GEOMETRY OF SELF-AFFINE TILES II

RICHARD KENYON, JIE LI, ROBERT S. STRICHARTZ, AND YANG WANG

ABSTRACT. We continue the study in part I of geometric properties of self-similar and
self-affine tiles. We give some experimental results from implementing the algorithm in
part I for computing the dimension of the boundary of a self-similar tile, and we describe
some conjectures that result. We prove that the dimension of the boundary may assume
values arbitrarily close to the dimension of the tile. We give a formula for the area of the
convex hull of a planar self-affine tile. We prove that the extreme points of the convex
hull form a set of dimension zero, and we describe a natural gauge function for this set.

5. INTRODUCTION TO PART II

This paper is a continuation of [SW], which we refer to as part I, and the sections are
numbered accordingly. In Section 2 of part I we obtained an algorithm for computing
the dimension (box and Hausdorff dimensions are equal) of the boundary in the case of a
self-similar tile satisfying

(5.1) AT = | J (T + d)
deD

for an expanding matrix A that is a similarity mapping the integer lattice £ in R" into
itself, and the digit set D is a subset of £ that it is a complete set of residues for £L/AL.
We wrote a program to implement the algorithm in the planar case (n = 2). In Section
6 we report some of the results obtained from running the program. These experimental
results lead us to conjecture that for each fixed A, if we vary D over all allowable digit sets,
there will be a minimum value for the dimension, and also that the limit of the dimensions
will be n as D goes to infinity in the appropriate sense. However, we will see that there
is no obvious candidate for the minimal digit set, and the convergence to the limit is not
monotone in any obvious sense. In Section 7 we give a construction of self-similar tiles with
a fixed A whose boundaries have dimension approaching n.

The remainder of the paper is devoted to the convex hull of the tile. In Section 8 we
give a simple formula for the area of the convex hull in the planar case. In Section 9, also
in the planar case, we complete the proof, begun in part I, of a formula for the perimeter
of the convex hull, by showing that the set of extreme points £ has dimension zero. We
construct a natural dynamical system on E that is conjugate to a rotation on the circle,
and yet is contractive except at a finite set of points. We construct a gauge function h such
that the Hausdorff measure Hy, of E is finite and positive. Modulo some elusive properties
of a continued fraction expansion, we show that h(t) = (log(1/t))~! for some values of t,
but at other values of ¢ it is larger.
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FIGURE 6.1. A scatter plot of the dimension of 0T as a function of k for
odd integers k, 3 < k < 67, for A =2I and D = {(0,0),(1,0), (0,1), (k,1)}.
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6. COMPUTATIONS OF DIMENSIONS

We wrote a program to compute the dimension of the boundary of a self-similar tile.
The program takes as input the similarity matrix A and the digit set D. The program then
finds F» by the graph pruning algorithm of Theorem 2.3, and computes the matrix M. The
spectral radius of M is computed by finding the roots of the characteristic polynomial and
choosing the largest. The pruning step is useful in reducing the size of the matrix to make
the last step feasible. A more sophisticated method of computing the spectral radius would
allow one to handle much larger matrices.

We first looked at the case A = 2I. We chose the digit set to be (0,0), (1,0), (0,1) and
(k,1) for k odd. A scatter plot of the data dim(97') as a function of k is shown in Figure
6.1. The data shows the values of dim(07') growing as k gets larger, but the increase is not
monotonic in k. Significant dips are apparent at values k = 2™ — 1 and k = 2™ + 1. In
fact, a similar phenomenon occurs in the one dimension [K]. In Figure 6.2 we give a similar
scatter plot for the choice of digit set (0,0), (1,0), (0,1), (k,3) for k odd.

This leads us to conjecture that for fixed A, the dimension of T approaches n as the
digits go to infinity in an appropriate sense. However, it is not entirely trivial to make this
precise, since if B is any matrix in SL(n,Z) that commutes with A, then replacing D by
BD transforms T' to BT, and so leaves the dimension of the boundary unchanged, while
the size of the digit set BD may become arbitrarily large.

One way to avoid this problem is to keep all the digits fixed except one.

Conjecture 6.1. Fiz A, and all digits of D = {d;} except one, say di. Then dim(0T) — n
as |dy| — oo.

