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Abstract. In this paper we investigate the Lipschitz equivalence of dust-like

self-similar sets in Rd. One of the fundamental results by Falconer and Marsh
[On the Lipschitz equivalence of Cantor sets, Mathematika, 39 (1992), 223–

233] establishes conditions for Lipschitz equivalence based on the algebraic

properties of the contraction ratios of the self-similar sets. In this paper we
extend the study by examining deeper such connections.

A key ingredient of our study is the introduction of a new equivalent relation
between two dust-like self-similar sets called matchable condition. Thanks to
a certain measure-preserving property of bi-Lipschitz maps between dust-like

self-similar sets, we show that the matchable condition is a necessary condition
for Lipschitz equivalence.

Using the matchable condition we prove several conditions on the Lipschitz

equivalence of dust-like self-similar sets based on the algebraic properties of
the contraction ratios, which include a complete characterization of Lipschitz

equivalence when the multiplication groups generated by the contraction ra-

tios have full rank. We also completely characterize the Lipschitz equivalence
of dust-like self-similar sets with two branches (i.e. they are generated by IFS

with two contractive similarities). Some other results are also presented, in-

cluding a complete characterization of Lipschitz equivalence when one of the
self-similar sets has uniform contraction ratio.

1. Introduction

Let E, F be compact sets in Rd. We say that E and F are Lipschitz equivalent,
and denote it by E ∼ F , if there exists a bijection ψ : E−→F which is bi-Lipschitz,
i.e. there exists a constant C > 0 such that

C−1|x− y| ≤ |ψ(x)− ψ(y)| ≤ C|x− y|
for all x, y ∈ E.

An area of interest in the study of self-similar sets is the Lipschitz equivalence
property. With Lipschitz equivalence many important properties of a self-similar
set are preserved. Cooper and Pignataro [1] studied the case when E, F ⊂ [0, 1]
and ψ is order-preserving. Falconer and Marsh [5, 6] studied quasi-circles and
dust-like self-similar sets. In the book of David and Semmes [2], several problems
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concerning the Lipschitz equivalence of non-dust-like self-similar sets were posed.
Using graph-directed sets, Rao, Ruan and Xi [11] solved one of the problems, the
so-called {1, 3, 5} − {1, 4, 5} problem1; some generalizations were made in [19, 17].
For related works on Lipschitz equivalence of other fractals, see [10, 12, 14, 16].

This paper concerns with the Lipschitz equivalence of dust-like self-similar sets
in Rd. Recall that in general we characterize a self-similar set as the attractor of
an iterated functions system (IFS). Let {φj}m

j=1 be an IFS on Rd where each φj

is a contractive similarity with contraction ratio 0 < ρj < 1. The attractor of the
IFS is the unique nonempty compact set F satisfying F =

⋃m
j=1 φj(F ), see [8].

We say that the attractor F is dust-like, or alternatively, the IFS {φj} satisfies the
strong separation condition (SSC), if the sets {φj(F )} are disjoint. It is well known
that if F is dust-like then the Hausdorff dimension s = dimH(F ) of F satisfies∑m

j=1 ρs
j = 1.

Now for any ρ1, . . . , ρm ∈ (0, 1) with
∑m

j=1 ρd
j < 1, we will call ρ = (ρ1, . . . , ρm)

a contraction vector, and use the notation D(ρ) = D(ρ1, . . . , ρm) to denote the set
of all dust-like self-similar sets that are the attractor of some IFS with contraction
ratios ρj , j = 1, . . . , m on Rd. (Throughout the paper the dimension d will be
implicit.) Clearly all sets in D(ρ) have the same Hausdorff dimension, which we
denote by s = dimH D(ρ). We are less concerned with the translation part of the
IFS’s because of the following result, see e.g. [11]:

Proposition 1.1. Let E, F ∈ D(ρ1, . . . , ρm). Then E and F are Lipschitz equiva-
lent.

Let ρ = (ρ1, . . . , ρm) and τ = (τ1, . . . , τn) be two contraction vectors. According
to Proposition 1.1, we give the following definition: We say D(ρ) and D(τ ) are
Lipschitz equivalent, and denote it by D(ρ) ∼ D(τ ), if E ∼ F for some (and thus
for all) E ∈ D(ρ) and F ∈ D(τ ). Note that if τ is a permutation of ρ then we
clearly have D(τ ) = D(ρ). One of the most fundamental results in the study of
Lipschitz equivalence is the following theorem, proved by Falconer and Marsh [6],
that establishes a connection to the algebraic properties of the contraction ratios:

Theorem 1.2 ([6], Theorem 3.3). Let D(ρ) and D(τ ) be Lipschitz equivalent,
where ρ = (ρ1, . . . , ρm) and τ = (τ1, . . . , τn) are two contraction vectors. Let
s = dimH D(ρ) = dimH D(τ ). Then

(1) Q(ρs
1, . . . , ρ

s
m) = Q(τ s

1 , . . . , τs
n), where Q(a1, . . . , am) denotes the subfield of

R generated by Q and a1, . . . , am.
(2) There exist positive integers p, q such that

sgp(ρp
1, . . . , ρ

p
m) ⊆ sgp(τ1, . . . , τn),

sgp(τ q
1 , . . . , τ q

n) ⊆ sgp(ρ1, . . . , ρm),

where sgp(a1, . . . , am) denotes the subsemigroup of (R+,×) generated by
a1, . . . , am.

Using this theorem, it was shown in [6] that there exist dust-like self-similar sets
E and F such that dimH E = dimH F but E and F are not Lipschitz equivalent.
Also, from this theorem, the following question aries naturally:

1One referee told us that Jang-Mei Wu at the University of Illinois at Urbana-Chamjpaign also

solved the {1, 3, 4} − 1, 4, 5 problem years ago without publishing.

ruanhj
高亮

ruanhj
高亮

ruanhj
高亮



LIPSCHITZ EQUIVALENCE OF CANTOR SETS 3

Question 1. Can we present nontrivial sufficient conditions and necessary conditions
on ρ and τ such that D(ρ) ∼ D(τ )?

Since the above work by Falconer and Marsh, there have been little progress in
this direction as we know of. The present paper does not give a complete answer
to Question 1, which is likely to be extremely hard. It does, however, answer the
question in several important special cases that should allow us to gain some deep
insight into the problem.

In [6] Falconer and Marsh had developed several techniques to study the Lip-
schitz equivalence of dust-like self-similar sets. These techniques allowed them to
prove Theorem 1.2 and other important results (see also Lemma 2.1 and 2.3 and
Remark 2.5). Recently some other techniques have been developed. One that will
play a significant role in this paper is a result of Xi and Ruan [18], which states
that if f : E → F is a bi-Lipschitz map between two dust-like self-similar sets, then
f has a certain measure-preserving property. Precisely, there is a cylinder Ei0 ⊂ E,
such that the restriction of f on Ei0 preserves the Hausdorff measure Hs up to
a constant (Lemma 2.4). This result generalized the measure-preserving property
obtained by Cooper and Pignataro [1] for an order-preserving bi-Lipschitz function
between two dust-like subsets of R.

