GEOMETRY OF SELF-AFFINE TILES I

ROBERT S. STRICHARTZ AND YANG WANG

ABSTRACT. For a self-similar or self-affine tile in R™ we study the following questions:
1) What is the boundary? 2) What is the convex hull? We show that the boundary is
a graph directed self—affine fractal, and in the self-similar case we give an algorithm to
compute its dimension. We give necessary and sufficient conditions for the convex hull to
be a polytope, and we give a description of the Gauss map of the convex hull.

1. INTRODUCTION

A self-affine tile is a compact set 7' C R" with nonempty interior that satisfies an
expansion identity

(1.1) AT = (T +4)
deD

where A is an expanding matrix (all eigenvalues have modulus > 1) and D is a finite set
of vectors in R”, called the digit set, that satisfies #D = |det A|. Often it is assumed that
D C 7", the integer lattice, AZ™ C Z™ (so A has integer entries), and D is a complete
residue system for Z"/AZ"™. There is a large literature about the ways that translates of T’
may tile R” (see [Fal], [K1], [LW2] and the references therein). In this series of papers we
study the geometry of the tile itself. The two main questions we answer are the following;:

1) What is the boundary of T'?
2) What is the convex hull of 77

To answer the first question, we will subdivide the boundary 9T into a finite number
of pieces, and show that these pieces satisfy a vector version of an expansion identity like
(1.1), and so form a self-affine family of sets, or graph-directed family ([Fa], [MW]). The
pieces of 0T that we use are just the intersections T, = T N (T' + «) of the tile with its
lattice translates (o € Z™), so the tiling in fact determines the subdivision. We will give an
algorithm for determining when 7y, is nonempty.

The need for subdivision is apparent already in the trivial example of a square, whose
boundary subdivides into 4 corners and 4 sides. As this example shows, the pieces may
be of different dimensions, and they do overlap, but the overlaps are small enough not to
matter. Although we do not know how to verify an open set condition in all cases, we are
still able (in the case that A is a similarity) to compute the dimension of the boundary in
terms of the spectral radius of a matrix M, called the boundary substitution matriz. The
computation of M from A and D is given by an algorithm. An implementation of this
algorithm and some specific computations are given in part II [KLSW].

We also consider the generalization of these results to multitile systems. One motivation
for this is that it enables us to handle examples that involve similarities with different
rotations, such as the Levy dragon. The dimension of the boundary of the Levy dragon was
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first computed in [DK] by a more complicated method, involving the spectral radius of a
752 x 752 matrix that required a computer assisted computation. In contrast, our method
requires only the spectral radius of an 11 x 11 matrix. The matrix itself is computed by
hand, using a geometric method, and the spectral radius is the root of an explicit polynomial
of degree 9 (the algebra involved in finding the characteristic polynomial of the matrix was
performed using Mathematica). The geometric method we use was suggested by some of
the ideas in [DK].

It is easy to see that the convex hull of T is a polytope if some power of A is a multiple
of the identity. We show that the converse is true if A is a similarity, and in general we give
necessary and sufficient conditions for the convex hull to be a polytope. In the planar case
(n = 2) we give a rather complete algorithmic description of the convex hull, including a
formula for the length of the perimeter. The method we use is based on the description of
T as infinite digit expansion

(1.2) T = {mZiA_kdk!dkED}.

k=1

Given any unit vector u, to maximize x-u as x varies in 7, it is only necessary to maximize
A7Fd; - u as dj, varies over D, independently for each k. When there is a unique maximizer
for every k£ we obtain an extreme point of the convex hull; on the other hand, when there
is a tie, the boundary of the convex hull contains a line segment. In part II we show that
the set of extreme points of the convex hull is a set of dimension zero.

The problem of determining the convex hull is of interest for the attractor of an arbi-
trary IFS. Our methods are very dependent on the representation (1.2), and so cannot say
anything about examples involving mappings with different linear parts. However, we do
not need any specific assumptions about the set D for the results about convex hulls.

Acknowledgments. This research was done while the second author was a visitor in
the Mathematics Department at Cornell University. We are grateful to Robert Connelly
for suggesting the elegant proof of Lemma 4.3. This version of the paper is substantially
revised from the first version, taking into account the suggestions from the anonymous
referee and other new information, most notably the preprint of Veerman [Ve]. Before our
work, Veerman had studied the Hausdorff dimension of the boundaries of self-affine tiles
and obtained similar results (we shall elaborate more on this in §2). We retain our proofs
here mainly because our method has a very clear geometric interpretation that can be useful
in studying other problems. This is illustrated in obtaining the Hausdorff dimension of the
boundary of the Levy Dragon in §3. In contrast, [Ve] used quite different methods that
rely more on analysis. As it turns out, the substitution matrix of the boundary that we
use to compute the dimension is essentially identical to the contact matriz introduced by
Grochenig and Haas [GH] to study the measure of self-affine tiles. After we completed this
paper, we have received the preprint [DKV] which has also established similar result on the
dimensions of boundaries of self-similar tiles. The methods used in [DKV] are similar to
those in [Ve| and are rather different from ours.