In the next section we will prove this conjecture under the additional hypothesis that
r > 2, where r is the expansion ratio of A. It also holds for the case A = 2I with the digits
(0,0), (1,0) and (0, 1) held fixed, confirming the trend in our data. Incidentally, for A = 21
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FIGURE 6.2. A scatter plot similar to Figure 6.1, for the digit set D =
{(0,0),(1,0),(0,1), (k,3)}.

the convergence of dim(9T') to 2 seems to occur at a faster rate if the last digit goes to
infinity along a diagonal direction: we computed dimensions 1.9414812 and 1.9706678 for
the last digit equal to (9,9) and (21,21), as compared to 1.9482966 for the last digit (51,1).

At the other extreme, it appears that for each fixed A there is a minimum value for
dim(9T'), and it occurs when the digit set is very closely packed. However, it is not clear
how to make this description precise. One naive idea is to take the digit set to be the lattice
points lying in or on the square A(S) where S = [0,1)?. However, we found for A = (3 ')
that there is a digit set that gives a lower dimension. Figure 6.3 shows the two digit sets
and the corresponding dimensions; the reader can judge which of the two appears to be
more closely packed. We also found for A = (i’ *51) that the apparent lowest dimension
occurs for two choices of digit set that are not affinely equivalent. Both choices yield the

same Fy set: {£(1,0),+(0,1),£(1,1)}, and the same M matrix:

201000
450000
204010
01040 2
00005 4
00010 2

The dimension of the boundary is 1.080509. The two digit sets are shown in Figure 6.4.
More generally, we can consider the matrix A = (¢ ') for a an integer (a > 3). By
choosing the digit set in A(S) we obtain F» = {+(1,0),£(0,1),+(1,1)}, and by exploiting

the + symmetry we can reduce M to the 3 x 3 matrix

1 0 1
a a 0
a—2 1 a-1

with characteristic polynomial

(6.1) 2% — 2a2” + (a* + 1)z — 2a.
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FIGURE 6.3. Two digit sets for A = (} 3'). The first is the inside of
the square, with dim(07") = 1.1525196. The second substitutes the digit
(1,0) for (0,3), and yields a lower dimension, 1.1353749. This appears
to be the minimum for this matrix.
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FIGURE 6.4. Two digit sets for the matrix (9 ') that appear to yield
the minimum dimension.

On the other hand, by modifying the digit set by replacing (0,a) by (1,0), we obtain the
same F5 and the reduced matrix is

2 0 1
a—1 a 0
a—3 1 a-1

with characteristic polynomial
(6.2) 23 — (20 + 1)2? + (a® +2a + 1)z — (a® + 2a — 1).

It is not difficult to show that the largest root of (6.2) is smaller than the largest root of
(6.1). Suppose X is the largest root of (6.1). It is not hard to verify that a —1 < A <a+1
since (6.1) takes values £2 at x = a = 1 and the derivative is positive for z > 0. On the
other hand the value of (6.2) for z = X is =\ +2aX—a?+1 = 1—(A—a)? > 0, so its largest
root is smaller (the derivative of (6.2) is also positive for > 0). It would be plausible to
conjecture that this modified digit set produces the minimum for dim(97") for this set of
matrices.

A more modest conjecture that might be valid for all matrices A is that the minimum
value for dim(97') is always attained by a digit set belonging to a “small” finite collection
characterized by some simple conditions. If such a conjecture were correct, then a reasonable
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algorithm for finding the minimum would be to search among this collection of digit sets.
One reasonable condition on the digit set is that it be connected as a subset of £, meaning
that any two digits may be joined by a sequence of digits of unit distance apart. Modulo
translation, there are only a finite number of connected digit sets.

Conjecture 6.2. For fized A, the minimum value for dim(0T) is attained for a connected
digit set.

Remark. Note that the converse of the conjecture is not true, since once we have one digit
set attaining the minimum, we can find others simply by multiplying by a matrix B in
SL(n,Z) commuting with A, and these new digit sets may not be connected.

Bandt and Gelbrich [BG] study the related problem of when the tile is a topological disk.

7. TILES WITH LARGE BOUNDARIES

In order to show that the dimension of 0T is large, we need a bound from below for the
spectral radius of M. We will accomplish this by estimating the column sums of M. The
first lemma shows that column sums are easy to compute.