Other conditions on Lipschitz equivalence of self-similar sets have been estab-
lished, e.g. in Xi and Ruan [18] and in Xi [15]. In both studies, sufficient and
necessary conditions for Lipschitz equivalence have been established in terms of
graph-directed sets. However, these conditions are difficult to check. Generally,
given two contraction vectors ρ = (ρ1, ρ2, . . . , ρm) and τ = (τ1, τ2, . . . , τn), it is not
practical to apply these conditions to decide whether D(ρ) and D(τ ) are Lipschitz
equivalent, even for the two-branch case m = n = 2.

In this paper we introduce the notion of rank for a contraction vector ρ =
(ρ1, . . . , ρm). Let 〈ρ1, . . . , ρm〉 denote the subgroup of (R+,×) generated by ρ1,
. . . , ρm, then it is a free abelian group. It follows that 〈ρ1, . . . , ρm〉 has a nonempty
basis and we can define the rank of 〈ρ1, . . . , ρm〉, which we denote by rank〈ρ〉, to be
the cardinality of the basis. Clearly 1 ≤ rank〈ρ〉 ≤ m. In case that rank〈ρ〉 = m,
we say ρ has full rank. For rank of a free abelian group see e.g. [7].

According to Theorem 1.2 (2), if D(ρ) ∼ D(τ ), then rank〈ρ〉 = rank〈τ 〉 =
rank〈ρ, τ 〉, where 〈ρ, τ 〉 := 〈ρ1, . . . , ρm, τ1, . . . , τn〉 for ρ = (ρ1, . . . , ρm) and τ =
(τ1, . . . , τn). One of our main theorems is:

Theorem 1.3. Let ρ = (ρ1, . . . , ρm) and τ = (τ1, . . . , τm) be two contraction
vectors such that rank〈ρ〉 = m. Then D(ρ) and D(τ ) are Lipschitz equivalent if
and only if τ is a permutation of ρ.

Theorem 1.3 and a result on the irreducibility of certain trinomials by Ljunggren
[9] allows us to completely characterize the Lipschitz equivalence of dust-like self-
similar sets with two branches. We prove:

Theorem 1.4. Let (ρ1, ρ2) and (τ1, τ2) be two contraction vectors with ρ1 ≤ ρ2,
τ1 ≤ τ2. Assume that ρ1 ≤ τ1. Then D(ρ) ∼ D(τ ) if and only if one of the two
conditions holds:

(1) ρ1 = τ1 and ρ2 = τ2.
(2) There exists a real number 0 < λ < 1, such that

(ρ1, ρ2) = (λ5, λ) and (τ1, τ2) = (λ3, λ2).
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Another case where the Lipschitz equivalence of dust-like self-similar sets can be
characterized completely is when one of them has uniform contraction ratio.

Theorem 1.5. Let ρ = (ρ1, · · · , ρm) = (ρ, . . . , ρ) and τ = (τ1, . . . , τn). Then D(ρ)
and D(τ ) are Lipschitz equivalent if and only if the following conditions hold:

(1) dimH D(τ ) = dimH D(ρ) = log m/ log ρ−1.
(2) There exists a q ∈ Z+ such that m1/q ∈ Z and

log τj

log ρ
∈ 1

q
Z for all j = 1, 2, . . . , n.

As an application of Theorem 1.4, we can see that the conditions in Theorem 1.2
are necessary but not sufficient via the following example.

Example 1.1. Let x, y, 0 < x, y < 1, be the solution of the equations

x6 + y = 1 and x3 + y4 = 1.

One can easily check that the solution indeed exists. Let s be a real number such
that 0 < s < 1. Suppose that the contraction vectors of E and F are (x6/s, y1/s)
and (x3/s, y4/s), respectively. Then E and F have the same Hausdorff dimension
and satisfy the conditions in Theorem 1.2. However, E and F are not Lipschitz
equivalent by Theorem 1.4.

To prove Theorem 1.3 in this paper we shall introduce a new equivalent rela-
tion between two dust-like self-similar sets, which is refered to as the matchable
condition. The matchable condition is somewhat technical so we shall defer its def-
inition to the next section. We prove a refinement of condition (2) in Theorem 1.2
involving the matchable condition:

Theorem 1.6. Let E and F be two dust-like self-similar sets. If E ∼ F , then E
and F are matchable.

The paper is organized as follows: In Section 2, we review some important
results in [6, 18] concerning the Lipschitz equivalence of dust-like self-similar sets,
and prove Theorem 1.6. In Section 3, we prove Theorem 1.3. In Section 4, we
focus on two-branch self-similar sets and prove Theorem 1.4. Finally in Section 5
we prove Theorem 1.5.

2. A new criterion for Lipschitz equivalence

2.1. Measure-preserving property. We first introduce some notations. Let E
be the attractor of the IFS Φ = {φ1, . . . , φm}. Let Σ∗m :=

⋃∞
k=1{1, 2, . . . , m}k. For

any word i = i1 · · · ik ∈ Σ∗m, we call k the length of the word i and denote it by |i|.
Furthermore, a cylinder Ei is defined to be Ei = φi(E) := φi1 ◦ · · · ◦ φik

(E).
In this section we consider the Lipschitz equivalence of two dust-like self-similar

sets E and F with the following setup: We assume that E is the attractor of
Φ = {φ1, . . . , φm} with contraction vector ρ = (ρ1, . . . , ρm) and F is the attractor
of Ψ = {ψ1, . . . , ψn} with contraction vector τ = (τ1, . . . , τn). We also assume in
subsections 2.1 and 2.2 that s = dimH E = dimH F and f : E−→F is a bi-Lipschitz
map.

The following lemma is fundamental.
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Lemma 2.1 ([6]). There exists an integer n0 such that for any i ∈ Σ∗m, there exist
k, j1, . . . , jp ∈ Σ∗n such that Fkj1 , . . . , Fkjp are disjoint and

(2.1) f(Ei) =
p⋃

r=1

Fkjr ⊂ Fk,

where each |jr| ≤ n0. In particular Hs(f(Ei)) = Hs(Fk)
∑p

r=1(τ jr )
s.

Remark 2.2. It is clear that we can require each |jr| = n0 in the above lemma.
And, under this restriction, k is unique if we require k to have the maximal length.
Consequently the set {j1, . . . , jp} is also uniquely determined by i. We will write pi

for p if necessary. We call this unique decomposition to be the maximum decompo-
sition of f(Ei) with respect to F and n0. From now on, we fix n0 in this section.
We remark that p in (2.1) is bounded since p ≤ nn0 .

In [6], Falconer and Marsh introduced a function gk : E−→R defined by

(2.2) gk(x) =
Hs(f(Ei))
Hs(Ei)

for x ∈ Ei, where i ∈ {1, . . . , m}k. We shall abuse the notation by writing gk(Ei) =
Hs(f(Ei))
Hs(Ei)

. It is easy to show that

(2.3) gk(Ei) =
m∑

i=1

Hs(Eii)
Hs(Ei)

gk+1(Eii).

Lemma 2.3 ([6]). The set { gk+1(x)
gk(x) : x ∈ E, k ≥ 1} is finite.

Xi and Ruan obtained the following property. We include a short proof for
completeness.

