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Abstract� We continue the study in part I of geometric properties of self�similar and
self�a�ne tiles� We give some experimental results from implementing the algorithm in
part I for computing the dimension of the boundary of a self�similar tile� and we describe
some conjectures that result� We prove that the dimension of the boundary may assume
values arbitrarily close to the dimension of the tile� We give a formula for the area of the
convex hull of a planar self�a�ne tile� We prove that the extreme points of the convex
hull form a set of dimension zero� and we describe a natural gauge function for this set�

�� Introduction to Part II

This paper is a continuation of �SW�� which we refer to as part I� and the sections are
numbered accordingly� In Section � of part I we obtained an algorithm for computing
the dimension �box and Hausdor� dimensions are equal� of the boundary in the case of a
self	similar tile satisfying

AT 

�
d�D

�T � d������

for an expanding matrix A that is a similarity mapping the integer lattice L in Rn into
itself� and the digit set D is a subset of L that it is a complete set of residues for L�AL�
We wrote a program to implement the algorithm in the planar case �n 
 ��� In Section

 we report some of the results obtained from running the program� These experimental
results lead us to conjecture that for each �xed A� if we vary D over all allowable digit sets�
there will be a minimum value for the dimension� and also that the limit of the dimensions
will be n as D goes to in�nity in the appropriate sense� However� we will see that there
is no obvious candidate for the minimal digit set� and the convergence to the limit is not
monotone in any obvious sense� In Section � we give a construction of self	similar tiles with
a �xed A whose boundaries have dimension approaching n�

The remainder of the paper is devoted to the convex hull of the tile� In Section � we
give a simple formula for the area of the convex hull in the planar case� In Section �� also
in the planar case� we complete the proof� begun in part I� of a formula for the perimeter
of the convex hull� by showing that the set of extreme points E has dimension zero� We
construct a natural dynamical system on E that is conjugate to a rotation on the circle�
and yet is contractive except at a �nite set of points� We construct a gauge function h such
that the Hausdor� measure Hh of E is �nite and positive� Modulo some elusive properties
of a continued fraction expansion� we show that h�t� 
 �log���t���� for some values of t�
but at other values of t it is larger�
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Figure ���� A scatter plot of the dimension of �T as a function of k for
odd integers k� � � k � 
�� for A 
 �I and D 
 f��� ��� ��� ��� ��� ��� �k� ��g�
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� Computations of dimensions

We wrote a program to compute the dimension of the boundary of a self	similar tile�
The program takes as input the similarity matrix A and the digit set D� The program then
�nds F� by the graph pruning algorithm of Theorem ���� and computes the matrixM � The
spectral radius of M is computed by �nding the roots of the characteristic polynomial and
choosing the largest� The pruning step is useful in reducing the size of the matrix to make
the last step feasible� A more sophisticated method of computing the spectral radius would
allow one to handle much larger matrices�

We �rst looked at the case A 
 �I� We chose the digit set to be ��� ��� ��� ��� ��� �� and
�k� �� for k odd� A scatter plot of the data dim��T � as a function of k is shown in Figure

��� The data shows the values of dim��T � growing as k gets larger� but the increase is not
monotonic in k� Signi�cant dips are apparent at values k 
 �m � � and k 
 �m � �� In
fact� a similar phenomenon occurs in the one dimension �K�� In Figure 
�� we give a similar
scatter plot for the choice of digit set ��� ��� ��� ��� ��� ��� �k� �� for k odd�

This leads us to conjecture that for �xed A� the dimension of �T approaches n as the
digits go to in�nity in an appropriate sense� However� it is not entirely trivial to make this
precise� since if B is any matrix in SL�n�Z� that commutes with A� then replacing D by
BD transforms T to BT � and so leaves the dimension of the boundary unchanged� while
the size of the digit set BD may become arbitrarily large�

One way to avoid this problem is to keep all the digits �xed except one�

Conjecture ���� Fix A� and all digits of D 
 fdjg except one� say d�� Then dim��T �� n
as jd�j � ��

In the next section we will prove this conjecture under the additional hypothesis that
r � �� where r is the expansion ratio of A� It also holds for the case A 
 �I with the digits
��� ��� ��� �� and ��� �� held �xed� con�rming the trend in our data� Incidentally� for A 
 �I
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Figure ���� A scatter plot similar to Figure 
��� for the digit set D 

f��� ��� ��� ��� ��� ��� �k� ��g�

the convergence of dim��T � to � seems to occur at a faster rate if the last digit goes to
in�nity along a diagonal direction� we computed dimensions ��������� and �����

�� for
the last digit equal to ��� �� and ���� ���� as compared to �������

 for the last digit ���� ���

At the other extreme� it appears that for each �xed A there is a minimum value for
dim��T �� and it occurs when the digit set is very closely packed� However� it is not clear
how to make this description precise� One naive idea is to take the digit set to be the lattice
points lying in or on the square A�S� where S 
 ��� ���� However� we found for A 
 � � ��� � �
that there is a digit set that gives a lower dimension� Figure 
�� shows the two digit sets
and the corresponding dimensions� the reader can judge which of the two appears to be
more closely packed� We also found for A 
 � � ��� � � that the apparent lowest dimension
occurs for two choices of digit set that are not a�nely equivalent� Both choices yield the
same F� set� f���� ������� ������� ��g� and the same M matrix��

BBBBBB�

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

�
CCCCCCA
�

The dimension of the boundary is ��������� The two digit sets are shown in Figure 
���

More generally� we can consider the matrix A 
 � a ��� a � for a an integer �a � ��� By
choosing the digit set in A�S� we obtain F� 
 f���� ������� ������� ��g� and by exploiting
the � symmetry we can reduce M to the �� � matrix�

� � � �
a a �

a� � � a� �

�
A

with characteristic polynomial

x� � �ax� � �a� � ��x� �a��
���
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Figure ���� Two digit sets for A 
 � � ��� � �� The �rst is the inside of
the square� with dim��T � 
 ��������
� The second substitutes the digit
��� �� for ��� ��� and yields a lower dimension� ���������� This appears
to be the minimum for this matrix�

Figure ���� Two digit sets for the matrix � � ��� � � that appear to yield
the minimum dimension�

On the other hand� by modifying the digit set by replacing ��� a� by ��� ��� we obtain the
same F� and the reduced matrix is�

� � � �
a� � a �
a� � � a� �

�
A

with characteristic polynomial

x� � ��a� ��x� � �a� � �a� ��x� �a� � �a� ����
���

It is not di�cult to show that the largest root of �
��� is smaller than the largest root of
�
���� Suppose � is the largest root of �
���� It is not hard to verify that a� � � � � a� �
since �
��� takes values �� at x 
 a � � and the derivative is positive for x � �� On the
other hand the value of �
��� for x 
 � is �����a��a��� 
 �����a�� � �� so its largest
root is smaller �the derivative of �
��� is also positive for x � ��� It would be plausible to
conjecture that this modi�ed digit set produces the minimum for dim��T � for this set of
matrices�

A more modest conjecture that might be valid for all matrices A is that the minimum
value for dim��T � is always attained by a digit set belonging to a �small� �nite collection
characterized by some simple conditions� If such a conjecture were correct� then a reasonable
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algorithm for �nding the minimum would be to search among this collection of digit sets�
One reasonable condition on the digit set is that it be connected as a subset of L� meaning
that any two digits may be joined by a sequence of digits of unit distance apart� Modulo
translation� there are only a �nite number of connected digit sets�

Conjecture ���� For �xed A� the minimum value for dim��T � is attained for a connected
digit set�

Remark� Note that the converse of the conjecture is not true� since once we have one digit
set attaining the minimum� we can �nd others simply by multiplying by a matrix B in
SL�n�Z� commuting with A� and these new digit sets may not be connected�

Bandt and Gelbrich �BG� study the related problem of when the tile is a topological disk�

�� Tiles with large boundaries

In order to show that the dimension of �T is large� we need a bound from below for the
spectral radius of M � We will accomplish this by estimating the column sums of M � The
�rst lemma shows that column sums are easy to compute�

Lemma ���� Let m��� 

P

��F�
M��� �� denote the column sums of M � Then

m��� 
 jdetAj � 	���

where 	��� denotes the multiplicity of � in D �D� i�e�� the number of solutions of

� 
 d� d�� for d� d� � D�

Proof� Since M�� is equal to the number of solutions of

� 
 A�� d� d�������

m��� is equal to the number of solutions of ����� as � varies over F�� Now given � and d��
there is a unique � and d for which ����� holds� So ����� has jdetAj solutions if we do not
restrict �� But � �� F�� so this deletes 	��� solutions� Also� it is easy to see that no other
solutions are deleted� since if � � F� and � �
 � satis�es ������ then � will never be removed
in the pruning algorithm that generates F�� so � � F��

We obtain next a crude lower bound for the spectral radius 
�M� and the dimension of
�T � We assume that A is a similarity� so jdetAj 
 rn where r is the expansion ratio for A�

Lemma ���� Let 	 denote the maximum value of 	��� as � varies over F�� Equivalently�
	 is the maximum cardinality of D 	 �D � �� for � � F�� Then


�M� � rn � 	�����

and

dim��T � � log�rn � 	�� log r������

Proof� Let e denote the row vector with all entries equal to �� Then eM � �rn � 	�e by
Lemma ���� This implies ������ and then ����� follows by ������

To obtain better estimates we need to pass to iterates of the expansion identity ������
Thus we replace A by Ak and D by

Dk 
 D �AD �A�D � 
 
 
 �Ak��D�

Corollary ���� Let 	k denote the maximum cardinality of Dk	�Dk��� for � in F�� Then

dim��T � � log�rnk � 	k�� log r
k������
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We note that F� is de�ned in terms of the tile� not the expansion identity� so it does not
vary with k� In applying Corollary ��� we will obtain estimates of the form

	k � �rnk�����

for a �xed � � � and large k� Then ����� will give the estimate

dim��T � � n�
log��� ����

k log r
���
�

which makes dim��T � close to n for large k�

Theorem ���� Let T be a self�a�ne tile satisfying A�T � 
 T � D for some expanding
similarity matrix A �Mn�Z� and digit set D � L that is a residue system of L�AL� Suppose
that the L translates of T tile Rn and the expansion ratio of A has r � �� If D 
 fdjg
satis�es max

j��
jdj j � b for some �xed constant b � �� then dim��T �� n as jd�j � ��

Proof�We may assume without loss of generality that � is in D� say d� 
 �� Write B 
 jd�j�
Since any � in F� can be written

� 


�X
k	�

A�k��k � ��k� for �k� �
�
k � D�

we have the a priori bound

j�j � �B � b���r � �� for � � F��

Since r � � this means

j�j � ��B for � � F������

for some �xed �� � � if B is large enough�

We need to estimate the number of solutions of

�
 �A�� � 
 
 
 �Ak���k�� 
 � � ��
 �A��� � 
 
 
 �Ak����k�������

where �j � �
�
j are in D and � satis�es ������ We will choose k large� but not too large�

Speci�cally� we choose �� so that �� � �� � �� and then require

�
�rk � �

r � �

�
b � ��� � ���B������

This still allows k �� as B ��� We claim that ����� can hold only if

�j 
 d� � ��j 
 d� for all j 
 �� � � � � k � ��������

We prove the claim by considering the largest value of j for which ������ fails to hold�
say j 
 m� Then

