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Abstract� For a self�similar or self�a�ne tile in R
n we study the following questions�

�� What is the boundary� �� What is the convex hull� We show that the boundary is
a graph directed self�a�ne fractal� and in the self�similar case we give an algorithm to
compute its dimension� We give necessary and su�cient conditions for the convex hull to
be a polytope� and we give a description of the Gauss map of the convex hull�

�� Introduction

A self�a�ne tile is a compact set T � R
n with nonempty interior that satis�es an

expansion identity

A�T � �
�
d�D

�T � d������

where A is an expanding matrix �all eigenvalues have modulus � �� and D is a �nite set
of vectors in Rn � called the digit set� that satis�es �D � jdetAj� Often it is assumed that
D � Z

n� the integer lattice� AZn � Z
n �so A has integer entries�� and D is a complete

residue system for Zn�AZn� There is a large literature about the ways that translates of T
may tile Rn �see 	Fa
� 	K�
� 	LW�
 and the references therein�� In this series of papers we
study the geometry of the tile itself� The two main questions we answer are the following�

�� What is the boundary of T 


�� What is the convex hull of T 


To answer the �rst question� we will subdivide the boundary �T into a �nite number
of pieces� and show that these pieces satisfy a vector version of an expansion identity like
������ and so form a self�a�ne family of sets� or graph�directed family �	Fa
� 	MW
�� The
pieces of �T that we use are just the intersections T� � T � �T � �� of the tile with its
lattice translates �� � Zn�� so the tiling in fact determines the subdivision� We will give an
algorithm for determining when T� is nonempty�

The need for subdivision is apparent already in the trivial example of a square� whose
boundary subdivides into � corners and � sides� As this example shows� the pieces may
be of di�erent dimensions� and they do overlap� but the overlaps are small enough not to
matter� Although we do not know how to verify an open set condition in all cases� we are
still able �in the case that A is a similarity� to compute the dimension of the boundary in
terms of the spectral radius of a matrix M � called the boundary substitution matrix� The
computation of M from A and D is given by an algorithm� An implementation of this
algorithm and some speci�c computations are given in part II 	KLSW
�

We also consider the generalization of these results to multitile systems� One motivation
for this is that it enables us to handle examples that involve similarities with di�erent
rotations� such as the Levy dragon� The dimension of the boundary of the Levy dragon was
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�rst computed in 	DK
 by a more complicated method� involving the spectral radius of a
��� � ��� matrix that required a computer assisted computation� In contrast� our method
requires only the spectral radius of an �� � �� matrix� The matrix itself is computed by
hand� using a geometric method� and the spectral radius is the root of an explicit polynomial
of degree � �the algebra involved in �nding the characteristic polynomial of the matrix was
performed using Mathematica�� The geometric method we use was suggested by some of
the ideas in 	DK
�

It is easy to see that the convex hull of T is a polytope if some power of A is a multiple
of the identity� We show that the converse is true if A is a similarity� and in general we give
necessary and su�cient conditions for the convex hull to be a polytope� In the planar case
�n � �� we give a rather complete algorithmic description of the convex hull� including a
formula for the length of the perimeter� The method we use is based on the description of
T as in�nite digit expansion

T �

�
x �

�X
k��

A�kdk � dk � D
�
������

Given any unit vector u� to maximize x �u as x varies in T � it is only necessary to maximize
A�kdk � u as dk varies over D� independently for each k� When there is a unique maximizer
for every k we obtain an extreme point of the convex hull� on the other hand� when there
is a tie� the boundary of the convex hull contains a line segment� In part II we show that
the set of extreme points of the convex hull is a set of dimension zero�

The problem of determining the convex hull is of interest for the attractor of an arbi�
trary IFS� Our methods are very dependent on the representation ������ and so cannot say
anything about examples involving mappings with di�erent linear parts� However� we do
not need any speci�c assumptions about the set D for the results about convex hulls�

Acknowledgments� This research was done while the second author was a visitor in
the Mathematics Department at Cornell University� We are grateful to Robert Connelly
for suggesting the elegant proof of Lemma ���� This version of the paper is substantially
revised from the �rst version� taking into account the suggestions from the anonymous
referee and other new information� most notably the preprint of Veerman 	Ve
� Before our
work� Veerman had studied the Hausdor� dimension of the boundaries of self�a�ne tiles
and obtained similar results �we shall elaborate more on this in x��� We retain our proofs
here mainly because our method has a very clear geometric interpretation that can be useful
in studying other problems� This is illustrated in obtaining the Hausdor� dimension of the
boundary of the Levy Dragon in x�� In contrast� 	Ve
 used quite di�erent methods that
rely more on analysis� As it turns out� the substitution matrix of the boundary that we
use to compute the dimension is essentially identical to the contact matrix introduced by
Gr�ochenig and Haas 	GH
 to study the measure of self�a�ne tiles� After we completed this
paper� we have received the preprint 	DKV
 which has also established similar result on the
dimensions of boundaries of self�similar tiles� The methods used in 	DKV
 are similar to
those in 	Ve
 and are rather di�erent from ours�

�� Boundaries of tiles

In this section we assume that the tile T satis�es

A�T � �
�
d�D

�T � d�
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for an expanding integer matrix A with D � Z
n� and that the Zn translates of T tile Rn �

This implies that D is a complete set of residues for Zn�AZn �	LW�
�� If we just assume that
D is a complete set of residues for Zn�AZn� then some lattice translates of T will tile Rn �
but it doesn�t have to be Zn �	B
� 	LW�
�� For some results we assume that A is conjugate
to a similarity�

We now describe an algorithm for �nding the dimension of the boundary of T � under the
additional assumption that A is conjugate to a similarity� Denote T� � T � �T ��� for any
� � Zn and let

F �
n
� � Zn � � �� �� T� �� �

o
������

Then A�T�� � �T �D� � �T �D �A��� hence

A�T�� �
�

d�d��D

�TA��d��d � d�������

Of course we wish to discard those terms for which TA��d��d is empty� Thus� for every �
and � in F � we let C��� �� denote the set of pairs �d� d�� � D �D such that

� � A�� d� � d������

Then we can rewrite ����� as

T� �
�
�

�
�d�d���C�����

�A��T� �A��d�������

All the sets on the right side of ����� are nonempty compact sets� Thus ����� is a graph�
directed construction for the self�similar family of sets fT� � � � Fg� It is known 	Fa
 that
����� uniquely determines the sets �provided we assume that they are nonempty compact
sets� and it provides an iterative procedure for approximating the sets� starting with any
initial choices of nonempty compact sets� Usually one would want to have an open set
condition on the unions in ����� in order to compute the dimension of the sets� The Hausdor�
dimension of the boundary of T can be determined if the graph�directed IFS ����� satis�es
the open set condition� but this is not clear� nevertheless we �nd a way to compute the
dimension�

Key to our study is the substitution matrix M � �M��� of the boundary� where �� � � F
andM�� � �C��� ���� We write ��M� for the spectral radius of M and r for the expansion
ratio of A� The formula for the dimension of the boundary is simply

log ��M�� log r������

which is the same value that holds under the open set condition�

Remark� Since T�� � T� �� we can reduce the size of the matrix M by half if we choose
one of each pair 	� in F � We do this when convenient in calculations� but it is easier to
write the proofs without this simpli�cation�

Lemma ���� If A is conjugate to a similarity of expansion ratio r� then the box dimension
of the boundary of T satis�es

dimB��T � 
 log ��M�� log r�

�This matrix is essentially identical to the contact matrix introduced in �GH�� used to determine the
measure of a self�a�ne tile�
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Proof� Without loss of generality we assume that A is a similarity� We need to use iterates
of ������ So for any N � �� there exist sets EN���� �subsets of Zn� such that

T� �
�
��F

A�N �T� � EN�����������

where E����� � fd � �d� d�� � C��� ��g and
EN������ �

�
��F

�AEN���� � E������������

We claim that all the elements on the right side of ����� are disjoint� which implies that the
matrix ��EN����� is just MN for any N �

To prove the claim we make use of the fact that E����� is a subset of D� and D is a
complete residue system for Zn�AZn� Now suppose Ax� y � Ax� � y� for some x � EN���� �
y � E����� and x� � EN����� � y � E������� This can only happen if y � y� and x � x�� Now
y � y� implies �� � �� for by ����� we have both � � A� � d � d� and � � A�� � d � d���
hence A������ � d��d��� This proves � � ��� so Ax�y and Ax��y� are identical elements
in ������

To establish the upper bound for dimB��T � it is su�cient to do so for each dimB�T���
Let C��	� denote the smallest number of cubes of side length 	 needed to cover T�� We
choose 
 so that any T� may be covered by a single cube of size 
� Then from ����� we
obtain

C��r
�N
� 


X
�

�EN���� �
X
�

�MN �����

hence

logC��r
�N
�

log 
�� �N log r



log
X
�

�MN ����

N log r
� log ��M�

log r

as N �
� This yields

dimB�T�� 
 log ��M�� log r�

Remark� We obtain the same conclusion under slightly weaker hypotheses on A� all
eigenvalues of A have the same modulus r� In that case we have estimates kANxk 

crN �� �N�bkxk for constants c and b independent of N � and similar estimates from below�
and so the same proof will work�

Theorem ���� Let T be a self�a�ne tile satisfying A�T � � T � D for some expanding
matrix A �Mn�Z� and digit set D � Z

n that is a residue system of Zn�AZn� Suppose that
A is conjugate to a similarity with expansion ration r� and the Zn translates of T tile Rn �
Then

dimH��T � � dimB��T � � log ��M�� log r�

Furthermore� Hs��T � � � for s � dimH��T ��

Proof� Without loss of generality we assume A is a similarity� We write ����� for N � � as

A�T�� �
�
��F

�T� � E����������

where E��� stands for E������ E��� � D� The proof of Lemma ��� already implies that for a
�xed � the sets fE��� � � � Fg are disjoint� Hence

S
� E��� � D�
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Now we may assume that

M �

�BBB�
M� � � � � �
� M� � � � �
���

���
� � �

���
� � � � � Mr

�CCCA
where each Mi is irreducible with dimension mi �mi� This can always be achieved by a
suitable permutation of indices� Since max���Mi�� � ��M�� we may assume without loss of
generality that ��M�� � ��M��

Suppose that M� corresponds to the indices f�g � bF � F � We consider the following
vector �graph�directed� IFS

A� bT�� � �
�� bF

� bT� � E����� � � bF �
Clearly� bT� � T�� Since

S
� E��� � D� we can augment E��� to eE��� so that

S
�
eE��� � D�

Because M� is irreducible� the graph�directed IFS

A� eT�� � �
�� bF

� eT� � eE����� � � bF �
gives self�a�ne multitiles feT�g such that eT o

� �� � and eT� is the closure of its interior� see
	FW
� Hence

A�eT o
�� �

�
�� bF

�eT o
� �

eE���� � �
�� bF

� eT o
� �

bE����������

The unions on the right of ����� are disjoint� Thus f eT o
�g yields open set condition for f bT�g�

and hence �	MW
�

dimH� bT�� � s �
log ��M��

log r
� Hs� bT�� � ��

Note that each bT� � �T � and dimB��T � 
 s� The theorem follows�

Corollary ���� Under the hypotheses of Theorem ���� the dimension of the boundary of T
is always strictly less than n�

Proof� If the dimension of �T were equal to n� then by the previous theorem it would have
to have positive Lebesgue measure� But this contradicts the known fact �	LW�
� that �T
must have Lebesgue measure zero�

We consider next the question of whether or not the boundary of T has �nite Hausdor�
measure in its dimension� The answer is given in terms of the matrix M � The essential
condition we need is that ��M��kMk be uniformly bounded as k � 
� It is easy to see
by linear algebra that this is equivalent to the condition that the generalized eigenspace
associated to ��M� be equal to the eigenspace for ��M��

Theorem ���� Under the hypotheses of Theorem ���� the boundary of T has �nite Haus�
dor� measure provided that the generalized eigenspace associated to the eigenvalue ��M� of
M coincides with the eigenspace�

Proof� Our hypothesis implies that ��M��kMk is uniformly bounded� Then ����� gives
coverings of �T that show that the Hausdor� measure is �nite�
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The converse of the theorem is also true� but we will not give the proof here� This is
perhaps a moot point� since Theorem ��� in 	Fa
 would imply directly that the Hausdor�
measure is always �nite� However� we have not been able to show that this result is ap�
plicable here� In all the examples we have computed in part II 	KLSW
� the hypothesis
of Theorem ��� is veri�ed� In particular� we know of no examples with in�nite Hausdor�
measure�

Remark� The assumption that T tiles Rn by translates of Zn can be dropped� Without
this assumption� one may remove from M all irreducible components whose spectral radii
are n� and Theorem ��� remains true�

Remark� A slightly di�erent dimension formula was given in 	Ve
� A simple transformation
shows� however� that the two formulas are the same� In the case when the expanding matrix
is not a similarity� an estimate of the dimension is given in 	Ve
� This paper establishes
stronger results on the Hausdor� measure of the boundary� showing that the measure is
always positive and giving necessary and su�cient conditions for it to be �nite� In 	Ve

some su�cient conditions were given�

Example ��� �Twin Dragon�� Let

A �

�
� ��
� �

�
and D � f��� ��� ��� ��g� Then T is the well�known twin dragon tile� It is easy to see that
F � f��� ��� ���� ��� ��� ��� ������� ������� ���� ��g� and since T� and T�� are translates of
each other� we can reduce the computation by considering only � intersections� T������ T�����
and T������� We then have from ����� that�	


AT����� � T����� � ��� ���
AT����� � T����� � T������ � �T������ � ��� ����
AT������ � T����� � ���� ���

which gives the matrix

M �

��� � �
� � �
� � �

�A �

so ��M� is the largest root of ��� ��� � � �� � � ������������� and the dimension of the
boundary is � log �� log � � �������������� In this example it is easy to see that the pieces
T������ T����� and T������ of the boundary intersect each other in single points� Figure ��� �a�
shows the positions of the tiles T � T ���� ��� T ���� �� and T ����� ��� so the intersections
are apparent� Figure ��� �b� shows the subdivision of these tiles into translates of A��T �
which makes it possible to visualize the stated decomposition rules�

In the appendix we shall give a simple algorithm for �nding the set F � We show also
that in de�ning the substitution matrix of the boundary one can use any index set F �� as
long as F � � F �

�� The Levy Dragon

One advantage our method has is that it actually works in the more general setting
of self�similar multitiles� in which the self�a�ne tile T is replaced by a set of prototiles
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Figure ���� �a� The twin dragon T and � adjacent tiles T���� ��� T ���� ��
and T � ���� ��� �b� The subdivision of the tiles in �a� into translates of
A��T �
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T�� T�� � � � � Tr in R
n � each with nonempty interior� that form a self�similar system

A�Tj� �
�
k

�Tk �Djk������

for a matrix of digit sets Djk � Z
n� It must be understood that if Djk is empty� then there

is no contribution by translates of Tk to the union� We will assume that the Zn translates
of Tk� k � �� �� � � � � r� tile Rn � It is proved in 	FW
 that under such an assumption each
Dk �

S
j Djk is necessarily a complete set of residues for Zn�AZn and the matrix ��Djk�

is primitive� We are again interested in the boundaries of each of the prototiles� and so we
de�ne

T �j� k� �� � Tj � �Tk � ��� � � Zn

and

F �
n
�j� k� �� � T �j� k� �� �� � and if j � k then � �� �

o
�

A pruning algorithm analogous to Theorem A�� allows the computation of F � The analog
of ����� is the following�

AT �j� k� �� � ATj � �ATk �A�������

�
�
��m

�
�j��Dj�

�
�km�Dkm

�T� � 
j�� � �Tm � 
km �A��

�
�
��m

�
�j��Dj�

�
�km�Dkm

�
T �
�m�A� � 
km � 
j�� � 
j�

�
�

The sets C��j� k� ��� �
�m� ��� and the matrix M of size �F ��F are de�ned by

C��j� k� ��� �
�m� ��� � f�
km� 
j�� � Dkm �Dj� � A�� 
km � 
j� � �g������

and
M�j�k�������m��� � �C��j� k� ��� �
�m� ����

The analog of ����� is

T �j� k� �� �
�

�k�m����F

�
C��j�k�������m����

�
A��T �
�m� �� �A��
j�

�
������

With these modi�cations� Theorem ���� Corollary ��� and Theorem ��� continue to hold�
and the proofs are essentially the same� One important application is for certain tilings
with variable rotations� in which all the prototiles are just rotated copies of a single one�
We illustrate this with the next example�

The Levy Dragon� There are � prototiles T�� T�� T�� T�� but in fact Tj is a rotation of T�

through angle j���� The matrix A �

�
� ��
� �

�
as with the twin dragon� and the expansion

identities are �


	




A�T�� � T� � T��
A�T�� � �T� � ���� ��� � T��

A�T�� � �T� � ���� ��� � �T� � ��� ����

A�T�� � �T� � ���� ��� � T��

�����

The usual description involves an IFS of � similarities involving rotations of 	��� for the
single tile T�� but it is easily seen to be equivalent to the above system� As is explained in
	DK
� the tiling by Zn translates of T�� T�� T�� T� can be easily visualized by considering the
corresponding tiling by right triangles obtained by drawing both diagonals of each square of

the unit square tiling� Denote by eT�� eT�� eT�� eT� the triangles composing the unit square� If
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Figure ���� The relative position and size of the triangle eT�� the � smaller
triangles given by the symbolic transformation law� and the convex hull of
T� �an octagon��

we apply A�� to both sides of ����� and replace each Tj by eTj � we no longer get equalities�
but we can interpret the results as a symbolic transformation law for passing from the Zn

tiling by T�� T�� T�� T� to the A��Zn tiling by A��T�� A
��T�� A

��T�� A
��T�� The rule

is simply that each triangle gets replaced by � triangles �contracted by the factor ������
whose hypotenuses lie on the equal sides of the large triangle� and which lie on the outside
of the large triangle� This is shown in Figure ���� which also shows the relative position of

the convex hull of T� and the triangle eT��
We will use a geometric method rather than the algebraic method discussed above to �nd