Lemma 2.4 ([18]). There is a cylinder Ei0 and a constant c > 0 such that gk(x) = c
for all x ∈ Ei0 and k ≥ |i0|.
Proof. Set T = supk≥1 max|i|=k gk(Ei). Since f is bi-Lipschitz, we have T < +∞.

If gk+1(x)
gk(x) = 1 for all x ∈ E and all k ≥ 1, then the lemma clearly holds. Other-

wise set δ = min
(
{| gk+1(x)

gk(x) − 1| : x ∈ E, k ≥ 1} \ {0}
)
. Then δ > 0 by Lemma 2.3.

Choose i0 such that (denote ` = |i0|)
(2.4) g`(Ei0) > T/(1 + δ).

Then g`+1(Ei0j)

g`(Ei0 ) < 1 + δ for all j and hence g`+1(Ei0j)

g`(Ei0 ) ≤ 1 by the definition of δ.

Now formula (2.3) implies that g`+1(Ei0j)

g`(Ei0 ) = 1 for all j. Hence each Ei0j satisfies
(2.4) and we can repeat the same argument with Ei0j in place of Ei0 . Set c = g`(Ei0)
and the lemma is proved. ¤

This lemma means that the restriction of f on Ei0 is measure-preserving up to
a constant. More precisely for any Borel set A ⊂ Ei0 we have

(2.5)
Hs(f(A))
Hs(A)

= c =
Hs(f(Ei0))
Hs(Ei0)

.
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Remark 2.5. To prove Theorem 1.2, one needs the fact that gk converges on a
set with positive Hausdorff measure Hs. [6] showed that gk(x) converges for Hs-
almost all x ∈ E by using the martingale convergence theorem. Lemma 2.4 says
that gk(x) converges on a cylinder of E and hence provides an alternative proof of
Theorem 1.2.

We shall call the cylinder Ei0 in Lemma 2.4 a stable cylinder with respect to
the map f . From now on, we fix a stable cylinder Ei0 in this section. Going back
to Lemma 2.1 and Remark 2.2, for any i ∈ Σ∗m, there is a (unique) maximum
decomposition of f(Ei0i) with respect to F and n0:

f(Ei0i) =
pi0i⋃
r=1

Fkjr ,

where |jr| = n0. The following observation is crucial for the proof of our new
criterion.

Lemma 2.6. The set M =
⋃

i∈Σ∗m

{Hs(Ei0i)

Hs(Fkjr ) : 1 ≤ r ≤ pi0i

}
is finite. Conse-

quently, the sets

M′ =
⋃

i∈Σ∗m

{ diamEi0i

diamFkjr

: 1 ≤ r ≤ pi0i

}
and M′′ =

⋃

i∈Σ∗m

{ ρi0i

τkjr

: 1 ≤ r ≤ pi0i

}

are finite.

Proof. Note that

Hs(Ei0i)
Hs(Fkjr )

=
Hs(Ei0i)∑pi0i

j=1Hs(Fkjj )
·
∑pi0i

j=1Hs(Fkjj )
Hs(Fkjr )

=
1
c

∑pi0i

j=1Hs(Fkjj )
Hs(Fkjr )

=
1
c

∑pi0i

j=1 τ s
jj

τ s
jr

.

The last expression can take only finite many values, since pi0i ≤ nn0 and each jj
can take on only finitely many distinct values. It follows that M is a finite set.

Since Hs(Ei0i)

Hs(Fkjr ) = c0 ·
( diam Ei0i

diam Fkjr

)s, where c0 = Hs(E)
Hs(F ) ·

(
diam F
diam E

)s is a constant
only dependent on E and F , we know that M′ is a finite set. It follows from
ρi0i

τkjr
= diam Ei0i

diam Fkjr
· diam F

diam E that M′′ is also a finite set. ¤

2.2. New criterion. Let ρ and τ be the contraction vectors in the above sub-
section. We call w1, . . . , wL a pesudo-basis of V = 〈ρ, τ 〉 if L = rankV and
〈w1, . . . , wL〉 ⊇ V . It is clear that a basis of V is natural to be a pesudo-basis. For
any x1, x2 ∈ V , we define their distance with respect to the pesudo-basis w1, . . . , wL

by

(2.6) h(x1, x2) :=
( L∑

j=1

(sj − tj)2
)1/2

,

where sj , tj ∈ Z are the unique integers such that x1 =
∏L

j=1 w
sj

j , x2 =
∏L

j=1 w
tj

j .
It is easy to show that if h1 and h2 are two distances on V defined as above, then
they are comparable, i.e., there exists a constant C ≥ 1 such that

C−1h1(x1, x2) ≤ h2(x1, x2) ≤ Ch1(x1, x2), ∀x1, x2 ∈ V.

Hence, we fix the pseudo-basis and the function h from now on.
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Denote ρmax = max{ρ1, . . . , ρm} and ρmin = min{ρ1, . . . , ρm}. For any t ∈ (0, 1)
let

W(E, t) := {i ∈ Σ∗n : ρi ≤ t < ρi∗},
where i∗ is the word obtained by deleting the last letter of i, i.e. i∗ = i1 · · · ik−1 if
i = i1 · · · ik. We define ρi∗ = 1 if the length of i equals 1. Similarly, we may define
W(F, t) with respect to its contraction vector τ . We remark that W(E, t) has been
used in other studies on self-similar sets (e.g. [8, 13]).

Pick some i ∈ Σ∗m. There is a (unique) maximum decomposition of f(Ei) with
respect to F and n0:

f(Ei) =
pi⋃

r=1

Fkjr ,

where |jr| = n0. We define a relation R(i, t, f) ⊂ W(E, t)×W(F, t) by

(2.7) R(i, t, f) :=

{
(i′, j′) ∈ W(E, t)×W(F, t) : f(Eii′) ∩

pi⋃
r=1

Fkjrj′ 6= ∅.
}

.

We need the following geometrical lemma to prove our criterion. Note that F
is dust-like, F satisfies the open set condition, i.e., there exists an open set V ,
such that V ⊃ ⋃n

i=1 ψi(V ) and ψi(V ) ∩ ψj(V ) = ∅ for distinct i, j. Thus, using
the method in [13], we can easily see that the following lemma holds (For detailed
proof, please see Appendix A).

Lemma 2.7. For any two positive numbers c1, c2 with c1 ≤ c2, there exists a
constant c3 > 0, such that for any nonempty subset A of Rd, A can intersect at
most c3 mutually disjoint cylinders Fi with c1diamA ≤ diamFi ≤ c2diamA.

Now we can prove our criterion.

Theorem 2.8. Assume that f : E−→F is bi-Lipschitz and i0 ∈ Σ∗m is a stable
cylinder. Let h be a distance on V = 〈ρ, τ 〉 defined by (2.6). Then there exists a
constant M0 > 0 such that for any t ∈ (0, 1) we have

(1) For any i ∈ W(E, t),

(2.8) 1 ≤ card {j : (i, j) ∈ R(i0, t, f)} ≤ M0.

Similarly, for any j ∈ W(F, t), 1 ≤ card {i : (i, j) ∈ R(i0, t, f)} ≤ M0.
(2) If (i, j) ∈ R(i0, t, f) then h(ρi, τ j) ≤ M0.