Amd� 
 �� � ��
 � ��
��A��� � ����� 
 
 
 �Am����m�� � ��m���

�Am�m �Am����m�� � ��m���� 
 
 
 �Ak����k�� � ��k���

where j�j � ��j j � �b for j � m��� j�mj � b� and j�j � ��j j � B� b for j � m� �� This yields

jAmd�j 
 rmB � ��B � �� � r � 
 
 
 � rm����B � b�

� rmb� ��rm�� � 
 
 
� rk���b

�
�
��

rm � �

r � �

�
B �

�rk � �

r � �

�
�b

�
�
�� �

rm � �

r � �

�
B
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by ������ This is a contradiction since

�� �
rm � �

r � �
� � �

rm � �

r � �
� rm�

Now we can establish the estimate ����� with � 
 � � r�n� Suppose �rst that � is not
in AL� Then ����� implies �
 � ��
 is not in AL� hence �
 
 ��
 is impossible� In particular
�
 
 d� is not allowed� Since every choice of �
 determines a unique ��
 that makes �����
valid mod AL� we conclude that there are at most rn� � choices for �
 and ��
� Again each

choice of �k forces a unique choice of �
�
k for all k� so there are at most �rn���rn
k��� 
 �rnk

solutions to ������ Similarly� if � is in AmL but not Am��L for some m � k � � then we
must have �j 
 ��j for j � m� but �m �
 ��m hence �m �
 d�� and so there are at most rn � �

choices for �m and ��m� Finally� if � is in AkL then there are no solutions to ����� for � �
 ��

Thus we have ���
� holding under the assumption ������ so as B � � we have k � ��
hence dim��T �� n�

The theorem does not apply to the important example of A 
 �I� However� in this case
it is possible to show that the same conclusion holds if the �xed digits consist of the unit
cube �a�� � � � � an� with each aj 
 � or �� with the vertex ��� �� � � � � �� deleted� The argument
�which we omit� is similar to the proof of the theorem� but a little more complicated� It
does not appear likely that the same idea will work for matrices with r � �� For example�
if detA 
 � then there are only two digits� so all tiles are similar�

�� Area of the convex hull

In this section and the next we return to the assumptions of Section �� we assume that T
satis�es ����� for some expanding matrix and some �nite digit set D� i�e�� T is the attractor
of the a�ne i�f�s� fSjg with Sjx 
 A���x � dj�� where all mappings have the same linear
part� In addition� we assume n 
 �� We also recall that D
 denotes the subset of D
consisting of extreme points of P � where P denotes the convex hull of D�

In this section we compute the area of K� the convex hull of T � We assume that the digits
d�� � � � � dN in D
 are arranged in counterclockwise order around P � and we set d
 
 dN to
complete the circuit� In this notation� nj is the outward normal to the segment joining dj��
to dj � If we choose uj to be a positive multiple of A�nj� then uj 
 A

��d is maximized for

d 
 dj�� and dj � We de�ne djk for k � � to be the digit that maximizes uj 
 A
�kd� This is

well	de�ned under the generic assumption� We then de�ne������
����	
x�j 
 A��dj �

�X
k	�

A�kdjk� and

x��j 
 A��dj�� �

�X
k	�

A�kdjk�

�����

Note that these points all lie on the boundary of K� hence determine a �N	polygon we will
call P �� We have

x�j � x��j 
 A���dj � dj����

and so
NX
j	�

�x�j � x��j � 
 A��� 
 ��
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Figure ���� The scissors congruence of K n P � 
 K� 
K� 
K� on the left
with S�K nP �� on the right by translating K� and K� to K

�
� and K �

�� In this
example N 
 ��

It follows that
N��X
j	


�x��j�� � x�j� 
 � �here x�
 
 x�N ��

That means there exists a convex N	polygon P �� whose sides are translates of x��j�� � x�j �

In fact the vertices of P �� may be taken to be��������
������	

y� 
 x��
y� 
 x���
y� 
 x��� � �x�� � x����

y� 
 x��� � �x�� � x����� �x�� � x����

� � � �

�����

When N 
 �� P �� degenerates to a line segment� and Area P �� 
 ��

Theorem ���� Let K be the convex hull of the nonempty compact self�a�ne set T satis�
fying A�T � 
 T � D for an expanding matrix A � M��R� and a �nite digit set D � R