2. BOUNDARIES OF TILES

In this section we assume that the tile T" satisfies

AT) = | (T +4d)

deD
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for an expanding integer matrix A with D C Z", and that the Z™ translates of T tile R".
This implies that D is a complete set of residues for Z"/AZ™ ([LW1]). If we just assume that
D is a complete set of residues for Z"/AZ", then some lattice translates of T' will tile R™,
but it doesn’t have to be Z™ ([B], [LW3]). For some results we assume that A is conjugate
to a similarity.

We now describe an algorithm for finding the dimension of the boundary of T, under the
additional assumption that A is conjugate to a similarity. Denote T, = T'N (T + «) for any
« € Z™ and let

(2.1) T:{aGZn: a;«éO,Ta;«é@}.

Then A(T,) = (T'+ D) N (T + D + Aa), hence

(2.2) ATy) = |J (Taaya—a+d).
d,d' €D

Of course we wish to discard those terms for which T'4,_g _4 is empty. Thus, for every «
and 8 in F, we let C(«, 3) denote the set of pairs (d,d') € D x D such that

(2.3) f=Aa+d —d.

Then we can rewrite (2.2) as

(2.4) .= U @'T+4"a).
B (dd")eC(a,p)

All the sets on the right side of (2.4) are nonempty compact sets. Thus (2.4) is a graph-
directed construction for the self-similar family of sets {1, : @« € F}. It is known [Fa] that
(2.4) uniquely determines the sets (provided we assume that they are nonempty compact
sets) and it provides an iterative procedure for approximating the sets, starting with any
initial choices of nonempty compact sets. Usually one would want to have an open set
condition on the unions in (2.4) in order to compute the dimension of the sets. The Hausdorff
dimension of the boundary of T' can be determined if the graph-directed IFS (2.4) satisfies
the open set condition, but this is not clear; nevertheless we find a way to compute the
dimension.

Key to our study is the substitution matric M = (M,g) of the boundary, where o, f € F
and Mys = #C (o, ).} We write p(M) for the spectral radius of M and r for the expansion
ratio of A. The formula for the dimension of the boundary is simply

(2.5) log p(M)/ log r,

which is the same value that holds under the open set condition.

Remark: Since T, = T, — « we can reduce the size of the matrix M by half if we choose
one of each pair £« in F. We do this when convenient in calculations, but it is easier to
write the proofs without this simplification.

Lemma 2.1. If A is conjugate to a similarity of expansion ratio v, then the box dimension
of the boundary of T satisfies

dimp (9T) < logp(M)/logr.

!This matrix is essentially identical to the contact matriz introduced in [GH], used to determine the
measure of a self-affine tile.
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Proof. Without loss of generality we assume that A is a similarity. We need to use iterates
of (2.4). So for any N > 1, there exist sets £y 5 (subsets of Z") such that

(2.6) To=|J AN (T5+Enap),
BeEF
where &) o3 = {d : (d, d) € C(a, B)} and
(2.7) ENt1,0,8 = U (AN + E1,9,8)-
YEF

We claim that all the elements on the right side of (2.7) are disjoint, which implies that the
matrix (#En,q,5) is just MY for any N.

To prove the claim we make use of the fact that & , g is a subset of D, and D is a
complete residue system for Z"/AZ". Now suppose Az +y = Az’ +y' for some z € En o 4,
y€&iypanda’ € Eygyyy € E Ly p. This can only happen if y = 3 and = z’. Now
y = y' implies 7' = ~, for by (2.3) we have both 3 = Ay+d—d and 8 = Ay +d —d",
hence A(y—+") = d —d". This proves v =/, so Az +y and Az’ + 3’ are identical elements
in (2.7).

To establish the upper bound for dimpg(9T) it is sufficient to do so for each dimpg(T,).
Let Cy(e) denote the smallest number of cubes of side length ¢ needed to cover T,. We

choose ¢ so that any T, may be covered by a single cube of size §. Then from (2.6) we
obtain

Ca(r™™6) <Y #Enas =Y (Mo,
B

g
hence
log Z(MN)oa,,B
logCa(r™™0) _ '8 _, logp(M)
logd—! + Nlogr — Nlogr log

as N — oo. This yields
dimp(T,) < logp(M)/logr.
[ |

Remark: We obtain the same conclusion under slightly weaker hypotheses on A: all
eigenvalues of A have the same modulus r. In that case we have estimates ||AVz| <
crN (14 N)P||z|| for constants ¢ and b independent of N, and similar estimates from below,
and so the same proof will work.

Theorem 2.2. Let T be a self-affine tile satisfying A(T) = T + D for some expanding
matriz A € My (Z) and digit set D C Z" that is a residue system of Z"/AZ". Suppose that
A is conjugate to a similarity with expansion ration r, and the Z" translates of T tile R™.
Then

dimg (0T) = dimp(9T) = log p(M)/ log .
Furthermore, H*(0T) > 0 for s = dimg(0T).