Lemma 7.1. Let m(B) = >_ cr, M(a, 3) denote the column sums of M. Then
m(B) = | det A] — u(9)
where p(B) denotes the multiplicity of B in D — D, i.e., the number of solutions of
B=d—d, ford,d eD.

Proof. Since M, is equal to the number of solutions of

(7.1) B=Aa+d—d,

m(f) is equal to the number of solutions of (7.1) as « varies over F. Now given 8 and d',
there is a unique « and d for which (7.1) holds. So (7.1) has | det A| solutions if we do not
restrict a. But 0 ¢ Fy, so this deletes p(/3) solutions. Also, it is easy to see that no other

solutions are deleted, since if 8 € F, and « # 0 satisfies (7.1), then « will never be removed
in the pruning algorithm that generates F», so a € F». [ |

We obtain next a crude lower bound for the spectral radius p(M) and the dimension of
OT. We assume that A is a similarity, so | det A| = r™ where r is the expansion ratio for A.

Lemma 7.2. Let u denote the mazimum value of p(3) as B varies over Fy. Equivalently,
w is the mazimum cardinality of D N (D + () for B € Fo. Then

(7.2) p(M) > 1" —p
and
(7.3) dim(0T') > log(r"™ — p)/ logr.

Proof. Let e denote the row vector with all entries equal to 1. Then eM > (r™ — p)e by
Lemma 7.1. This implies (7.2), and then (7.3) follows by (2.8). |

To obtain better estimates we need to pass to iterates of the expansion identity (5.1).
Thus we replace A by A¥ and D by

Dy =D+ AD + A’D +--- + AF1D.
Corollary 7.3. Let uy denote the mazimum cardinality of DN (Dk+ ) for B in Fa. Then
(7.4) dim(9T) > log(r™ — )/ log r*.
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We note that F3 is defined in terms of the tile, not the expansion identity, so it does not
vary with k. In applying Corollary 7.3 we will obtain estimates of the form

(7.5) pu < Ar
for a fixed A < 1 and large k. Then (7.4) will give the estimate
) log(1 — )t
. >p— o
(7.6) dim(0T') > Flogr

which makes dim(97') close to n for large k.

Theorem 7.4. Let T be a self-affine tile satisfying A(T) = T + D for some expanding
similarity matriz A € M, (Z) and digit set D C L that is a residue system of L/AL. Suppose
that the L translates of T tile R* and the expansion ratio of A has r > 2. If D = {d;}
satisfies I]n>a§( |d;| < b for some fized constant b > 0, then dim(0T) — n as |di| — oc.

Proof. We may assume without loss of generality that 0 is in D, say do = 0. Write B = |d;|.
Since any f in F5 can be written

B = ZA (0p — 0}) for 6,0, € D,

we have the a priori bound
1Bl < (B+b)/(r—1) for peF.
Since r > 2 this means
(7.7) 1Bl <MB for pgeF
for some fixed A\; < 1 if B is large enough.
We need to estimate the number of solutions of
(7.8) So+Ad + -+ A5 =840+ AS, + -+ AR

where 4, 5;- are in D and 3 satisfies (7.7). We will choose k large, but not too large.
Specifically, we choose Ay so that A\; < Ay < 1, and then require

(7.9) 2<T::11>b < (2 —M\)B

This still allows k& — co as B — oo. We claim that (7.8) can hold only if
(7.10) 0j =dy < 05 =dy forall j =0,... k-1

We prove the claim by considering the largest value of j for which (7.10) fails to hold,
say 7 = m. Then

A™dy = £ £ (b0 — dp) £ A(d1 — d1) £ -+ Am*l(fsm 1= 1)
£ A" A" (Gpgr — Oy y) £ £ ARG — 6 y)
where |d; — 0% < 2b for j > m+1, [0, < b, and |6; — 07| < B+b for j < m —1. This yields
|A"d) | =B < MB+ (1+7+--4+r™" (B +b)