Proof. Let f(Ei0) =
⋃p

r=1 Fkjr be the (unique) maximum decomposition of f(Ei0)
with respect to F and n0, where |jr| = n0 and p = pi0 .

Fix t ∈ (0, 1). Then

E = {Ei0i : i ∈ W(E, t)} and F = {Fkjrj : 1 ≤ r ≤ p, j ∈ W(F, t)}
is a partition of Ei0 and f(Ei0), respectively, since

⋃

i∈W(E,t)

f(Ei0i) = f(Ei0) =
p⋃

r=1

Fkjr =
⋃

j∈W(F,t)

p⋃
r=1

Fkjrj.

By symmetry, in order to prove (1) it suffices to prove (2.8). The left hand side
inequality is obvious since for any Ei0i ∈ E , f(Ei0i) intersects at least one element
of F .
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To prove the right hand side inequality of (2.8), we first show that the size of Ei0i

and Fkjrj are comparable. Indeed, diam Ei0i

diam Fkjrj
= diam E

diam F ·
ρi0

ρi

τkjr τ j
. Since {i0,kj1, . . . ,kjp}

is fixed, we know that
ρi0

τkjr
takes values from a finite set. Meanwhile ρmin ≤ ρi

τ j
≤

1
τmin

by the definition of W(E, t) and W(F, t). Thus, there exists a constant C0 > 0
such that

(2.9) C−1
0 <

diamEi0i

diamFkjrj
< C0.

Combining (2.9) with the bi-Lipschitz property of f , we know that there exists
a constant C1 > 0 such that C−1

1 <
diam f(Ei0i)

diam Fkjrj
< C1. By Lemma 2.7, the number

of such Fkjrj which intersects f(Ei0 i) is bounded by a constant M0 dependent on
C1, the dimension d of the space and the IFS {ψi}n

i=1. In other words,

max
i∈W(E,t)

card {j : (i, j) ∈ R(i0, t, f)} < M0.

We now complete the proof by proving (2). Suppose (i, j) ∈ R(i0, t, f), then by
definition there exists an r ∈ {1, . . . , p} such that f(Ei0i) ∩ Fkjrj 6= ∅. Let us fix
this Fkjrj for the discussions below.

Let f(Ei0i) =
⋃pi0i

t=1 Fk′j′t be the maximum decomposition of f(Ei0i) with respect
to F and n0, where |j′t| = n0. Then there is a t such that Fk′j′t ∩ Fkjrj 6= ∅. Since
Fk′j′t and Fkjrj are all cylinders, we have

(2.10) Fk′j′t ⊂ Fkjrj or Fkjrj ⊂ Fk′j′t .

Notice that
ρi

τ j
=

ρi0i

τkjrj
· τkjr

ρi0

=
ρi0i

τk′j′t

· τk′j′t

τkjrj
· τkjr

ρi0

.

By Lemma 2.6, we know that
ρi0i

τk′j′t
take values from a finite set M′′. On the other

hand, τkjr

ρi0
takes only finitely many values since {i0,kj1, . . . ,kjp} is fixed. Thus, in

order to prove (2), it suffices to prove that
τk′j′t
τkjrj

belongs to a finite set.

By Lemma 2.6, diam Ei0i

diam Fk′j′t
take values from a finite set M′. Combining this with

(2.9), we know that diamFkjrj and diamFk′j′t are comparable. Thus, using (2.10),

we obtain that
diam Fk′j′t
diam Fkjrj

belongs to a finite set so that
τk′j′t
τkjrj

belongs to a finite
set. ¤

2.3. Matchable condition. Let E and F be two dust-like self-similar sets with
contraction vectors ρ and τ respectively. Let h be a distance on V = 〈ρ, τ 〉 defined
by (2.6).

Let M0 be a constant. For t ∈ (0, 1), a relation R ⊂ W(E, t) ×W(F, t) is said
to be (M0, h)-matchable, or simply M0-matchable if there is no confusion, if

(i) 1 ≤ card {j : (i, j) ∈ R} ≤ M0 for any i ∈ W(E, t), and 1 ≤ card {i : (i, j) ∈
R} ≤ M0 for any j ∈ W(F, t).

(ii) If (i, j) ∈ R, then h(ρi, τ j) ≤ M0.

We also say that W(E, t) and W(F, t) are (M0, h)-matchable, or M0-matchable, if
there exists a (M0, h)-matchable relation R ⊂ W(E, t)×W(F, t).
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Definition 2.9. We shall call two self-similar sets E and F are matchable, if
there exists a constant M0 such that for any t ∈ (0, 1), W(E, t) and W(F, t) are
M0-matchable.

We remark that the matchable property does not depend on the choice of pseudo-
basis of 〈ρ, τ 〉.

The proof of Theorem 2.8, which states that if E ∼ F then E and F are match-
able, follows immediately that Theorem 1.6 holds.

3. Self-similar sets with full algebraic rank

For each contraction vector ρ = (ρ1, . . . , ρm) we had defined rank〈ρ〉 to be the
cardinality of the basis of the multiplication subgroup generated by {ρj}. We shall
define the algebraic rank of any E ∈ D(ρ) to be rank〈ρ〉. When the algebraic rank
is m we say that E and D(ρ) have full algebraic rank. By Theorem 1.2 if two
dust-like self-similar sets E and F are Lipschitz equivalent then they must have the
same algebraic rank.

Lemma 3.1. Let ρ = (ρ1, · · · , ρm) and τ = (τ1, . . . , τm) be two contraction vectors
such that rank〈ρ〉 = rank〈τ 〉 = m. If D(ρ) ∼ D(τ ), then there exist λj ∈ R+, pj ∈
Z+, qj ∈ Z+, 1 ≤ j ≤ m, and a permutation κ on {1, . . . , m}, such that ρj = λ

pj

j ,
τj = λ

qκ(j)

κ(j) , 1 ≤ j ≤ m.

Proof. By Theorem 1.2 (2), there exists an integer p > 0 such that τ1, . . . , τm belong
to the semigroup generated by ρ

1/p
1 , . . . , ρm

1/p. Denote ρ
1/p
j by λj for each j. Then

λ1, . . . , λm is a pesudo-basis of V = 〈ρ, τ 〉. Let h be the distance on V with respect
to this pesudo-basis. Let aji, 1 ≤ i, j ≤ m, be non-negative integers such that
ln τj = aj1 lnλ1 + · · · + ajm lnλm. Fix 1 ≤ i ≤ m. We assert that there exists at
least one j, 1 ≤ j ≤ m, such that τj is a power of λi, in other words, ln τj is an
integral multiple of lnλi.

Without loss of generality, we assume that i = 1. Suppose ln τj are not integral
multiple of lnλ1 for all 1 ≤ j ≤ m. This means that (aj1, . . . , ajm) does not have
the form (a, 0, . . . , 0).

E ∼ F implies that there exists M0 > 0, such that W(E, t) and W(F, t) are
(M0, h)-matchable for any t ∈ (0, 1). Let i = 1k = 1 · · · 1 be an element of W(E, t).
Then there exists j ∈ W(F, t) such that h(ρi, τ j) < M0. Suppose that the occur-
rence of the letter j in j is cj , 1 ≤ j ≤ m. Then

ln τ j =
m∑

i=1




m∑

j=1

cjaji


 lnλi.

