreground sources are inactive. This interval does

not need to be long. For audio signals often less than 1 second is sufficient but optimal result

is achieved around 2 seconds. In most relevant applications such as mobile or car phone this

requirement is not an issue. The main idea is that the convolution kernels Ak,i in the model

(1.2), although they depend on numerous factors such as building material and shape, are

determined entirely by the ambient environment as long as the background sources remain

stationary relative to the ambient environment. The interval of silence allows us to learn the

ambient environment and estimate the convolutive kernels, from which background sources

can be removed by cancelation.

2. Background Cancellation via Learning

In practice the time is discretized through sampling. It is convenient to write the convo-

lutive mixtures in the discrete form:

(2.1) Xk(t) =
L∑

i=1

N∑

j=0

ak,i,jSi(t− j), k = 1, . . . , M,

where t ∈ Z and T0 ≤ t < T1. The integer N denotes the maximal delay in the mixture,

which depends on the ambient environment and the sampling rate. We shall view a signal as

an element in l∞(Z). We shall adopt some standard notations here: For each u =∈ l∞(Z)

we use u(j) to denote its j-th entry and supp (u) its support, i.e. the set of indices of

its nonzero entries. For and u, X ∈ l∞(Z) where u is finitely supported the convolution

u ∗X ∈ l∞(Z) is defined by

u ∗X(t) =
∑

j∈Z
u(j)X(t− j).

Again we may rewrite the model (2.1) simply as

(2.2) Xk =
n−1∑

i=1

uk,i ∗ Si, k = 1, . . . ,m

where uk,i ∈ l∞(Z) is supported on [0, N ] with ak,i,j as its j-th element.

Suppose that the sources S1, . . . , SJ are the background sources we wish to remove and

SJ+1, . . . , SL are the foreground sources we wish to extract from the mixtures Xk, 1 ≤ k ≤
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M . For any finitely supported bk ∈ l∞(Z) we have

bk ∗Xk =
L∑

i=1

bk ∗ uk,i ∗ Si.

It follows from (2.2) that

(2.3)
M∑

k=1

bk ∗Xk =
L∑

i=1

( M∑

k=1

bk ∗ uk,i

)
∗ Si.

If we can find bk such that
∑M

k=1 bk ∗ uki = 0 for 1 ≤ i ≤ J , then

(2.4)
M∑

k=1

bk ∗Xk =
L∑

i=J+1

( M∑

k=1

bk ∗ uk,i

)
∗ Si.

The unwanted background sources are now removed, leading to the extraction of foreground

sources. We shall call those bk cancellation kernels. Note that although using this technique

the foreground sources are now subject to further convolutions, in general it does not degrade

the foreground signals as long as the maximum delay N is not too large and the cancellation

kernels not too dense. A human auditory system does not appear to be very sensitive to

moderate convolutions. Furthermore, moderate convolutions do not introduce any artifacts

to the extract source signals. This is a definite advantage over ICA based techniques or

DUET.

One question is whether the cancellation kernels exist in general. We shall show that

they do in all non-degenerative setting M > J . For each X ∈ l∞(Z) we associate it with a

symbolic Fourier series

X̂(ξ) =
∑

n∈Z
X(n)e−n(ξ),

where eb(ξ) := e2πibξ. We shall refer to this series simply as the Fourier transform of X.

Note that if u ∈ l∞(Z) has finite support than û(ξ) is a trigonometric polynomial. It is well

known that û ∗X = û X̂. Furthermore, τ̂qX = eq(ξ)X̂(ξ) where τqX denotes X shifted to

the right by q positions.

Proposition 2.1. Let uk,i ∈ l∞(Z) for 1 ≤ k ≤ M and 1 ≤ i ≤ J have finite support.

Suppose that M > J . Then there exist finitely supported cancellation kernels b1, . . . ,bM ∈
l∞(Z) not all zero such that

M∑

k=1

bk ∗ uk,i = 0, i = 1, . . . , J.
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Proof. Taking the Fourier transform we need to show the existence of finitely supported

bk such that
M∑

k=1

b̂k(ξ)ûk,i(ξ) = 0, i = 1, . . . , J.

Let F be the field of all real trigonometric rational functions, i.e. functions of the form f/g

where both f, g are trigonometric polynomials with real coefficients. Set A = [ûk,i] with

rows indexed by i and columns indexed by k, which is J ×M . Since M > J there exists a

Z = [f1, . . . , fM ]T in FM such that AZ = 0. Now let F (ξ) be a trigonometric polynomial

that is the common denominator of all trigonometric rational functions fk, 1 ≤ k ≤ M

and Gk(ξ) = F (ξ)fk(ξ). Each Gk is a trigonometric polynomial with real coefficients. Let

bk ∈ l∞(Z) such that b̂k = Gk. Then

M∑

k=1

bk ∗ uk,i = 0, i = 1, . . . , J.