+ My 2(r™ 4 R

m k

< (W __11)B+(7}__f)%
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by (7.9). This is a contradiction since

rm—1 rm—1

<l+
r— r—

< rm,

Ao +

Now we can establish the estimate (7.5) with A = 1 — 77", Suppose first that § is not
in AC. Then (7.8) implies §y — d{, is not in AL, hence dy = d{, is impossible. In particular
do = d; is not allowed. Since every choice of dy determines a unique ¢§;, that makes (7.8)
valid mod AL, we conclude that there are at most ™ — 1 choices for dy and ;. Again each
choice of ¢, forces a unique choice of §;, for all k, so there are at most (r" — l)r”(kfl) = \r"k
solutions to (7.8). Similarly, if 3 is in A™L but not A™*!'L for some m < k — 1 then we
must have J; = 5;- for j < m, but 6y, # 0,, hence d,, # dy, and so there are at most r™ — 1

choices for 6, and &!,. Finally, if 3 is in A¥L then there are no solutions to (7.8) for 8 # 0.

Thus we have (7.6) holding under the assumption (7.9), so as B — oo we have k — 00,
hence dim(9T') — n. |

The theorem does not apply to the important example of A = 21. However, in this case
it is possible to show that the same conclusion holds if the fixed digits consist of the unit
cube (a1, ... ,a,) with each a; = 0 or 1, with the vertex (1,1,... ,1) deleted. The argument
(which we omit) is similar to the proof of the theorem, but a little more complicated. It
does not appear likely that the same idea will work for matrices with » < 2. For example,
if det A = 2 then there are only two digits, so all tiles are similar.

8. AREA OF THE CONVEX HULL

In this section and the next we return to the assumptions of Section 4: we assume that T’
satisfies (1.1) for some expanding matrix and some finite digit set D, i.e., T' is the attractor
of the affine i.f.s. {S;} with Sjz = A7 (z + d;), where all mappings have the same linear
part. In addition, we assume n = 2. We also recall that Dy denotes the subset of D
consisting of extreme points of P, where P denotes the convex hull of D.

In this section we compute the area of K, the convex hull of T. We assume that the digits
di,...,dy in Dy are arranged in counterclockwise order around P, and we set dy = dy to
complete the circuit. In this notation, n; is the outward normal to the segment joining d;_;
to d;. If we choose u; to be a positive multiple of A*n;, then u; - A~1d is maximized for
d =dj_1 and d;j. We define dj;, for £ > 2 to be the digit that maximizes u; - A~kd. This is
well-defined under the generic assumption. We then define

oo
o = A7l + Y A7Fdy,,  and
(8.1) k=2,
:E"j' = A_ldj,1 + Z Aikdjk.
k=2
Note that these points all lie on the boundary of K, hence determine a 2 N—polygon we will
call P'. We have

€T,

j— 7 = AN dj — dj),

and so
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FIGURE 8.1. The scissors congruence of K \ P' = K1 U Ky U K3 on the left
with S} K \ P on the right by translating Ky and K3 to K4 and Kj. In this
example N = 3.

It follows that
N-—

Z Ty — =0 (here zj, = z'y).
=0

H

<.

That means there exists a convex N-polygon P” whose sides are translates of 7, —z
In fact the vertices of P"” may be taken to be

;

y1 =4
Y2 = T4
(8.2) ys = xf — (24 — 2%)

ys =y — (z5 — x3) — (w5 — a3)

\

When N = 2, P” degenerates to a line segment, and Area P" = 0.

Theorem 8.1. Let K be the convex hull of the nonempty compact self-affine set T satis-
fying A(T) = T + D for an expanding matriz A € M3(R) and a finite digit set D C R2.
Let P', P" be the convex polygons with vertices given by (8.1) and (8.2) respectively. Then
under the generic assumption,

(8.3) Area K = ( ¢ 1)(Area P' — Area P")

a —

for a = |det A|.

Proof. We will show the scissors congruence

(8.4) K\ P =8 K\P"
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FIGURE 8.2. The twin dragon example, with N = 2. K is an octagon in
this case, and P" is a line segment. On the left K \ P’ = K; U K3, and on
the I‘ight SlK = K1 U Ké

which immediately implies (8.3) since Area S1K = a ! Area K. The proof of (8.4) is fairly
evident from Figure 8.1, in which

Az(f _21>, D ={(0,0), (0,1), (0,2) (1,1), (2,0)}.