Proof. Without loss of generality we assume A is a similarity. We write (2.6) for N =1 as
(2.8) A(To) = | (Ts + €ap),
BeEF

where &, g stands for & o g, £o,3 € D. The proof of Lemma 2.1 already implies that for a
fixed 8 the sets {£, 5 : @ € F} are disjoint. Hence |J, £a3 C D.
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Now we may assume that

M1 * *

0 M2 *
M = . .

0 0 M,

where each M; is irreducible with dimension m; x m;. This can always be achieved by a
suitable permutation of indices. Since max(p(M;)) = p(M), we may assume without loss of
generality that p(M;) = p(M).

Suppose that M; corresponds to the indices {a} = F C F. We consider the following
vector (graph-directed) IFS

~

ATy = | (Ts+Eap),  a€F.
BEF
Clearly, T, C T,. Since Ua a8 € D, we can augment &, g to ga,ﬂ so that |J,, gaﬁ = D.
Because M; is irreducible, the graph-directed IFS

~

A(fa) = U (Tv/g + ga,/g), acF.
BeF

gives self-affine multitiles {T,} such that T° # § and T, is the closure of its interior, see
[FW]. Hence

(2.9) AT 2 T+ Eap) 2 | (T5 + Eup)-
peF BeEF

The unions on the right of (2.9) are disjoint. Thus {T°} yields open set condition for {T\a},
and hence ([MW])

~ 1 M —~
dimp (Ty) = s = 2820 g7y 5o,
log r
Note that each fa C 9T, and dimp(0T) < s. The theorem follows. [ |

Corollary 2.3. Under the hypotheses of Theorem 2.2, the dimension of the boundary of T
1 always strictly less than n.

Proof. If the dimension of 01" were equal to n, then by the previous theorem it would have
to have positive Lebesgue measure. But this contradicts the known fact ([LW2]) that 0T
must have Lebesgue measure zero. [ |

We consider next the question of whether or not the boundary of 7" has finite Hausdorff
measure in its dimension. The answer is given in terms of the matrix M. The essential
condition we need is that p(M)~*M* be uniformly bounded as k — oo. It is easy to see
by linear algebra that this is equivalent to the condition that the generalized eigenspace
associated to p(M) be equal to the eigenspace for p(M).

Theorem 2.4. Under the hypotheses of Theorem 2.2, the boundary of T has finite Haus-
dorff measure provided that the generalized eigenspace associated to the eigenvalue p(M) of
M coincides with the eigenspace.

Proof. Our hypothesis implies that p(M)~¥MP* is uniformly bounded. Then (2.6) gives
coverings of 9T that show that the Hausdorff measure is finite. [ |
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The converse of the theorem is also true, but we will not give the proof here. This is
perhaps a moot point, since Theorem 3.2 in [Fa] would imply directly that the Hausdorff
measure is always finite. However, we have not been able to show that this result is ap-
plicable here. In all the examples we have computed in part II [KLSW], the hypothesis
of Theorem 2.4 is verified. In particular, we know of no examples with infinite Hausdorff
measure.

Remark. The assumption that 7' tiles R” by translates of Z" can be dropped. Without
this assumption, one may remove from M all irreducible components whose spectral radii
are n, and Theorem 2.2 remains true.

Remark. A slightly different dimension formula was given in [Ve]. A simple transformation
shows, however, that the two formulas are the same. In the case when the expanding matrix
is not a similarity, an estimate of the dimension is given in [Ve]. This paper establishes
stronger results on the Hausdorff measure of the boundary, showing that the measure is
always positive and giving necessary and sufficient conditions for it to be finite. In [Ve]
some sufficient conditions were given.

Example 2.5 (Twin Dragon). Let

and D = {(0,0), (1,0)}. Then T is the well-known twin dragon tile. It is easy to see that
F =1{(1,0),(-1,0),(0,1),(0,-1),(1,—-1),(—=1,1)}, and since T,, and 7", are translates of
each other, we can reduce the computation by considering only 3 intersections: T(y o), T{0,1)
and T(_; ;). We then have from (2.2) that

AT = T, +(1,0),
ATy = Ty YT~y U (T(—1,) + (1,0),
AT 1y = T+ (=1,0),

which gives the matrix
010
M=10 1 2],
1 00

so p(M) is the largest root of A3 — A2 —2 =0, A\ = 1.69562076956 and the dimension of the
boundary is 2log A/ log 2 ~ 1.52362708621. In this example it is easy to see that the pieces
T(1,0)> T(0,1) and Ty 1) of the boundary intersect each other in single points. Figure 2.1 (a)
shows the positions of the tiles T, T+ (1,0), T+ (0,1) and T'+ (—1, 1), so the intersections
are apparent. Figure 2.1 (b) shows the subdivision of these tiles into translates of A=!T,
which makes it possible to visualize the stated decomposition rules. [ |

In the appendix we shall give a simple algorithm for finding the set 7. We show also
that in defining the substitution matrix of the boundary one can use any index set F', as
long as F' DO F.