Observe that if b1, . . . ,bM are cancellation kernels then so are τqb1, . . . , τqbM for any q.

By shifting we can thus normalize the cancellation kernels so that all suppbk are nonnegative

and at least one bk(0) 6= 0. We shall call such cancellation kernels normalized.

The general framework for foreground source extraction we propose in this paper is to

compute the cancellation kernels via background learning. This is achieved by utilizing

an interval of silence for the foreground sources we wish to extract. Once we have the

cancellation kernels the extraction of foreground can be made through background can-

cellations. Assume that the foreground sources SJ+1(t), . . . , SL(t) are silent in the time

interval a ≤ t ≤ b, i.e. SJ+1(t) = · · · = SL(t) = 0. Let b1, . . . ,bM be the cancellation

kernels. It follows from (2.4) that

M∑

k=1

bk ∗Xk = 0

for a + N ≤ t ≤ b. Thus we can use this interval to learn the background and estimate the

normalized cancellation kernels by minimizing the cost function

(2.5) F (b1, . . . ,bM , a, b) :=
∑

a+N≤t≤b

∣∣∣∣∣
M∑

k=1

bk ∗Xk(t)

∣∣∣∣∣

2

,
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subject to the constraint
∑M

k=1 |b(0)| = 1. Once the cancellation kernels are obtained,

foreground sources can be extracted in real time by (2.4) through simple convolutions

M∑

k=1

bk ∗Xk =
L∑

i=J+1

( M∑

k=1

bk ∗ uk,i

)
∗ Si.

Unfortunately, our numerical experiments have shown that without further constraints

the cancellation kernels obtained by minimizing E do not work well. There could be several

problems associated with simply minimizing the cost function. One such problem is the lack

of uniqueness even when all cancellation kernels are normalized. But since any cancellation

kernels can be used to remove the background sources, this may not be a major problem.

A more serious problem is over-fitting. One possible solution to overcome the over-fitting

problem is to impose sparsity on the minimizers. In our experiments the minimizers of (2.5)

are almost never sparse, particularly for real life recorded mixtures. There are many ways

to achieve sparsity, such as adding an l1-norm penalty term, see e.g. [7] and the references

therein. The problem with this approach is that it adds a penalty term that isn’t natural,

which can affect the performance. Finding the right sparsity condition to impose is the

most important aspect of this approach to source extraction, and at this point is still a

work in progress. In the case of two mixtures and two sources, we propose a simple solution

that works extremely well in numerical experiments.

Actually in the case of two sources and two mixtures, i.e. L = M = 2, there is a simple

and elegant way to find the cancellation kernels b1,b2. They can be taken as b1 = u2,1 and

b2 = −u1,1 , which yield

b1 ∗ u1,1 + b2 ∗ u2,1 = 0.

It follows that

b1 ∗X1 + b2 ∗X2 = (b1 ∗ u1,2 + b2 ∗ u2,2) ∗ S2 = (u2,1 ∗ u1,2 − u1,1 ∗ u2,2) ∗ S2.

It is not hard to show that unless the Fourier transform û1,1, û2,1 have a common factor,

u2,1,−u1,1 will also be the shortest cancellation kernels. learning the cancellation kernels

in this case is equivalent to learning the convolutive mixing kernels. Assume that the

foreground source S2(t) = 0 in the time interval a ≤ t ≤ b. Let

Y := u2,1 ∗X1 − u1,1 ∗X2.
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Then Y (t) = 0 for a + N ≤ t ≤ b. Let u2,1(n) = xn and u1,1(n) = yn for 0 ≤ n ≤ N and