We break up K \ P’ into the N disjoint regions K; defined by
K;=(K\P)nS;K

+1- We then translate them so
that their endpoints line up with y; and y;41, so K \ P’ is scissors congruent to

which lie to the exterior of the line segment joining x; to

(8.5) K1 U (Ky — (25 — 75)) U (K3 — (2 — ) — (a5 — ) U+
Note that the sets in (8.5) all lie in S K, and line up along the boundary of S; K at the
points y1,ys2,... . Thus the set (8.5) is equal to 1K \ P". [ |

If we drop the generic assumption, the digits dj; are no longer well-defined since there
may be ties. The same result will hold provided we resolve the ties in a consistent manner
in (8.1) (in other words we pick a choice of dji, and use the same one to define z; and z7).
This is illustrated in Figure 8.2 for the twin dragon. Of course if K is a polygon we can

compute its area more directly in terms of its vertices.

9. EXTREME POINTS OF THE CONVEX HULL

In this section we give a description of the set E of extreme points of K, under the
assumptions of Section 8. If K is a polygon then F is just a finite set, so we exclude this
trivial case. If K is not a polygon, then we have shown in section 4 that its boundary
contains a countable set of line segments. The endpoints of these segments belong to E,
but it is convenient to exclude them from the discussion. The remaining points in E we
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denote by E’, and it is easy to see that E' C T and E' = {Z € T : there exists u such that
z - u has a unique maximum in 7" at z = z}.

Lemma 9.1. For each T € E' (with a finite number of exceptions) there exists a unique j
such that S;T € E'.

o0
Proof. We have 7 = ZA_kdjk and djj, is the unique maximizer for ((4*) *u) - d in Dy.
Then =
o0
Sit=A""dj+Y Ay .
k=2
For 4 = A*u (normalized), we have ((A*) *%) - d uniquely maximized for d = d;,_, for
k > 2. So S;z uniquely maximizes z - u if and only if d; uniquely maximizes d-u. There are
only a finite number of vectors u for which there is more than one maximizer for d-u. W

Write E for the set of 7 in E' such that S;7 € E'. Then E' = UE}, disjoint except for
point intersections, and moreover E' = USjE; since the preimage of an extreme point is an
extreme point. Since each S; is a contraction, it follows immediately that £’ has Hausdorff
dimension zero, hence so does E. In particular, if A is a similarity, this proves that (4.1) is
an equality.

Theorem 9.2. Let T be a nonempty compact set satisfying A(T) = T +D for an expanding
similarity matriz A € Mo(R) and a finite digit set D C R2. Let K be the convex hull of T
and P be the convex hull of D. Then perimeter(K) = —L5 perimeter(P).

Now assume A is a similarity. The condition that K is not a polygon means that the
rotation angle € of A is an irrational multiple of 2w (we may assume A is orientation
preserving, since if this is not the case we can always pass to A%). We will give a more
detailed description of the extreme set E'. For every unit vector ug = (cos6,sinf) not in
a countable exceptional set, we associate a point zy in E’, namely the unique maximizer
of x - ug. If we denote by 601,60s,... ,0n the angles of the normals to the sides of P, in
increasing order, and set Oy 41 = 01 + 27, then the proof of Lemma 9.1 shows that zy € E;
for 6; <0 < 011, and =y, is the unique point in E; ; N E}. We define a mapping S on E,
except at the points zp;, by

Sz = Sjz if =€k
The proof of the Lemma also shows the intertwining property
Sty =z, 5

In other words, the mapping € — zy conjugates rotation through angle —6 on the circle
with the mapping S on E'. On each set E}, S is a contraction with ratio r—!. Let 1 denote
the probability measure on E’ that is the image of normalized Lebesgue measure on the
circle under the mapping @ — xy. This is an invariant measure with respect to the mapping
S , and the mapping is ergodic; both facts follow from the corresponding facts on the circle.