Since lnρi = kp lnλ1, we have

h(ρi, τ j) ≥ max
{ m∑

j=1

cjaji : 2 ≤ i ≤ m
}

.

Pick any j ∈ {1, . . . , m}. Since (aj1, . . . , ajm) does not have the form (a, 0, . . . , 0),
there exists at least one i ∈ {2, . . . , m} such that aji ≥ 1. Thus

∑m
j=1 cjaji ≥ cj .

By the arbitrary of j, we have M0 > h(ρi, τ j) ≥ maxm
j=1 cj . However, max cj tends

to infinity when t tends to 0. This is a contradiction. Hence our assertion holds.
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Therefore, for any 1 ≤ i ≤ m, there exists at least one j such that ln τj = qi lnλi.
Moreover, this j = j(i) is unique since rank〈ρ〉 = rank〈τ 〉 = m. Let κ be the
permutation of 1, . . . , m which sends j to i, then we have ln τj = qκ(j) lnλκ(j).

Set pj = p for 1 ≤ j ≤ m, we obtain the lemma. ¤

Lemma 3.2. Let m be a given positive integer and G the function defined by

(3.1) G(x1, . . . , xm) =
(

x1 + · · ·+ xm

x1

)x1

· · ·
(

x1 + · · ·+ xm

xm

)xm

,

where x1, . . . , xm ∈ R+. Assume that a1, . . . , am are positive real numbers such that

(3.2) G(x1, . . . , xm) = G(a1x1, . . . , amxm)

holds for any positive rational vector (x1, . . . , xm). Then a1 = · · · = am = 1.

Proof. By the continuity of G, we know that (3.2) holds for any positive vectors
(x1, . . . , xm). For given x1, x2 ∈ R+ let xj → 0+ for any j ≥ 3. It follows from
lim

x→0+
xx = 1 and (3.2) that

(3.3)
(

x1 + x2

x1

)x1
(

x1 + x2

x2

)x2

=
(

a1x1 + a2x2

a1x1

)a1x1
(

a1x1 + a2x2

a2x2

)a2x2

.

Now we fix x2 ∈ R+ and let x1 → +∞. Then (x1+x2
x1

)x1 and (a1x1+a2x2
a1x1

)a1x1

converge to ex2 and ea2x2 , respectively. On the other hand, as x1 → +∞ we have
(

x1 + x2

x2

)x2

= O(xx2
1 ),

(
a1x1 + a2x2

a2x2

)a2x2

= O(xa2x2
1 ).

The equality (3.3) now implies a2 = 1. By symmetry we also have all aj = 1,
proving the lemma. ¤

Lemma 3.3. Let ρ = (ρ1, · · · , ρm) and τ = (τ1, . . . , τm) be two contraction vectors,
where for each j, ρj = λ

pj

j and τj = λ
qj

j for some λj > 0 and pj , qj ∈ Z+. Assume
that log λ1, . . . , log λm are linearly independent over Q. Then D(ρ) and D(τ ) are
Lipschitz equivalent if and only if ρ = τ .

Proof. Clearly all we need is to prove the only if part. Assume that D(ρ) ∼ D(τ ).
Let E ∈ D(ρ), F ∈ D(τ ). Let h be the distance on V = 〈ρ, τ 〉 with respect to
the pseudo-basis λ1, . . . , λm. E ∼ F implies that E and F are (M0, h)-matchable
for some M0 > 0. Using the matchable property we will prove that pj = qj for
1 ≤ j ≤ m.

Given positive integers A1, . . . , Am. Set t =
∏m

j=1 λ
pjAj

j , and define I = {i ∈
Σ∗m : ρi = t}. Then I ⊂ W(E, t) and the cardinality of I is

K(A1, . . . , Am) := card I =
(A1 + · · ·+ Am)!

A1! · · ·Am!
.

Let Rt be an M0-matchable relation between W(E, t) and W(F, t). Let J be
the set of elements j in W(F, t) such that {i ∈ I : (i, j) ∈ Rt} 6= ∅. Then cardJ ≥
M−1

0 card I. Hence

card {j ∈ W(F, t) : h(t, τ j) ≤ M0} ≥ cardJ ≥ M−1
0 K(A1, . . . , Am).
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By the assumption, τ j has the form τ j =
∏m

j=1 λ
qjBj

j where Bj are non-negative
integers. So j ∈ J implies that h(t, τ j) ≤ M0 and thus |pjAj − qjBj | ≤ M0 for
1 ≤ j ≤ m. Therefore,

(3.4)
∑

(B1,...,Bm)

(B1 + · · ·+ Bm)!
B1! · · ·Bm!

≥ cardJ ≥ M−1
0 K(A1, . . . , Am),

where (B1, . . . , Bm) runs over positive integer vectors satisfying |pjAj−qjBj | ≤ M0

for 1 ≤ j ≤ m.
Let C be an integer constant such that |Bj − pj

qj
Aj | < M0

qj
< C, 1 ≤ j ≤ m. Set

aj = pj/qj for 1 ≤ j ≤ m. Then the terms on the left hand side of (3.4) have

(B1 + · · ·+ Bm)!
B1! · · ·Bm!

K−1(a1A1, . . . , amAm)

≤
(p1

q1
A1 + · · ·+ pm

qm
Am + mC)!

(p1
q1

A1 − C)! · · · (pm

qm
Am − C)!

·
(p1

q1
A1)! · · · (pm

qm
Am)!

(p1
q1

A1 + · · ·+ pm

qm
Am)!

=
(

p1

q1
A1 + · · ·+ pm

qm
Am + mC

)
· · ·

(
p1

q1
A1 + · · ·+ pm

qm
Am + 1

)

·
m∏

j=1

(
pj

qj
Aj

)
· · ·

(
pj

qj
Aj − C + 1

)
.

Let (x1, . . . , xm) ∈ Qm be a positive rational vector. Set Aj = xjqn where q
is chosen so that all qxj/qj , qxj/pj are integers. Then the left hand side of (3.4)
contains at most (2C + 1)m terms and each term in the sum is not bigger than
P (n)K(a1A1, . . . , amAm) where P (n) is the polynomial

P (n) = (Ln + mC) · · · (Ln + 1) ·
m∏

j=1

(ajxjqn) · · · (ajxjqn− C + 1) ,

where L = (a1x1 + · · ·+ amxm)q. Hence by (3.4),

(2C + 1)mP (n)K(a1x1qn, . . . , amxmqn) ≥ M−1
0 K(x1qn, . . . , xmqn),

and therefore

(3.5)
K(x1qn, . . . , xmqn)

K(a1x1qn, . . . , amxmqn)
≤ M0(2C + 1)mP (n).

Similarly, let C ′ be an integer constant such that |Aj − qj

pj
Bj | < M0

pj
< C ′, 1 ≤

j ≤ m. Set bj = a−1
j = qj/pj , yj = xjaj and Bj = yjqn for 1 ≤ j ≤ m. Then

Bj = xjpjqn/qj are all integers. Also, bjyjqn = xjqn = Aj are all integers. Using
Theorem 2.8 and by the same method for proving (3.5), we obtain

(3.6)
K(y1qn, . . . , ymqn)

K(b1y1qn, . . . , bmymqn)
≤ M0(2C ′ + 1)mQ(n),

where Q(n) is a polynomial determined by pj , qj , xj , q and C ′. It follows from (3.5)
and (3.6) that

(3.7)
1

M0(2C ′ + 1)mQ(n)
≤ K(x1qn, . . . , xmqn)

K(a1x1qn, . . . , amxmqn)
≤ M0(2C + 1)mP (n).
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Now Stirling’s formula asserts that

n! =
√

2πn
(n

e

)n

e
θ(n)
12n , 0 < θ(n) < 1.