3. THE LEVY DRAGON

One advantage our method has is that it actually works in the more general setting
of self-similar multitiles, in which the self-affine tile 7" is replaced by a set of prototiles
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(b)

FIGURE 2.1. (a) The twin dragon 7" and 3 adjacent tiles 7'+ (1,0), T+ (0, 1)
and 7'+ (—1,1). (b) The subdivision of the tiles in (a) into translates of
AT,
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T1, Ty, ..., T, in R", each with nonempty interior, that form a self-similar system
(3.1) A(Ty) = (Tk + Dji)
k

for a matrix of digit sets Dj;, C Z". It must be understood that if D is empty, then there
is no contribution by translates of T} to the union. We will assume that the Z" translates
of T, k = 1,2,...,r, tile R*. It is proved in [FW] that under such an assumption each
Dy, = U; Djy is necessarily a complete set of residues for Z"/AZ"™ and the matrix (#D;y,)
is primitive. We are again interested in the boundaries of each of the prototiles, and so we
define
T(j,k,a)=T;N (T + ), a€Z"
and
F= {(j,k,a) . T(j, k, @) # ¢ and if j = k then a # 0}.

A pruning algorithm analogous to Theorem A.3 allows the computation of F. The analog
of (2.2) is the following:
(3.2) AT (j,k,a) = AT;N (AT, + Ac)

= U U U @+60)0(Tn+ m + A

£,m 6;0€Dj¢ Okm EDkm
= U U U @Em Aa+ 6w —550) + 550).
£,m 6]'1567)]'[ Okm €EDkm
The sets C((j, k, ), (£,m, 3)) and the matrix M of size #F x #F are defined by
(33) C((j7k7a)7 (£7m7/6)) = {(6km76]€) € ka X D]l Ao+ 5km — 050 = /3}7
and
M(j,k,a),(l,m,ﬂ) = #C((ja ka Oé), (67 m, /6))
The analog of (2.4) is
(3.4) T(j ko) = | U (AT (8, m, B) + A1650).
(k;m,B)eF C((4,k,),(£;m.B))
With these modifications, Theorem 2.2, Corollary 2.3 and Theorem 2.4 continue to hold,
and the proofs are essentially the same. One important application is for certain tilings

with variable rotations, in which all the prototiles are just rotated copies of a single one.
We illustrate this with the next example.

The Levy Dragon: There are 4 prototiles Ty, 11, 1%, T3, but in fact T} is a rotation of Tp

through angle jn/2. The matrix A = (1

1 _11> as with the twin dragon, and the expansion

identities are

N

(To) = T2 U T3,
A(T) = (T + (-1,1)) U T,
A(Ty) = (T2 + (=1,0)) U (T3 + (0,1)),

A(Ts) = (To + (—1,1)) U T5.
The usual description involves an IFS of 2 similarities involving rotations of +m/4 for the
single tile Ty, but it is easily seen to be equivalent to the above system. As is explained in
[DK], the tiling by Z™ translates of Ty, 1%, T,, T3 can be easily visualized by considering the
corresponding tiling by right triangles obtained by drawing both diagonals of each square of
the unit square tiling. Denote by Tvg, fl, fg, Tvg the triangles composing the unit square. If

(3.5)
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V|

FI1GURE 3.1. The relative position and size of the triangle fo, the 2 smaller
triangles given by the symbolic transformation law, and the convex hull of
Ty (an octagon).

we apply A~! to both sides of (3.5) and replace each T; by fj, we no longer get equalities,
but we can interpret the results as a symbolic transformation law for passing from the Z"
tiling by Ty, T, Th, T3 to the A~'Z" tiling by A~'Ty, A~'Ty, A~'Ty, A='T3. The rule
is simply that each triangle gets replaced by 2 triangles (contracted by the factor 21/ 2)
whose hypotenuses lie on the equal sides of the large triangle, and which lie on the outside
of the large triangle. This is shown in Figure 3.1, which also shows the relative position of
the convex hull of Ty and the triangle Tp.