Although FE is a set of dimension zero, since it is uncountable and compact, there must
exist a gauge function h such that E has finite and positive Hausdorff h-measure H;, (see
[R]). We will show that such a function must be close to h(t) = (log(1/t)) !. The measure
1 will be used in the mass distribution principle for part of the explanation. Another point
of view is to take the measure p as the most natural object, and ask if there is a gauge
function h such that Hj, restricted to E is equivalent to p.
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Consider the continued fraction expansion of the number 5/ 27, and let p;/q; denote the
rational approximation (p; and ¢; relative prime) generated by the finite truncations of the
expansion. We know

.60 p; 1
p_] < —< & + —5

(9.1) <
g~ 2 g g

which implies that if we divide up the circle into g; intervals
Je = [27k/ g, 2m(k +1)/q;), 0 <k < gj — 1,

then the points pg for 0 < p < ¢j — 1 are distributed one to each interval: pg € jk if and
only if pjp = k mod g;. This means that if we start at any point 6, and generate the interval

fp = [0, —I—pg, 0. —I—pg—l— 47 /q;] for 0 < p < g; — 1, we have a covering of the circle with no
point covered by more than 3 intervals. Denote by I; the subset of E’ corresponding to Ij
under the map 0 — zy. We will continue to call these sets “intervals”. Now we have

(9.2) p(l,) = 4m/q; for all p,
and
(9.3) Ip+1| = 7“71|Ip|

provided none of the points 6; lies in fp, since Iy = S (Ip). (Here |Ip| denotes the diameter
of the interval I,.) Note that we have a uniform upper bound of 3N for the number of
intervals for which (9.3) fails to hold. As we will see, these exceptions do not materially

affect the outcome. If §; belongs to .7,, we can split I, into two intervals I, = I}, U I by
splitting I, at 0; and let I/, = S*(I}) and I", , = S¥(IV) for k > 1,80 Ly = I' ULV
and [1) .| < 7|1, and the same for 1], - 1f we do this splitting every time we encounter
6; in an interval, we end up with a covering of E' by at most (3N + 1)g; intervals, all with
diameter less than |Ip).

By choosing the initial point 6, carefully, we can make |Iy| small. To see this we start out
with an arbitrary choice, say 6, = 0. The idea is to repeatedly use (9.3), choosing a string
of indices for which there are no obstacles. Since there are at most 3N obstacles among the
q; values of p, there must be a consecutive string of at least (¢;/3N) — 1 with no obstacles.
Choosing p at the end of the string, we have

(9.4) |I,| < er™%/3N

with the constant ¢ equal to r times the diameter of E’. Now redefine 0, to make this
interval be Ij.

Lemma 9.3. Let h(t) be any gauge function satisfying
(9.5) h(er 93Ny < clqj_1 for all j

(or just for an infinite sequence of values of j). Then Hp(E') < co.

Proof. The coverings we have constructed contain at most (3N 4+ 1)g; intervals, each of
diameter at most ¢r~%/3N. Thus

Sh(I) < (3N + 1)gjh(cr™%/3N) < (3N + 1),
and since cr—%/3N — 0 we obtain Hp(E') < (3N + 1)¢;. |
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If we take equality in (9.5) this means h(t) = c(log(1/t))~! for a sequence of ¢ values
going to 0, namely t = cr=% /3N However, the sequence of values gj may be quite erratic,
so it would not be wise to interpolate using the same formula. A better choice is

(9.6) h(t) = sup{pu(I) : |I| = t}.

Theorem 9.4. Let h(t) be given by (9.6). Assume that there exists € > 0 and an infinite
sequence of indices j and j' < j such that

(9.7) eqj < qy < qj/4N.

Then Hp(E) is finite and positive, and the restriction of Hy, to E' is equivalent to p, in fact
(9.8) w(A) < Hp(A) < cop(A)

for any measureable set A C E'.

Proof. Since (9.6) implies
(9.9) () < h(|11),

the mass distribution principle (see [Fa|, p.24) gives the positivity of H(E') and the left
inequality in (9.8). It is necessary to observe here that since E' is a subset of a C'! curve,
the boundary of K, all coverings used in computing the #; measure may be taken to be
intervals. Now if A C Ul with #,(A) approximately equal to Xh(|Ix|), then (9.9) yields
the left inequality in (9.8).

Next we will verify that (9.5) holds for j satisfying (9.7). We return to the covering
constructed before the proof of Lemma 9.3 for the index j' associated to j in (9.7). This
time we do not split intervals when we encounter obstacles, but simply observe that (9.3)
can always be replaced by the inequality

(9.10) Ips1] > 7L,

since the two maps §I;, and §I;,’ are moved apart after the contraction A~'. Thus we have
a covering of E' by intervals I, satisfying

(9.11) |Ip| > r~ 91|
and
(9.12) u(lp) = 4m/q;.