Denote θ(x1qn+ · · ·+xmqn), θ(xiqn), θ(a1x1qn+ · · ·+amxmqn) and θ(aixiqn) by
αn, αi,n, βn and βi,n, 1 ≤ i ≤ m, respectively. We have

K(x1qn, . . . , xmqn)
K(a1x1qn, . . . , amxmqn)

=

√
(x1 + · · ·+ xm)a1 · · · am

a1x1 + · · ·+ amxm
· eξn ·

(
G(x1, . . . , xm)

G(a1x1, . . . , amxm)

)qn

,

where G is defined by (3.1) and

ξn =
1

12qn

{
αn

x1 + · · ·+ xm
−

m∑

i=1

αi,n

xi
− βn

a1x1 + · · ·+ amxm
+

m∑

i=1

βi,n

aixi

}
.

Clearly, for fixed positive rational numbers ai, xi, 1 ≤ i ≤ m and fixed positive
integer q, we have −1 < ξn < 1 if n is large enough. Thus, there exist two positive
constants c1, c2 dependent only on ai, xi, 1 ≤ i ≤ m and q such that

(3.8)
K(x1qn, . . . , xmqn)

K(a1x1qn, . . . , amxmqn)
= Tn ·

(
G(x1, . . . , xm)

G(a1x1, . . . , amxm)

)qn

,

where 0 < c1 < Tn < c2.
Assume that (a1, . . . , am) 6= (1, . . . , 1). By Lemma 3.2, we can find positive

rational vector (x1, . . . , xm) such that G(x1, . . . , xm)/G(a1x1, . . . , amxm) 6= 1, and
so that (3.8) contradicts (3.7). Thus pj = qj for all j and ρ = τ . ¤

The combination of Lemma 3.1 and Lemma 3.3 immediately yields Theorem 1.3.

4. Two-branch dust-like Cantor sets

In this section we focus on two-branch dust-like self-similar sets, i.e. dust-like
self-similar sets generated by two contractions D(ρ1, ρ2) and prove Theorem 1.4.
We will first need to introduce some results on polynomials with integer coefficients.

Consider the polynomial f(x) = xn + xm − 1 where n > m > 0. It is easy to
show that there exists a unique x0 ∈ (0, 1) such that f(x0) = 0. We denote this
root x0 by rn,m.

Proposition 4.1 ([9], Theorem 3). Let n ≥ 2m > 0. Write n = n1`, m = m1`
where ` = gcd(n,m). Then the polynomial

g(x) = xn + εxm + δ, ε, δ ∈ {1,−1}
is irreducible unless n1 + m1 ≡ 0 (mod 3) and one of the following three conditions
holds:

(1) n1,m1 are both odd and ε = 1.
(2) n1 is even and δ = 1.
(3) m1 is even and ε = δ.

In any of these exceptional cases, g(x) is the product of the polynomial

x2` + εm1δn1x` + 1

and a second irreducible polynomial.
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To prove Theorem 1.4 we will need to examine the conditions for rn,m = rq,p.
Clearly if one of n,m is equal to one of p, q then the other must equal as well.
Without loss of generality we assume that n > q. In this case we must have
n > q > p > m.

Lemma 4.2. Let n > q > p > m be positive integers with gcd(n,m, q, p) = 1.
Then rn,m = rq,p if and only if (n,m, q, p) = (5, 1, 3, 2).

Proof. It is easy to check that if (n,m, q, p) = (5, 1, 3, 2) then rn,m = rq,p because

x5 + x− 1 = (x3 + x2 − 1)(x2 − x + 1).

The other direction is more involved. We consider several cases and apply Propo-
sition 4.1. Let f(x) = xn + xm − 1 and g(x) = xq + xp − 1. Assume that
rn,m = rq,p. Then f(x) must be reducible. By Proposition 4.1, if n ≥ 2m then
f(x) = (x2` ± x` + 1)h1(x), where h1(x) is irreducible and ` = gcd(n,m). If
n < 2m we may consider the polynomial −xnf(x−1) = xn − xn−m − 1, which
is reducible and thus has the form −xnf(x−1) = (x2` ± x` + 1)h2(x) so that
f(x−1) = (1± x−` + x−2`)(−x−(n−2`)h2(x)). In both cases we obtain

f(x) = (x2` ± x` + 1)h(x),

where h(x) is irreducible by Proposition 4.1. Since all roots of x2` ± x` + 1 are
on the unit circle, we know that h(rn,m) = 0. It follows that h(x)|g(x). We now
consider two cases.
Case 1. Assume that g(x) is irreducible so that h(x) = g(x). We have

xn + xm − 1 = (x2` + εx` + 1)(xq + xp − 1)

= xq+2` + xp+2` − x2` + εxq+` + εxp+` − εx` + xq + xp − 1,

where ε ∈ {1,−1}. It follows that n = q + 2` and the middle seven terms on the
right hand side must combine to become xm. Suppose ε = 1 we note that if we set
x = 1 then the two sides are not equal, which is a contradiction. Hence we must
have ε = −1. This yields

xp+2` − x2` − xq+` − xp+` + x` + xq + xp = xm.

But m < p < q. It follows that m = `, p = 2`, q = p+` = 3` and p+2` = q+`. Now
n = q+2` = 5`. Since gcd(n,m, q, p) = 1 we have ` = 1 and (n,m, q, p) = (5, 1, 3, 2).
Case 2. Assume that g(x) is reducible. Then as before g(x) = (x2e + δxe +1)k(x),
where gcd(q, p) = e, k(x) is irreducible and δ ∈ {1,−1}. Since x2e ± xe + 1 has no
root in (0, 1) so again k(rq,p) = 0. It follows from the fact that both h(x) and k(x)
are irreducible that h(x) = k(x). Thus

(x2e + δxe + 1)(xn + xm − 1) = (x2` + εx` + 1)(xq + xp − 1).

Plug in x = 1 we see easily that ε = δ. From n + 2e = q + 2` we know that e < `.
In particular since ` = gcd(n,m) we also have e < m. But this means the term
−δxe on the left hand side cannot be cancelled out by any other term on the left
hand side. Nor can it be cancelled out by any term on the right hand side because
q > p > m ≥ ` > e. This is impossible. ¤

We can now complete the proof of Theorem 1.4.

Proof of Theorem 1.4. First we prove the if part. It suffices to show that
D(λ5, λ) ∼ D(λ3, λ2). Note that iterating the λ term in (λ5, λ) leads to contraction

ruanhj
高亮

ruanhj
高亮

ruanhj
高亮
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vector (λ5, λ6, λ2). Thus D(λ5, λ) ∼ D(λ5, λ6, λ2). On the other hand iterating
the λ3 term in (λ3, λ2) yields (λ6, λ5, λ2). Thus D(λ3, λ2) ∼ D(λ6, λ5, λ2). Clearly
D(λ5, λ6, λ2) = D(λ6, λ5, λ2). Hence D(λ5, λ) ∼ D(λ3, λ2).