We will use a geometric method rather than the algebraic method discussed above to find
F and the decomposition (3.4) for this example. First we observe that tiles in the tiling can
intersect only if their convex hulls intersect. It turns out in this example that the converse
is also true. Also, if the convex hulls intersect in a line or a point, the intersection of the
tiles is trivial for the purposes of computing dimension. It turns out that there is another
trivial intersection (a point) for which the convex hulls have nontrivial intersection. After
taking into account symmetries, we are left with 11 types of nontrivial intersections. In
Figure 3.2 we show the corresponding triangles, labeled from 1 to 11 (multiple use of the
same number corresponds to isometric intersections). There is no particular significance to
the choice of number labels. We use P and L to label point and subset of line intersections,
and P* labels the nonobvious point intersection. In Figure 3.3 we analyze each of these 11
types of nontrivial intersections and the nonobvious point intersection under the symbolic
transformation law. Each diagram shows 2 triangles in the relative positions of triangle
Ty and one other triangle, and then the 4 smaller triangles which result from the symbolic
transformation. The small triangles are then examined for their relative position (on the
smaller scale), and the result is recorded in the transformation rule beneath the diagram.
There are 4 pairs of small triangles to be examined, and some may result in empty inter-
sections. For example, the first diagram shows that the intersection of Ty and Ty + (1,0)
(which is labelled (1)), breaks up into 2 copies of (3) and one copy of (7). The choice
of corresponding small triangles produces the 2 copies of (3), and the choice of adjacent
small triangles produces a copy of (7), while the 2 distant small triangles produce an empty
intersection. The symbol (1) — (3) U (3) U (7) summarizes these observations. The last
diagram explains why P* is just a point, since it decomposes into just one P*. In Figure
3.4 we display the actual intersections of the tiles corresponding to the first six diagrams in
Figure 3.3.

The geometric computations done in Figure 3.3 provide all the relevant information in
(3.4) (we have not bothered to compute the translation vectors A~14;, but that could be
done if desired). In particular we can read off the matrix M, or rather the reduced form
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P L P
L 10| 8 8 | 10 L
3 2 3
P 5 4 5 P
8 9 | 7 7| 9 8
L 1 1 L
P 6 P
10 11| 9 9 | 11 10
3 2 3

FIGURE 3.2. All triangles such that the convex hull of the associated tile
meets the convex hull of Ty. The triangle Tj is black, the numbers 1 through
11 are used to label nontrivial intersections, with the same number used
for isometric intersections. The label L means that the intersection of the
convex hulls is a line segment, and P means it is a point. P* means the
intersection of the tiles is a point, even though the convex hulls intersect
nontrivially.

where we discard the contributions for P and L intersections. (If we took these into account
we would end up with a larger matrix with the same spectral radius.) We have

00 200O01O0O0O0OQO0
00 200UO0O0O0O0TO0OQO
00 0O0O0OO0OO0OOOT1@®O0
00 0O0O0OO0OZ2QO0O0UO0OQO0
00 01O0O0O0OO0OO0OZ22P0
M=10 000 0O0O0O0OO0OUO0 2
1 000O01O0O02TO00O0
00 001O0O0OT1QO0TO0O@ O
01 00O0O0OO0OO0OT1TU 0O®O
00 0O0O0OO0OO0OT1TUO0T 0O
1 000O0OO0OO0OOOTO OGO

The characteristici polynomial factors into the trivial factors A(A + 1) and the 9th degree
polynomial

(3.6) A9 —3A% £ 3AT — 3% 4 20° 44Nt — X3 4+ 8\% — 16) + 8.

Thus p(M) is the largest root of (3.6) which may be computed by Newton’s method to any
desired accuracy,

p(M) ~ 1.954776399102463907266 . . .

and so the dimension of the boundary is
log p(M)/log V2 ~ 1.934007182988290978 . .. .

This computation agrees with [DK]. The matrix M is irreducible, so Theorem 2.4 applies.
Each of the 11 types of intersections have finite nonzero Hausdorff measure, and the relative
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B-CuE)v®

)
4

@-0uv@E @ - 1ouL)

-

@ s Du@uP)uP) (5) = (4) U (10) U (10) (6) - (11) U (11)

)4
.

2

VN

MN->0uE)uE VO ®—->0B)uE) ©->Qu@Eul)

m b (12) > P) U (P)

(10) - (8) v (P) 1)-@

)

4
4

Fi1GURE 3.3. The diagrams analyzing the 11 nontrivial intersections and the
P* intersection. Each diagram shows 2 white triangles in the given position
and the 4 smaller triangles obtained under the symbolic transformation law.
The small triangles arising from triangle Ty are black, and those arising from
the other white triangle are grey. (Note that in (7) there are black and grey
triangles overlapping the white triangles.) Below each diagram is a summary
of the nonempty intersection types of the black and grey triangles.

11
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()

3)

®)
(6)

FIGURE 3.4. The actual intersections of tiles associated to the first 6 of the
diagrams in Figure 3.3.
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FI1GURE 4.1. The twin dragon and its convex hull, an octagon.

Hausdorff measures are determined by the positive eigenvector associated with p(M) (also
directly from the relations in Figure 3.3). |

4. CONVEX HULLS

In this section we drop the assumption that 7" is a tile. We assume only that 7' satisfies
(1.1) for some expanding matrix A and some finite set D. Thus T is the attractor of an
affine IFS where all the mappings have the same linear part.