0 otherwise. Denote x = [x0, x1, . . . , xN ]T and y = [y0, y1, . . . , yN ]T . We estimate u2,1,u1,1

by minimizing

E(x,y, a, b) :=
∑

a+N≤t≤b

|Y (t)|2

=
b∑

t=a+N

( N∑

j=0

(xjX1(t− j)− yjX2(t− j))
)2

= xT Ax + yT By − 2xT Cy,(2.6)

where A = [aij ], B = [bij ], C = [cij ] are (N + 1)× (N + 1) matrices given by

aij =
b∑

t=a+N

X1(t− i)X1(t− j),

bij =
b∑

t=a+N

X2(t− i)X2(t− j),

cij =
b∑

t=a+N

X1(t− i)X2(t− j)

with 0 ≤ i, j ≤ N . To address the over-fitting problem we propose to imposing an additional

constraint that requires both x ≥ 0 and y ≥ 0, i.e. xj ≥ 0 and yj ≥ 0 for all j. Beside

making the minimizers more sparse, an extra benefit of this additional constraint is that

now the nonlinear constraint
∑M

k=1 |b(0)| = 1 is reduced to the linear constraint x0+y0 = 1,

making the computation more efficient. Now x,y are computed by solving the following

quadratic programming problem:

(2.7) min
(x,y)

xT Ax + yT By − 2xT Cy Subject to x ≥ 0, y ≥ 0, x0 + y0 = 1,

where A,B, C are as in (2.6). Furthermore, it makes sense in this particular setting. Al-

though the kernels uk,i do not have to be nonnegative in general, negative coefficients usually

correspond to much weaker signals, and for the purpose of removing or suppressing back-

ground sources their impacts are limited. Our experiments show that the nonnegativity

constraint yields superb results in the case of two sources and two mixtures and it is very

robust. Numerical results will be shown in the next section.
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It should be pointed out that the nonnegativity constraint only works in the case of

two sources and two two mixtures. With more sources and mixtures the nonnegativity

constraint no longer makes sense, and new methods will be needed.

3. Numerical Examples and Future Work

We present two examples here to show the effectiveness of the algorithm for removing or

suppressing background sources. Both examples are real recordings made in a regular office

that had moderate reverberations at sampling rate 16kHz.

Example 1. In this example a speech is mixed with very loud background music from a

boom box. Both the speaker and the boombox are about 1.5 meters from the two micro-

phones, which are about 20cm apart. The speech, which is the desired foreground source, is

silent for the first few seconds, and it is completely overwhelmed by the background music.

It is rather difficult to discern the speech completely. Applying our background removal

algorithm we have successfully suppressed the loud music signal so that the speech can

be heard very clearly without any discernable artifact. Figure 1(a) shows the plots of the

mixtures and the output signal after suppression of the background music. As one can see,

it is hard to see that the foreground source even exists from the plot. After the application

of our algorithm the music can still be heard, but is now suppressed to the level that it is

rather faint. The strength of the foreground source, by comparison, has not been reduced.

In fact, it may have been amplified.

In this example, we have restricted the size of the cancellation kernels to N = 230. Larger

N does not seem to yield substantial improvement. In fact, when N is greater than 500

the performance seems to get a bit worse, most likely due to the additional convolutions

that make the reconstructed signal more “muffled.” The first 2 seconds is used to learn the

cancellation kernels. In all our testings, there is no benefit for using more than 2 seconds to

compute the cancellation kernels. Figure 1(b) show the cancellation kernels that have been

computed. As one can see, the significant coefficient are quite sparse.

Example 2. This example shows how the background suppression algorithm can also be

used as an alternative algorithm for BSS. In this example the mixtures contain speeches

from a male speaker and a female speaker of approximately equal strength. Both speakers

are about 2 meters from the two microphones, which are placed about 15cm apart. The male
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speaker, which is the foreground source, is silent for the first few seconds. The goal here is

to test our algorithm as an alternative BSS method to extract the foreground source, i.e.

the speech by the male speaker. Applying the interval of silence for the foreground source

our background removal algorithm successfully removed the speech by the female speaker.

The result is quite competitive versus other BSS algorithms. Again, the separated speech

is very clear without any distortion and artifact, although some residue of the background

source has remained, but it is not more than other algorithms. Figure 2(a) shows the plots

of the mixtures and the separated signal, while Figure 2(b) show the cancellation kernels

that have been computed, which are quite sparse as one can see. Like in the previous

example, we have chosen N = 230 and used the first 2 seconds to compute the cancellation

kernels.

While the approach of using interval of silence for background source signal removal is

a novel and promising method, the quadratic programming approach with nonnegativity

constraint that we use here no longer applies to cases where more than one background

source need to be removed. As a plan for future work one idea is to use sparse principal

component analysis (sparse PCA, see e.g. [8]) to obtain sparse cancellation kernels. Recently

Yu et al [10] propose to use the split Bregman algorithm to compute sparse cancellation

kernels, which is another promising solution.

The authors thank Xun Wang, Sean Wu and Na Zhu for very helpful discussions.
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