� �
Let P �� P �� be the convex polygons with vertices given by ����	 and ���
	 respectively� Then
under the generic assumption�

Area K 

� a

a� �

�
�Area P � �Area P ��������

for a 
 jdetAj�

Proof� We will show the scissors congruence

K n P � �
 S�K n P �������
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Figure ���� The twin dragon example� with N 
 �� K is an octagon in
this case� and P �� is a line segment� On the left K n P � 
 K� 
K�� and on
the right S�K 
 K� 
K

�
��

which immediately implies ����� since Area S�K 
 a�� Area K� The proof of ����� is fairly
evident from Figure ���� in which

A 




� ��
� �

�
� D 
 f��� ��� ��� ��� ��� �� ��� ��� ��� ��g�

We break up K n P � into the N disjoint regions Kj de�ned by

Kj 
 �K n P �� 	 SjK

which lie to the exterior of the line segment joining x�j to x
��
j��� We then translate them so

that their endpoints line up with yj and yj��� so K n P � is scissors congruent to

K� 
 �K� � �x�� � x����� 
 �K� � �x�� � x����� �x�� � x����� 
 
 
 
 ������

Note that the sets in ����� all lie in S�K� and line up along the boundary of S�K at the
points y�� y�� � � � � Thus the set ����� is equal to S�K n P ���

If we drop the generic assumption� the digits djk are no longer well	de�ned since there
may be ties� The same result will hold provided we resolve the ties in a consistent manner
in ����� �in other words we pick a choice of djk� and use the same one to de�ne x�j and x��j ��
This is illustrated in Figure ��� for the twin dragon� Of course if K is a polygon we can
compute its area more directly in terms of its vertices�

�� Extreme points of the convex hull

In this section we give a description of the set E of extreme points of K� under the
assumptions of Section �� If K is a polygon then E is just a �nite set� so we exclude this
trivial case� If K is not a polygon� then we have shown in section � that its boundary
contains a countable set of line segments� The endpoints of these segments belong to E�
but it is convenient to exclude them from the discussion� The remaining points in E we
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denote by E�� and it is easy to see that E� � T and E� 
 fex � T � there exists u such that
x 
 u has a unique maximum in T at x 
 exg�
Lemma 	��� For each ex � E� �with a �nite number of exceptions	 there exists a unique j
such that Sjex � E��

Proof� We have ex 


�X
k	�

A�kdjk and djk is the unique maximizer for ��A���ku� 
 d in D
�

Then

Sjex 
 A��dj �

�X
k	�

A�kdjk��
�

For eu 
 A�u �normalized�� we have ��A���keu� 
 d uniquely maximized for d 
 djk��
for

k � �� So Sjex uniquely maximizes x 
 eu if and only if dj uniquely maximizes d 
u� There are
only a �nite number of vectors u for which there is more than one maximizer for d 
 u�

Write E�j for the set of ex in E� such that Sjex � E�� Then E� 
 
E�j� disjoint except for

point intersections� and moreover E� 
 
SjE
�
j since the preimage of an extreme point is an

extreme point� Since each Sj is a contraction� it follows immediately that E� has Hausdor�
dimension zero� hence so does E� In particular� if A is a similarity� this proves that ����� is
an equality�

Theorem 	��� Let T be a nonempty compact set satisfying A�T � 
 T�D for an expanding
similarity matrix A � M��R� and a �nite digit set D � R

� � Let K be the convex hull of T
and P be the convex hull of D� Then perimeter�K� 
 �

r�� perimeter�P	�

Now assume A is a similarity� The condition that K is not a polygon means that the

rotation angle e� of A is an irrational multiple of �
 �we may assume A is orientation
preserving� since if this is not the case we can always pass to A��� We will give a more
detailed description of the extreme set E�� For every unit vector u� 
 �cos �� sin �� not in
a countable exceptional set� we associate a point x� in E�� namely the unique maximizer
of x 
 u�� If we denote by ��� ��� � � � � �N the angles of the normals to the sides of P � in
increasing order� and set �N�� 
 �� � �
� then the proof of Lemma ��� shows that x� � E�j
for �j � � � �j��� and x�j is the unique point in E�j�� 	E