Let K denote the convex hull of T, and let E denote the extreme points of K. The
first question that arises is: when is E a finite set? In that case K is a polytope. It is
well-known that in the more general context of self-similar fractals defined by a linear IFS,
if the linear part of each mapping is a positive multiple of the identity, then the convex hull
of the fractal is just the convex hull of the fixed-points of the mappings. In our context
this means that if some power of A is a positive multiple of the identity, then E is finite,
since we can always represent 1" as the self-similar fractal represented by the IFS obtained
by iterating the original one,

Ail(SC-l-dj), d; € D.

In the case of the twin dragon, A involves a 45° rotation so A% is the smallest power that
is a positive multiple of the identity. The 8 times iterated IFS contains 28 = 256 mappings,
so this argument only yields the estimate #FE < 256. In fact #FE = 8, as can be seen from
Figure 4.1. The methods of this section will also reveal this. However, the methods do
not seem to work for multitiles. Nevertheless, the boundary of the convex hull of the Levy
dragon is also an octagon.

The main idea of this section is to study the Gauss map of K. To every given unit vector
u, we ask which points z in 7" maximize z - u. Since every z in 7" has a representation

T = Z A~Fd, for d, €D,
k=1

and the digits di may be chosen independently, it is clear that  maximizes z - v if and only
if (A=%dy) - u maximizes (A~%d) - u as d varies over D. In particular, if there is a unique
maximizer for each k, then there is a unique maximizer for z - u, and this is an extreme
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point. On the other hand, if = - 4 does not have a unique maximizer, then there must be a
tie for the maximum of (A~*d)-u = d-(A7%)*u, so (A7%)*u must be perpendicular to a line
segment joining two points of D. For multitiles we have a similar representation for each
x in T}, except now the digits dy must be chosen from Dj, | ; for some sequence jo, ji, ...
with jo = 7 and Dj, ,;, nonempty for all k. Thus the sequence of digits d; may not be
chosen independently, so nothing we say here applies to this case.

In fact we do not have to consider all of D, but only the subset Dj of extreme points of
the polytope P equal to the convex hull of D. We also note that the set of fixed—points
of the IFS is equal to (A — I)™!'D, so the convex hull of the fixed points P’ is equal to
(A—1)"'P, and has (A — I)~'Dy as its extreme points.

For simplicity we consider first the case of planar tiles, n = 2. Then P is a polygon
(perhaps degenerating to a line segment). We denote by n; all the outward unit normal
vectors to the sides e; of P. (If P is a line segment, we count both directions as separate
sides).

Theorem 4.1. Let T be a nonempty compact set satisfying A(T) = T+D for an expanding
matriz A € M>(R) and a finite digit set D C R?. Let {n;} be the outward unit normal vectors
of the sides of the convex hull of D. Then the convex hull K of T is a polygon if and only
if every nj is an eigenvector of (A*)E for some k. In particular, if A is a similarity, then
K is a polygon if and only if there exists k such that AF is a multiple of the identity.

Proof. The condition that each n; is an eigenvector of some (A*)F is easily seen to be
equivalent to the statement that the set of all directions of the vectors (A*)¥n; is finite.
Now if u is a unit vector in the direction of (A*)*n;, then the set of points z in 7 maximizing
Z - u contains at least 2 points, so the boundary of K contains a line segment perpendicular
to w. If there are an infinite numer of such directions then K is not a polygon. On the
other hand, if there are only a finite number, say w1, u9,... , U, in counterclockwise order,
we claim K is the polygon whose vertices are the points in 7" that simultaneously maximize
z-uj and z - uj41 (identify u; = u,y,). To see that such points exist consider the digits that
maximize (A*)Fu; - d and (A*)Fu;y1 - d, for any fixed k. They must be the same, for if not
there would be a direction v in between with a tie, contradicting the choice of the u;. Nl

In the case of the twin dragon, the convex hull P of D is a line segment and there are only
two values for nj, namely ( fl). Under the action of (A4*)¥, which involves rotation through
km/4, there are only 8 directions u for which z - v does not have a unique maximum, hence

we conclude that K is an octagon.

Since there are very few integer similarity matrices with the property that some power
is a multiple of the identity, we can say that in the “generic” case K is not a polygon. Our
goal is to give a complete description of K in that case. For this discussion we will make
the following generic assumption: all directions (A*)knj are distinct. Most of what we say
can be modified so as to be true in general.

For each choice of j and k, let u;j; denote the unit vector in the direction of (4*)*n,;.
Then z - uj ) achieves its maximum at 2 distinct points. Indeed
(A*k’d) - uj, will have a unique maximizer for every k' # k by the generic assumption,
and (A *d) - u;j achieves its maximum for the 2 digits that determine the edge e; of P
associated to the normal n;. Thus the boundary of K contains a line segment S;; that
is a translate of A‘kej. (In the nongeneric case some of these line segments may combine
to make longer segments.) If A is a similarity with expansion constant 7, then the length

1

of S is exactly r_k|ej|, so the sum of the lengths of all the segments is —5 times the
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perimeter of P. This gives the lower bound
1
(4.1) perimeter(K) > 1 perimeter(P).
r—

In part IT [KLSW] we will show that this is in fact an equality.