Now we prove the only if part. Assume that dimH E = dimH F and (ρ1, ρ2) 6=
(τ1, τ2), we will show that the condition (2) in Theorem 1.4 must hold. Let
c = rank(ρ1, ρ2). If c = 2 then (τ1, τ2) must be a permutation of (ρ1, ρ2) by
Theorem 1.3. This yields (ρ1, ρ2) = (τ1, τ2), a contradiction. So we must have
rank〈ρ1, ρ2, τ1, τ2〉 = 1, and thus there exists a λ ∈ (0, 1) such that

ρ1 = λn, ρ2 = λm, τ1 = λq, τ2 = λp

for some positive integers n,m, q, p with gcd(n,m, q, p) = 1.
Let s be the common Hausdorff dimension of E and F , then xn + xm = 1 and

xq + xp = 1 for x = λs. Thus, from assumptions ρ1 ≤ ρ2, τ1 ≤ τ2, ρ1 ≤ τ1 and
(ρ1, ρ2) 6= (τ1, τ2), we must have n > p ≥ q > m. Note that if p = q then the roots
of xn + xm − 1 = 0 are all algebraic integers while x = q

√
1/2 is not an algebraic

integer, which is a contradiction. Thus we have n > q > p > m. It follows from
Lemma 4.2 that (n,m, q, p) = (5, 1, 3, 2) so that condition (2) holds. This proves
the theorem. ¤

5. Theorem 1.5 and some other results

In the study of self-similar sets it is useful to consider the symbolic spaces.
For any m ≥ 1 let Σm denote the set of all words w = i1i2i3 · · · with infinite
length where each ij ∈ {1, 2, . . . , m}. For such a w ∈ Σm we use the notation
w(k) = ik and [w]k = i1i2 · · · ik. For any ρ = (ρ1, ρ2, . . . , ρm), 0 < ρj < 1, we
can define a metric dρ(., .) on Σm as follows: Let z,w ∈ Σ∗m. If z(1) 6= w(1)
then set dρ(z,w) = 1; otherwise set dρ(z,w) = ρ[z]k , where [z]k = [w]k but
z(k + 1) 6= w(k + 1), and ρ[z]k :=

∏k
j=1 ρz(j). It is well known that dρ is indeed a

metric on Σm. We shall denote the metric space Σm associate with this metric by
(Σm,dρ).

Lemma 5.1. Let ρ = (ρ1, . . . , ρm) be a contraction vector and E ∈ D(ρ). Then
there exists a bi-Lipschitz map from (Σm,dρ) to E.

Proof. Assume that E is the attractor of the IFS {φj}m
j=1 where the contraction

ratio of φj is ρj . Fix some a ∈ E. Since the IFS satisfies the strong open set
condition each x ∈ E has a unique representation x = φw(a) where w = i1i2 · · · ∈
Σm, using the standard notation φw(a) := limk→∞ φi1 ◦ φi2 ◦ · · · ◦ φik

(a). Let
C1 denote the smallest distances among the sets {φj(E)}m

j=1. Let C2 denote the
diameter of E.

Now define f : (Σm,dρ)−→E by f(w) = φw(a). Note that E is dust-like so that

(5.1) C1dρ(w, z) ≤ |φw(a)− φz(a)| ≤ C2dρ(w, z).

It follows that f is a bi-Lipschitz map from (Σm,dρ) to E. ¤

Theorem 5.2. Assume that D(ρ1, . . . , ρm) and D(τ1, . . . , τn) are Lipschitz equiv-
alent. Let s = dimH D(ρ1, . . . , ρm). Then for any r > s, D(ρr

1, . . . , ρ
r
m) and

D(τ r
1 , . . . , τ r

n) are also Lipschitz equivalent.

Proof. Let ρr = (ρr
1, . . . , ρ

r
m) and τ r = (τ r

1 , . . . , τ r
n). By Lemma 5.1 it suffices

to establish the Lipschitz equivalence of (Σm,dρr ) and (Σn,dτr ). Since D(ρ) is

ruanhj
高亮
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Lipschitz equivalent to D(τ ), there is a bi-Lipschitz map f : (Σm,dρ)−→(Σn,dτ ),
with

(5.2) C ′dρ(z,w) ≤ dτ (f(z), f(w)) ≤ Cdρ(z,w)

for all w, z ∈ (Σm,dρ), where C,C ′ > 0.
Observe that since r > dimH(D(ρ)) we have

∑m
j=1 ρr

j < 1. This implies that
D(ρr) is nonempty, as is D(τ r) by the same token. Now f can be viewed as a map
from (Σm,dρr ) to (Σn,dτr ). We show that it is bi-Lipschitz. Note that we have

dρr = dr
ρ, dτr = dr

τ .

Thus the inequalities (5.2) holds for dρr and dτr , with constants Cr and C ′r. The
Lipschitz equivalence now follows immediately. ¤

We now consider another kind of Lipschitz equivalence. Let ρ = (ρ1, . . . , ρm)
and τ = (τ1, . . . , τn) be two contraction vector. It is clear that if (τ1, . . . , τm)
is a permutation of (ρ1, . . . , ρm) then D(ρ) = D(τ ). So we may without of loss
generality from now on assume that all contraction ratios ρ = (ρ1, . . . , ρm) are in
the standard form in the sense that 0 < ρ1 ≤ ρ2 ≤ · · · ≤ ρm < 1. Let Φ := {φj}m

j=1

be an IFS with contraction ratios ρ = (ρj) that satisfies the SSC. The attractor
E of Φ is the unique compact set satisfying E =

⋃m
j=1 φj(E). With the SSC all

{φj(E)}m
j=1 are disjoint. We say that an IFS Ψ = {ψi}n

i=1 is derived from Φ if
Ψ(E) = E, all {ψi(E)} are disjoint, and each ψi has the form

ψi(x) = φj1 ◦ φj2 ◦ · · · ◦ φjk
(x)

for some 1 ≤ j1, j2, . . . , jk ≤ m.

Definition 5.3. Let ρ and τ be two contraction vector. We say τ is dervied from
ρ if there is an IFS Φ = {φj}m

j=1 with contraction vector ρ satisfying the SSC and
another IFS Ψ = {ψi}n

i=1 with contraction vector τ such that Ψ is derived from Φ.
We say ρ and τ are equivalent, and denoted it by ρ ∼ τ , if there exists a sequence

ρ = ρ1,ρ2, . . . ,ρN = τ

such that ρj+1 is derived from ρj or vice versa for 1 ≤ j < N .

Lemma 5.4. Assume that ρ is equivalent to τ . Then D(ρ) ∼ D(τ ).