Now we want to choose 0, to make |Iy| as large as possible. We can certainly arrange to
have |Iy| > ¢/q; for ¢ independent of j' by choosing one of the g;r intervals I, in the covering
to be I, for if not then |E’| < ¥|I,| would be too small. By taking g large enough we can
replace (9.11) by

(9.13) |1, > r=4/3)4
and then using the right inequality in (9.7) we have
(9.14) || > r—9i/3N,
On the other hand, using (9.12) and the left inequality in (9.7) we have
(9.15) p(Ip) < dme/q;.
Now suppose I is any interval satisfying |I| = c¢r~%/3N. To prove (9.5) we need to show

u(l) < clqul in view of (9.6). But this follows from (9.15), since I must be contained in
a fixed number of I, intervals (this again uses the fact that E' lies in a C! curve, hence
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diameters of adjacent small intervals are essentially additive). Since we have verified (9.5)
for an infinite sequence of indices j, it follows from Lemma 9.3 that #H,(E’) is finite.

To get the right inequality in (9.8) we observe first that it suffices to prove it for A an
interval. Then we simply localize the argument in the proof of Lemma 9.3 to the interval
A (select the intervals in the covering that meet A). |

There are two obvious concerns with this theorem. The first is that the formula (9.6)
for the gauge function is not explicit. The second is that condition (9.7) depends on the
continued fraction expansion of 5/ 27, so there is at present no method of either proving it
or disproving it for any given matrix A. Since the size of the ratio ¢;/qj—1 is on the order
of the corresponding continued fraction coefficient, condition (9.7) holds (with j' = j — 1)
whenever there are an infinite number of coefficients in the “moderate range”. The upper
inequality excludes very small values, and the lower inequality excludes very large values.
(Of course (9.7) can also be satisfied with j' < j — 1 if there are sequences of consecutive
small values.) Since the control of ¢ in (9.7) allows the upper bound to be chosen at will,

this condition appears to be generic, in that it should hold for a randomly chosen }

Part of the proof of the theorem shows that when the ratio ¢;/g;_1 is not too large, we
can interpolate the naive choice h(t) = c(log(1/t))~" in between c¢r~%-1/3N and ¢r—%/3N,
We can also say something about the behavior of h(f) in this range when ¢;/q;—1 is large. In
this case the excess of 6/2m over pj—1/qj—1 is on the order of (gjgj—1)~"', so the distribution

of values pH for 0 <p < gj—1 — 1 is almost uniform, with pt9 = 2nk/qj—1 + €p mod 27 with
0 <€, < c¢/q;. This means that if we increase p beyond g;_; the values of pf will stay very
close to 27k/q;—1 also. More precisely, pick a small value of ¢, and allow p to increase to

0 c _ _ce

eqj. Then pf will exceed 2mk/q;_1 for the appropriate value of k by at most Bl mppage

gG-1 ¢ gi-1
If ce = 1/2, then each interval J, = [2nk/qj_1,2nw(k + 1)/qj—1) will contain a subinterval
of length at least m/g;_; with no values of pg mod 27 for 0 < p < eg;. Now there are N
obstacle values 0; we are trying to avoid, so by choosing the starting value 0, appropriately
we can arrange to have all the intervals

I = [0« + 27p/gj-1,0. + 2n(p + 1/3N) /g; 1]

for 0 < p < eg; avoid all N obstacles. Then since I, = SP(Iy) we have |I,| = r~P|Ip| and in
particular |Iy;| = cr=*%, while yi(Icq;) = 2m/3Ng;—1. This shows that

(9.16) h(cr=¢%) > 2w /3N gq;_1.

This is considerably larger than the interpolated value c/eq;. In particular, if the set of

continued fraction coefficients for 6/2r is unbounded, then (9.16) shows that h(t) is larger
than (log(1/t))~!. Equivalently, if we used the gauge (log(1/t))~! rather than (9.6), the
Hausdorff measure of E' would be 0. Again, the assumption that the continued fraction
coefficients are not bounded is true generically, but at present it cannot be decided in any
particular instance.
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