Another interesting observation is that, under the generic assumption, the boundary of
K is a C' curve if A is a similarity. Of course the boundary of a convex set in the plane is
differentiable almost everywhere, and can fail to have a derivative only at a “corner point”
where left and right derivatives exist but fail to be equal. The sum of the angular jumps
(the exterior angles of the corners) at all such corner points can add up to at most 2.
But in our situation the existence of one such corner point would imply the existence of
infinitely many distinct corner points with the same angular jumps, namely the pre-images
under the IFS, which are all distinct under the generic assumption. The absence of corner
points then implies the boundary in C''. But it is easy to see that it cannot be C?, because
if it were, then a continuous curvature could be defined, and since the curvature is zero on
a dense set of points (the line segments), we obtain a contradiction.

We turn now to the case of general n. We may assume without loss of generality that P
is a nondegenerate polytope, by passing if necessary to an iterate of the original IFS (If no
iterate yields a nondegenerate polytope, then 7' lies in a lower dimensional subspace.) Let
n; denote the outward unit normal vectors to the n — 1 dimensional faces f; of . Then we
have the analog of Theorem 4.1 holding.

Theorem 4.2. Let T be a nonempty compact set satisfying A(T) = T+D for an expanding
matric A € My (R) and a finite digit set D C R*. Let {n;} be the outward unit normal
vectors of the (n — 1)~dimensional faces of the convex hull P of D. Then the convex hull K
of T is a polytope if and only if every n; is an eigenvector of (A5 for some k.

Proof. The necessity of the condition is proved as before, because if there are an infinite
number of distinct directions for (A*)*n; then there will be an infinite number of n — 1
dimensional faces in K with distinct normal vectors, and so K will not be a polytope.

Suppose conversely that the eigenvector condition holds. We may assume that the same
value of k works for all j. Since P is nondegenerate it follows that (A4*)* has a complete
set of eigenvectors. Thus we can decompose R" into a product of subspaces on which (A*)*
acts as a distinct multiple of the identity, say

R =R" xR? x... x Rm™,

Our hypothesis is that each n; belongs to one of these subspaces. We will show in Lemma
4.3 below that this implies that P has the form of a product P = P, X Py x --- X Py,
where each P; is a convex polytope in the R/ subspace. Since (A*)F acts as a distinct
multiple of the identity on each subspace, it follows that A* preserves each subspace (since
A* commutes with (A*)¥), and so K itself factors into a product K = Ky x Ky x --- x K.
But K is a polytope because a power of A is a multiple of the identity on R'7. So K, being
the product of polytopes, is itself a polytope. [ |

The following proof of the lemma was suggested to us by Robert Connelly.

Lemma 4.3. Let P be a nondegenerate convex polytope in R* = R X --- x R'™ such that
each of the normals to the n — 1 dimensional faces of P lies in one of the subspaces R'7.
Then P factors into a product of convex polytopes P = P; X Py X --- X Py, lying in the given
subspaces.
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Proof. P is the intersection of half-spaces whose boundaries contain the n — 1 dimensional
faces of P. Segregate these half-spaces into m sets according to which of the subspaces
the normal to the face belongs to. Thus P = P, NP, N---N P, where each P; is the

intersection of half-spaces with normals lying in the subspace R'7. Thus ]Sj is a convex set
that is the product of a convex set P; in R' with all the other subspaces. It follows that
P =P x--- x Py, and since P is a polytope, each P; must also be a polytope. [ |

A description of K in the case when it is not a polytope becomes considerably more
difficult in higher dimensions. To illustrate some of the difficulties we consider n = 3. For
each face f; of P and each k > 1, the boundary of K will contain a translate of A~k fis
namely the maximizer of z - (4*)¥n;, where n; is the normal of f;. However, these will
not be the only faces contained in the boundary of K. There will also be a family of
parallelograms that arise from maximizing x - u when there is a tie for the maximum of
d - (A7*)*u for 2 distinct values of k. This possibility cannot be eliminated by a generic
assumption. Consider any pair of edges ej, = f; N fr, and ejr, = fir N fr of P, and any
choice of distinct & and &’. Then the cross product of A*kejm and A*k'ej,m, (regarded as
vectors in R?) is a candidate for u (after normalization), since d - (A~%)*u will produce the
same value for the digits at the ends of the edges ¢;,, and similarly for d- (A% )*u and the
edge ejr,y. However it still has to be checked that these ties occur at the maximum values
as d varies over Dy. Another way of saying this is that the vector u, which by construction
lies in the intersection of the planes Pfe and PJ%, determined by A‘knj and A=Fn,, and by

A*k'njf and A ¥ ny, must in fact lie in between A*knj and A *n, in P]k[, and in between
A_k’njl and A=*ny in PJ%,. There does not appear to be any simple method to decide

when this occurs. When it does, it produces a parallelogram of area [|A Fej; x A*k'eﬂ,H
in the boundary of K.