Proof. By definition there exists a sequence

ρ = ρ1,ρ2, . . . ,ρN = τ

such that ρj+1 is derived from ρj or vice versa for any 1 ≤ j < N . We only need to
prove that D(ρj) ∼ D(ρj+1). To this end we may assume without loss of generality
that τ is derived from ρ, and prove that D(ρ) ∼ D(τ ). But by definition there
exist IFSs Φ and Ψ with contraction ratios ρ and τ , respectively, satisfying the
SSC such that Ψ is derived from Φ. Thus they have the same attractor, and hence
D(ρ) ∼ D(τ ). ¤

Remark: Note that it is possible that ρ ∼ τ but one is not derived from another.
One such example is ρ = (ρ5, ρ) and τ = (ρ3, ρ2). Observe that (ρ6, ρ5, ρ2) is
derived both from ρ and τ . Thus ρ ∼ τ . However neither is derived from the
other. In fact, it is possible to show that there exists no dust-like self-similar set
that is the attractor of both Φ with contraction ratios ρ and Ψ with contraction
ratios τ .
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Proof of Theorem 1.5. Assume that D(ρ) ∼ D(τ ). We prove (1) and (2). The
condition (1) is obvious because the two classes of sets have the same Hausdorff
dimension, which is log m/ log(ρ−1). We now prove (2). By Theorem 1.2 there
exists some q ∈ Z+ such that

sgp(τ q
1 , . . . , τ q

n) ⊂ sgp(ρ1, . . . , ρm) = {1, ρ, ρ2, . . . }.

Thus each τ q
j = ρpj for some pj ∈ N, and hence τj = ρpj/q. We may without loss

of generality assume that q is coprime with gcd(p1, . . . , pn).
Now mρs = 1 and ρs = 1/m so that Q(τ s

1 , . . . , τs
n) = Q(ρs) = Q. It follows that

each τ s
j ∈ Q. Thus mpj/q ∈ Q. But m is an integer, so we must have mpj/q ∈ Z.

Combining this with gcd(q, p1, . . . , pn) = 1, we have m1/q ∈ Z. Finally, τj = ρpj/q

so that log τj/ log ρ ∈ 1
qZ.

Conversely, assume that conditions (1) and (2) hold. Define λ = ρ1/q. Given
j = 1, . . . , n, we know from log τj/ log ρ ∈ 1

qZ
+ that log τj/ log λ ∈ Z+, and hence

τj = λpj for some pj ∈ Z+. We prove D(ρ) ∼ D(τ ) by showing that ρ ∼ τ .
Define k = m1/q. Write λ = (λ, . . . , λ) ∈ Rk. Note that kλs = 1 because

(kλs)q = mρs = 1. With 0 < s < 1 we know that there exists an IFS Φ = {φj}k
j=1

with the SSC and contraction vector λ. We introduce the following notation. Let
r be any given positive integer. For any j = j1j2 · · · jr ∈ {1, 2, . . . , k}r we shall
use φj to denote the map φj = φj1 ◦ φj2 ◦ · · · ◦ φjr

. Denote by Φr the IFS Φr ={
φj : j ∈ {1, 2, . . . , k}r

}
. Clearly Φr is an iterate of Φ, and it has contradition

vector (λr, λr, . . . , λr) ∈ Rkr

. Thus letting r = q we see that ρ is derived from λ
and hence λ ∼ ρ. We prove that λ ∼ τ also.

Without loss of generality we assume that p1 ≤ p2 ≤ · · · ≤ pn. We show that
there exists an iterate Ψ of Φ such that the contraction ratios of Ψ are given by τ .
This can be proved by selectively iterating the maps in Φ. First set

Φ1 := Φp1 =
{

φj : j ∈ {1, 2, . . . , k}p1

}
.

Note that all φj in Φ1 has contraction ratio λp1 . Next we leave one of the maps in
Φ1, say, φj1 , intact and iterate the rest of maps as follows: We replace each φj where
j 6= j1 by the maps φj ◦ φi, i ∈ {1, . . . , k}p2−p1 . (Here if p2 = p1 we do nothing.)
This leads to another IFS Φ2 that is an iterate of Φ1, and it has the property that
with the exception of the one map φj1 all other maps in it have contraction ration
λp2 . We select one of them and label it φj2 .

This process is now continued further. For each φj in Φ2 that is not φj1 and
φj2 , we iterate it by replacing φj with the maps φj ◦ φi, i ∈ {1, . . . , k}p3−p2 . (Again
if p3 = p2 we do nothing.) These iterations lead to the IFS Φ3, where with the
exception of the maps φj1 and φj2 all other maps have contraction ratios λp3 . We
select one of them and label it φj3 . Continue this process we eventually obtain an
IFS ΦL = {φj1 , φj2 , . . . , φjL}.

Finally, we show that L = n. If L < n then the contraction ratios of ΦL are
(τj) ∈ RL. But the attractor of ΦL is the same as the attractor of Φ, which has
Hausdorff dimension s. Thus

∑L
j=1 τ s

j = 1, but this contradicts
∑L

j=1 τn
j = 1. Thus

L ≥ n. By the same argument we cannot have L > n. Hence L = n. It follows that
the contraction ratios of ΦL are given by τ . This τ is derived from λ and hence
τ ∼ λ. It follows that ρ ∼ τ . The theorem is thus proved. ¤

ruanhj
高亮

ruanhj
高亮
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Appendix A. The proof of Lemma 2.7

Proof. Since F is dust-like, F satisfies the open set condition, i.e., there exists an
open set V , such that V ⊃ ∪n

i=1ψi(V ) and ψi(V )∩ ψj(V ) = ∅ for distinct i, j. It is
clear that there exists a ball B in V . Now, given a nonempty set A ⊂ Rd. Define

I = {i : Fi ∩A 6= ∅ and c1diamA ≤ diamFi ≤ c2diamA}.
Take any J ⊂ I such that Fi ∩ Fj = ∅ for any distinct i, j ∈ J . It suffices to prove
that card (J ) is bounded.

For each i ∈ J , we define δi = diamFi · diam V
diam F and Nδi(A) = {y : d(x, y) <

δi for some x ∈ A}. Then Nδi(A) ⊃ ψi(V ) ⊃ ψi(B). Let δ = sup{δi : i ∈ J }, then
δ ≤ diamA · c2diam V

diam F and
Nδ(A) ⊃ ∪i∈Jψi(B).

We will show that the union in the right hand side is disjoint. Otherwise, assume
that ψi(B) ∩ ψj(B) 6= ∅ for distinct i, j ∈ J . Then ψi(V ) ∩ ψj(V ) 6= ∅. By the
open set condition, we must have ψi(V ) ⊂ ψj(V ) or ψi(V ) ⊃ ψj(V ). It follows that
Fi ⊂ Fj or Fi ⊃ Fj, which contradicts the mutual disjointness of Fi.

Notice that ψi(B) is a ball with diameter diam Fi·diam B
diam F ≥ c1 diamA · diam B

diam F =:
c∗1diamA, and Nδ(A) is contained in a ball with diameter 2(|A|+δ) ≤ 2 diam A·(1+
c2diam V
diam F ) =: c∗2diamA. Thus Nδ(A) can contain at most c3 := (c∗2/c∗1)

d mutually
disjoint ψi(B) so that card (J ) ≤ c3.

Notice that c3 = (c∗2/c∗1)
d, where c∗1 and c∗2 are two positive constants only

dependent on c1, c2 and the IFS {ψi}. This completes the proof of the lemma. ¤
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