F and the decomposition ����� for this example� First we observe that tiles in the tiling can
intersect only if their convex hulls intersect� It turns out in this example that the converse
is also true� Also� if the convex hulls intersect in a line or a point� the intersection of the
tiles is trivial for the purposes of computing dimension� It turns out that there is another
trivial intersection �a point� for which the convex hulls have nontrivial intersection� After
taking into account symmetries� we are left with �� types of nontrivial intersections� In
Figure ��� we show the corresponding triangles� labeled from � to �� �multiple use of the
same number corresponds to isometric intersections�� There is no particular signi�cance to
the choice of number labels� We use P and L to label point and subset of line intersections�
and P � labels the nonobvious point intersection� In Figure ��� we analyze each of these ��
types of nontrivial intersections and the nonobvious point intersection under the symbolic
transformation law� Each diagram shows � triangles in the relative positions of triangleeT� and one other triangle� and then the � smaller triangles which result from the symbolic
transformation� The small triangles are then examined for their relative position �on the
smaller scale�� and the result is recorded in the transformation rule beneath the diagram�
There are � pairs of small triangles to be examined� and some may result in empty inter�
sections� For example� the �rst diagram shows that the intersection of T� and T� � ��� ��
�which is labelled ����� breaks up into � copies of ��� and one copy of ���� The choice
of corresponding small triangles produces the � copies of ���� and the choice of adjacent
small triangles produces a copy of ���� while the � distant small triangles produce an empty
intersection� The symbol ��� � ��� � ��� � ��� summarizes these observations� The last
diagram explains why P � is just a point� since it decomposes into just one P �� In Figure
��� we display the actual intersections of the tiles corresponding to the �rst six diagrams in
Figure ����

The geometric computations done in Figure ��� provide all the relevant information in
����� �we have not bothered to compute the translation vectors A��
j�� but that could be
done if desired�� In particular we can read o� the matrix M � or rather the reduced form
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P* P*

P P

P PL

L L

L L11

2

23 3

3 3

45 5

6

7 7 89

9

10 10

11 11

8 8

8

9

9

10 10

Figure ���� All triangles such that the convex hull of the associated tile

meets the convex hull of T�� The triangle eT� is black� the numbers � through
�� are used to label nontrivial intersections� with the same number used
for isometric intersections� The label L means that the intersection of the
convex hulls is a line segment� and P means it is a point� P � means the
intersection of the tiles is a point� even though the convex hulls intersect
nontrivially�

where we discard the contributions for P and L intersections� �If we took these into account
we would end up with a larger matrix with the same spectral radius�� We have

M �

�BBBBBBBBBBBBBBBB�

� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �

�CCCCCCCCCCCCCCCCA
The characteristici polynomial factors into the trivial factors ��� � �� and the �th degree
polynomial

�� � ��� � ��
 � ��� � ��
 � ��	 � ��� � ��� � ���� �������

Thus ��M� is the largest root of ����� which may be computed by Newton�s method to any
desired accuracy�

��M� � ����������������������� � � �

and so the dimension of the boundary is

log ��M�� log
p
� � �������������������� � � � �

This computation agrees with 	DK
� The matrix M is irreducible� so Theorem ��� applies�
Each of the �� types of intersections have �nite nonzero Hausdor� measure� and the relative
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 (1) → (3) ∪ (3) ∪ (7)

 (2) → (3) ∪ (3)  (3) → (10) ∪ (L)

 (4) → (7) ∪ (7) ∪ (P
*
) ∪ (P

*
)  (5) → (4) ∪ (10) ∪ (10)  (6) → (11) ∪ (11)

 (7) → (1) ∪ (6) ∪ (9) ∪ (9)  (8) → (5) ∪ (8)  (9) → (2) ∪ (9) ∪ (L)

 (10) → (8) ∪ (P)  (11) → (1)

 (12) → (P
*
) ∪ (P

*
)

Figure ���� The diagrams analyzing the �� nontrivial intersections and the
P � intersection� Each diagram shows � white triangles in the given position
and the � smaller triangles obtained under the symbolic transformation law�

The small triangles arising from triangle eT� are black� and those arising from
the other white triangle are grey� �Note that in ��� there are black and grey
triangles overlapping the white triangles�� Below each diagram is a summary
of the nonempty intersection types of the black and grey triangles�
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(1)

(2)

(3)
(4)

(5)

(6)

Figure ���� The actual intersections of tiles associated to the �rst � of the
diagrams in Figure ����
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Figure ���� The twin dragon and its convex hull� an octagon�

Hausdor� measures are determined by the positive eigenvector associated with ��M� �also
directly from the relations in Figure �����

�� Convex hulls

In this section we drop the assumption that T is a tile� We assume only that T satis�es
����� for some expanding matrix A and some �nite set D� Thus T is the attractor of an
a�ne IFS where all the mappings have the same linear part�

Let K denote the convex hull of T � and let E denote the extreme points of K� The
�rst question that arises is� when is E a �nite set
 In that case K is a polytope� It is
well�known that in the more general context of self�similar fractals de�ned by a linear IFS�
if the linear part of each mapping is a positive multiple of the identity� then the convex hull
of the fractal is just the convex hull of the �xed�points of the mappings� In our context
this means that if some power of A is a positive multiple of the identity� then E is �nite�
since we can always represent T as the self�similar fractal represented by the IFS obtained
by iterating the original one�

A���x� dj�� dj � D�
In the case of the twin dragon� A involves a ��� rotation so A� is the smallest power that
is a positive multiple of the identity� The � times iterated IFS contains �� � ��� mappings�
so this argument only yields the estimate �E 
 ���� In fact �E � �� as can be seen from
Figure ���� The methods of this section will also reveal this� However� the methods do
not seem to work for multitiles� Nevertheless� the boundary of the convex hull of the Levy
dragon is also an octagon�

The main idea of this section is to study the Gauss map of K� To every given unit vector
u� we ask which points x in T maximize x � u� Since every x in T has a representation

x �

�X
k��

A�kdk for dk � D�

and the digits dk may be chosen independently� it is clear that x maximizes x �u if and only
if �A�kdk� � u maximizes �A�kd� � u as d varies over D� In particular� if there is a unique
maximizer for each k� then there is a unique maximizer for x � u� and this is an extreme
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point� On the other hand� if x � u does not have a unique maximizer� then there must be a
tie for the maximum of �A�kd� �u � d � �A�k��u� so �A�k��u must be perpendicular to a line
segment joining two points of D� For multitiles we have a similar representation for each
x in Tj � except now the digits dk must be chosen from Djk��jk for some sequence j�� j�� � � �
with j� � j and Djk��jk nonempty for all k� Thus the sequence of digits dk may not be
chosen independently� so nothing we say here applies to this case�

In fact we do not have to consider all of D� but only the subset D� of extreme points of
the polytope P equal to the convex hull of D� We also note that the set of �xed�points
of the IFS is equal to �A � I���D� so the convex hull of the �xed points P � is equal to
�A� I���P � and has �A� I���D� as its extreme points�

For simplicity we consider �rst the case of planar tiles� n � �� Then P is a polygon
�perhaps degenerating to a line segment�� We denote by nj all the outward unit normal
vectors to the sides ej of P � �If P is a line segment� we count both directions as separate
sides��

Theorem ���� Let T be a nonempty compact set satisfying A�T � � T�D for an expanding
matrix A �M��R� and a �nite digit set D � R

� � Let fnjg be the outward unit normal vectors
of the sides of the convex hull of D� Then the convex hull K of T is a polygon if and only
if every nj is an eigenvector of �A��k for some k� In particular� if A is a similarity� then

K is a polygon if and only if there exists k such that Ak is a multiple of the identity�

Proof� The condition that each nj is an eigenvector of some �A��k is easily seen to be

equivalent to the statement that the set of all directions of the vectors �A��knj is �nite�

Now if u is a unit vector in the direction of �A��knj � then the set of points x in T maximizing
x �u contains at least � points� so the boundary of K contains a line segment perpendicular
to u� If there are an in�nite numer of such directions then K is not a polygon� On the
other hand� if there are only a �nite number� say u�� u�� � � � � um in counterclockwise order�
we claim K is the polygon whose vertices are the points in T that simultaneously maximize
x � uj and x � uj�� �identify u� � um�� To see that such points exist consider the digits that

maximize �A��kuj � d and �A��kuj�� � d� for any �xed k� They must be the same� for if not
there would be a direction v in between with a tie� contradicting the choice of the uj�

In the case of the twin dragon� the convex hull P of D is a line segment and there are only
two values for nj� namely

� �
��

�
� Under the action of �A��k� which involves rotation through

k���� there are only � directions u for which x � u does not have a unique maximum� hence
we conclude that K is an octagon�

Since there are very few integer similarity matrices with the property that some power
is a multiple of the identity� we can say that in the �generic� case K is not a polygon� Our
goal is to give a complete description of K in that case� For this discussion we will make
the following generic assumption� all directions �A��knj are distinct� Most of what we say
can be modi�ed so as to be true in general�

For each choice of j and k� let uj�k denote the unit vector in the direction of �A��knj�
Then x � uj�k achieves its maximum at � distinct points� Indeed

�A�k
�

d� � uj�k will have a unique maximizer for every k� �� k by the generic assumption�

and �A�kd� � uj�k achieves its maximum for the � digits that determine the edge ej of P
associated to the normal nj � Thus the boundary of K contains a line segment Sj�k that

is a translate of A�kej� �In the nongeneric case some of these line segments may combine
to make longer segments�� If A is a similarity with expansion constant r� then the length
of Sj�k is exactly r�kjej j� so the sum of the lengths of all the segments is �

r�� times the
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perimeter of P � This gives the lower bound

perimeter�K� � �

r � �
perimeter�P �������

In part II 	KLSW
 we will show that this is in fact an equality�

Another interesting observation is that� under the generic assumption� the boundary of
K is a C� curve if A is a similarity� Of course the boundary of a convex set in the plane is
di�erentiable almost everywhere� and can fail to have a derivative only at a �corner point�
where left and right derivatives exist but fail to be equal� The sum of the angular jumps
�the exterior angles of the corners� at all such corner points can add up to at most ���
But in our situation the existence of one such corner point would imply the existence of
in�nitely many distinct corner points with the same angular jumps� namely the pre�images
under the IFS� which are all distinct under the generic assumption� The absence of corner
points then implies the boundary in C�� But it is easy to see that it cannot be C�� because
if it were� then a continuous curvature could be de�ned� and since the curvature is zero on
a dense set of points �the line segments�� we obtain a contradiction�

We turn now to the case of general n� We may assume without loss of generality that P
is a nondegenerate polytope� by passing if necessary to an iterate of the original IFS �If no
iterate yields a nondegenerate polytope� then T lies in a lower dimensional subspace�� Let
nj denote the outward unit normal vectors to the n� � dimensional faces fj of P � Then we
have the analog of Theorem ��� holding�

Theorem ���� Let T be a nonempty compact set satisfying A�T � � T�D for an expanding
matrix A � Mn�R� and a �nite digit set D � R

n � Let fnjg be the outward unit normal
vectors of the �n� ���dimensional faces of the convex hull P of D� Then the convex hull K
of T is a polytope if and only if every nj is an eigenvector of �A��k for some k�

Proof� The necessity of the condition is proved as before� because if there are an in�nite
number of distinct directions for �A��knj then there will be an in�nite number of n � �
dimensional faces in K with distinct normal vectors� and so K will not be a polytope�

Suppose conversely that the eigenvector condition holds� We may assume that the same
value of k works for all j� Since P is nondegenerate it follows that �A��k has a complete
set of eigenvectors� Thus we can decompose Rn into a product of subspaces on which �A��k

acts as a distinct multiple of the identity� say

R
n � R

r� � Rr� � � � � � Rrm �
Our hypothesis is that each nj belongs to one of these subspaces� We will show in Lemma
��� below that this implies that P has the form of a product P � P� � P� � � � � � Pm
where each Pj is a convex polytope in the Rrj subspace� Since �A��k acts as a distinct
multiple of the identity on each subspace� it follows that A� preserves each subspace �since
A� commutes with �A��k�� and so K itself factors into a product K � K��K�� � � � �Km�
But Kj is a polytope because a power of A is a multiple of the identity on Rrj � So K� being
the product of polytopes� is itself a polytope�

The following proof of the lemma was suggested to us by Robert Connelly�

Lemma ���� Let P be a nondegenerate convex polytope in Rn � R
r� � � � � �Rrm such that

each of the normals to the n � � dimensional faces of P lies in one of the subspaces Rrj �
Then P factors into a product of convex polytopes P � P��P��� � ��Pm lying in the given
subspaces�
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Proof� P is the intersection of half�spaces whose boundaries contain the n� � dimensional
faces of P � Segregate these half�spaces into m sets according to which of the subspaces

the normal to the face belongs to� Thus P � eP� � eP� � � � � � ePm where each ePj is the

intersection of half�spaces with normals lying in the subspace Rrj � Thus ePj is a convex set
that is the product of a convex set Pj in R

rj with all the other subspaces� It follows that
P � P� � � � � � P�� and since P is a polytope� each Pj must also be a polytope�

A description of K in the case when it is not a polytope becomes considerably more
di�cult in higher dimensions� To illustrate some of the di�culties we consider n � �� For
each face fj of P and each k � �� the boundary of K will contain a translate of A�kfj�

namely the maximizer of x � �A��knj � where nj is the normal of fj� However� these will
not be the only faces contained in the boundary of K� There will also be a family of
parallelograms that arise from maximizing x � u when there is a tie for the maximum of
d � �A�k��u for � distinct values of k� This possibility cannot be eliminated by a generic
assumption� Consider any pair of edges ejm � fj � fm and ej�m� � fj� � fm� of P � and any

choice of distinct k and k�� Then the cross product of A�kejm and A�k
�

ej�m� �regarded as

vectors in R�� is a candidate for u �after normalization�� since d � �A�k��u will produce the

same value for the digits at the ends of the edges ejm� and similarly for d � �A�k���u and the
edge ej�m� � However it still has to be checked that these ties occur at the maximum values
as d varies over D�� Another way of saying this is that the vector u� which by construction
lies in the intersection of the planes P k

j� and P k�

j��� determined by A�knj and A�kn�� and by

A�k
�

nj� and A�k
�

n�� � must in fact lie in between A�knj and A�kn� in P k
j�� and in between

A�k
�

nj� and A�k
�

n�� in P k�

j��� � There does not appear to be any simple method to decide

when this occurs� When it does� it produces a parallelogram of area kA�kej� � A�k
�

ej���k
in the boundary of K�

Even in the case when AN is a multiple of the identity� hence K is a polytope� it is not
clear how to estimate the number of faces of K�

Appendix

Let T be a self�a�ne tile satisfying ����� such that A is an expanding integer matrix and
D � Z

n�In this appendix we describe a simple algorithm that �nds the lattice points � such
that T � �T � �� �� ��

Since we are concerned with the boundary of T � we shall assume that T tiles Rn by
Z
n�translations� although our algorithm works just �ne without this assumption� Then the

points on the boundary of T are precisely those in the intersections T� � T � �T � �� as
� varies over Zn� Our goal is to identify those lattice points � for which T� is nonempty�
More generally� for any �nite set F � Z

n we de�ne

TF �
�
��F

�T � ���

We will assume� without loss of generality� that F contains �� since translating the set F
also translates TF � and that ��F � � �� We let F� denote the set of sets F containing �
for which TF is nonempty� and Fm the sets of cardinality m in F � We will describe an
algorithm for determining F��
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Lemma A��� F is in F� if and only if there exist sequences d�j in D� j � �� �� � � � for each
� � F � such that

� �

�X
j��

A�j�d�j � d�j ���A���

In the case that F � F��

x �

�X
j��

A�jd�j�A���

is a point in TF �

Proof� If TF is nonempty and x � TF � we can write x in the form �A���� and also� since
x� � � T � we have

x� � �
�X
j��

A�jd�j�A���

for some d�j in D� Subtracting �A��� from �A��� we obtain �A���� The argument also runs

in reverse�

Now for any map � � F � D we de�ne F� � fA� � ���� � ���� � � � Fg� Note that F�
contains � since � � ����� and �F� � �F � because if A����������� � A�����������
then we must have � � � because D is a complete set of residues�

Lemma A��� F � F� if and only if there exists � � F � D such that F� � F�� Further�
more� every x in TF has the representation �A��	 where

d�j � �j�j�� � � � ������A���

for �j � Fj�� � D� Fj � �Fj����j � F� � F � and all Fj � F��

Proof� If F is in F�� choose d�j according to Lemma A��� and set ���� � d�� � Then multiply

�A��� by A to obtain

A�� ���� � ���� �

�X
j��

A�j�d�j�� � d�j����

It follows by Lemma A�� that F� � F�� This argument also works in reverse� For F in F�

we may iterate the result just obtained to get the sequence F�� F�� � � � in F� and the maps
�j� and from �A��� we obtain �A����

We can summarize the above lemma by a graph G �a directed multigraph� which allows
multiple edges joining vertices� and edges joining a vertex to itself�� The points in G are the
sets F in F�� and the directed edges are the maps � for which F� is also in F� �the directed
edge � goes from F to F��� Points in TF correspond to in�nite paths in G starting at the
vertex F � �There is not necessarily a one�to�one correspondence� because points may have
more than one representation �A����� The lemma says that every path in G is inde�nitely
extendable� We could also restrict attention to sets of �xed cardinality� the resulting graphs
being denoted Gm�

Now we can describe a simple pruning algorithm to �nd the graph Gm� We start with a

�nite graph G
���
m that contains Gm� From ����� we have an a priori bound for the diameter

of T � and this gives an a priori bound for the diameter of any set in Fm �this also gives an
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a priori bound for m such that Fm is nonempty�� Thus we may take G
���
m to have vertices

all sets F containing � and of limited diameter� and take all � with the property that F� is

also a vertex in G
���
m �

The pruning algorithm to go from G
�j�
m to G

�j���
m consists of removing all vertices with no

edges going out� and then all edges going into the removed vertices� After a �nite number
of steps the pruning algorithm stops because all vertices have outgoing edges�

Theorem A��� Fm is exactly the set of vertices of Gm when the pruning algorithm stops�

Proof� It is clear from Lemma A�� that the pruning algorithm never removes sets in Fm�
So we need to show that every vertex in Gm is a set in Fm� or that TF is nonempty for such
sets F � Since Gm is by construction a graph with every path in�nitely extendable� we can
construct an in�nite path in Gm starting at F � and thus a sequence of maps �j � Fj�� � D
with Fj � �Fj����j � We take d�j � �j�j�� � � � ������ We want to show that �A��� holds� for

then we will have F � Fm by Lemma A��� What we know is �by induction� that

Ak����Ak�d�� � d��� �Ak���d�� � d��� � � � ��A�d�k � d�k�

is a point in one of the sets in Gm� which all have bounded diameter� Multiplying by A�k��

we obtain

��
kX

j��

A�j�d�j � d�j � � A�k��zk

where zk are uniformly bounded� We can then let k �
 to obtain �A����

Remark� It should be pointed out that the set F we have used in x� is simply the set Fm

here for m � ��
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