Even in the case when A" is a multiple of the identity, hence K is a polytope, it is not
clear how to estimate the number of faces of K.

APPENDIX

Let T be a self-affine tile satisfying (1.1) such that A is an expanding integer matrix and
D C Z™.In this appendix we describe a simple algorithm that finds the lattice points « such
that TN (T + «) # 0.

Since we are concerned with the boundary of T', we shall assume that T tiles R* by
Z"-translations, although our algorithm works just fine without this assumption. Then the
points on the boundary of T" are precisely those in the intersections T, = T'N (T + «) as
« varies over Z". Our goal is to identify those lattice points « for which T;, is nonempty.
More generally, for any finite set F' C Z"™ we define

TF = ﬂ (T + a).
ack

We will assume, without loss of generality, that F' contains 0, since translating the set F
also translates Tr, and that #(F) > 2. We let F* denote the set of sets /' containing 0
for which TF is nonempty, and F,, the sets of cardinality m in F. We will describe an
algorithm for determining F*.
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Lemma A.1. F is in F* if and only if there exist sequences dj in D, j =1,2,... for each
«a € F, such that

o
(A1) a=) AT(d)—df).
j=1
In the case that F € F*,
o0
)
(A.2) v=) A7d]
j=1
15 a point in TF.

Proof. If T is nonempty and z € TF, we can write z in the form (A.2), and also, since
x —a €T, we have

oo
(A.3) r—a=Y AJdf

j=1
for some df in D. Subtracting (A.3) from (A.2) we obtain (A.1). The argument also runs
in reverse. |

Now for any map o : F — D we define F, = {Aa + o(a) —0(0) : « € F'}. Note that F,
contains 0 since 0 = o(0), and #F,, = #F, because if Aa+o(a)—0o(0) = AB+0(8) —o(0)
then we must have o = 3 because D is a complete set of residues.

Lemma A.2. F € F* if and only if there exists o : F — D such that F, € F*. Further-
more, every x in T has the representation (A.2) where

(A.4) d? =0j0j_1---01(0)
foroj: Fy 1 =D, Fj = (Fj 1), Fo = F, and all F; € F*.

Proof. If I is in F*, choose df according to Lemma A.1, and set o(«) = df. Then multiply
(A.1) by A to obtain

o0
Aa+o(a) —o(0) = Z AT (d) g — dfyq)-
=1

It follows by Lemma A.1 that F, € F*. This argument also works in reverse. For F' in F*
we may iterate the result just obtained to get the sequence Fp, F1,... in F* and the maps
oj, and from (A.2) we obtain (A.4). |

We can summarize the above lemma by a graph G (a directed multigraph, which allows
multiple edges joining vertices, and edges joining a vertex to itself). The points in G are the
sets F' in F*, and the directed edges are the maps o for which F; is also in F* (the directed
edge o goes from F to Fy). Points in T correspond to infinite paths in G starting at the
vertex F. (There is not necessarily a one-to—one correspondence, because points may have
more than one representation (A.2).) The lemma says that every path in G is indefinitely
extendable. We could also restrict attention to sets of fixed cardinality, the resulting graphs
being denoted G,,.

Now we can describe a simple pruning algorithm to find the graph G,,. We start with a

finite graph GS) that contains G,,. From (1.2) we have an a priori bound for the diameter
of T, and this gives an a priori bound for the diameter of any set in F,, (this also gives an
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a priori bound for m such that F,, is nonempty). Thus we may take G,(%) to have vertices

all sets F' containing 0 and of limited diameter, and take all o with the property that Fj is
(1)

also a vertex in Gy, .
The pruning algorithm to go from G%) to G%H) consists of removing all vertices with no
edges going out, and then all edges going into the removed vertices. After a finite number

of steps the pruning algorithm stops because all vertices have outgoing edges.

Theorem A.3. F,, is exactly the set of vertices of G, when the pruning algorithm stops.

Proof. It is clear from Lemma A.2 that the pruning algorithm never removes sets in F,.
So we need to show that every vertex in Gy, is a set in F,, or that T is nonempty for such
sets F. Since G, is by construction a graph with every path infinitely extendable, we can
construct an infinite path in Gy, starting at F, and thus a sequence of maps o : Fj_; — D
with Fj = (Fj_1),;. We take df = 0jo;_1---01(a). We want to show that (A.1) holds, for
then we will have ' € F,, by Lemma A.1. What we know is (by induction) that

ARl + AR (de — d9) 4+ AR dy — dd) + - + A(dE — dY)

is a point in one of the sets in G,,, which all have bounded diameter. Multiplying by A=*~1
we obtain

k
a— ZA*j(d?- —dj) = ARy
j=1

where zj, are uniformly bounded. We can then let & — oo to obtain (A.1). |
Remark. It should be pointed out that the set F we have used in §2 is simply the set F,

here for m = 2.
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