�
j � We de�ne a mapping eS on E��

except at the points x�j � by eSx 
 Sjx if x � E�j�

The proof of the Lemma also shows the intertwining propertyeSx� 
 x
��e�

�

In other words� the mapping � � x� conjugates rotation through angle �e� on the circle

with the mapping eS on E�� On each set E�j �
eS is a contraction with ratio r��� Let 	 denote

the probability measure on E� that is the image of normalized Lebesgue measure on the
circle under the mapping �� x�� This is an invariant measure with respect to the mappingeS� and the mapping is ergodic� both facts follow from the corresponding facts on the circle�

Although E is a set of dimension zero� since it is uncountable and compact� there must
exist a gauge function h such that E has �nite and positive Hausdor� h	measure Hh �see
�R��� We will show that such a function must be close to h�t� 
 �log���t����� The measure
	 will be used in the mass distribution principle for part of the explanation� Another point
of view is to take the measure 	 as the most natural object� and ask if there is a gauge
function h such that Hh restricted to E is equivalent to 	�
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Consider the continued fraction expansion of the number e���
� and let pj�qj denote the
rational approximation �pj and qj relative prime� generated by the �nite truncations of the
expansion� We know

pj
qj
�
e�
�


�
pj
qj

�
�

q�j
������

which implies that if we divide up the circle into qj intervals

eJk 
 ��
k�qj � �
�k � ���qj�� � � k � qj � ��

then the points pe� for � � p � qj � � are distributed one to each interval� pe� � eJk if and
only if pjp � k mod qj� This means that if we start at any point �� and generate the intervaleIp 
 ��� � pe�� �� � pe� � �
�qj � for � � p � qj � �� we have a covering of the circle with no

point covered by more than � intervals� Denote by Ik the subset of E� corresponding to eIk
under the map � � x�� We will continue to call these sets �intervals�� Now we have

	�Ip� 
 �
�qj for all p������

and

jIp��j 
 r��jIpj�����

provided none of the points �j lies in eIp� since Ip�� 
 eS�Ip�� �Here jIpj denotes the diameter
of the interval Ip�� Note that we have a uniform upper bound of �N for the number of
intervals for which ����� fails to hold� As we will see� these exceptions do not materially

a�ect the outcome� If �j belongs to eIp we can split Ip into two intervals Ip 
 I �p 
 I ��p by

splitting eIp at �j and let I �p�k 

eSk�I �p� and I ��p�k 


eSk�I ��p � for k � �� so Ip�k 
 I �p�k 
 I
��
p�k�

and jI �p�kj � r�kjIpj and the same for I ��p�k� If we do this splitting every time we encounter

�j in an interval� we end up with a covering of E� by at most ��N � ��qj intervals� all with
diameter less than jI
j�

By choosing the initial point �� carefully� we can make jI
j small� To see this we start out
with an arbitrary choice� say �� 
 �� The idea is to repeatedly use ������ choosing a string
of indices for which there are no obstacles� Since there are at most �N obstacles among the
qj values of p� there must be a consecutive string of at least �qj��N�� � with no obstacles�
Choosing p at the end of the string� we have

jIpj � cr�qj��N�����

with the constant c equal to r times the diameter of E�� Now rede�ne �� to make this
interval be I
�

Lemma 	��� Let h�t� be any gauge function satisfying

h�cr�qj��N � � c�q
��
j for all j�����

�or just for an in�nite sequence of values of j	� Then Hh�E
�� ���

Proof� The coverings we have constructed contain at most ��N � ��qj intervals� each of

diameter at most cr�qj��N � Thus

�h�I� � ��N � ��qjh�cr
�qj��N � � ��N � ��c��

and since cr�qj��N � � we obtain Hh�E
�� � ��N � ��c��
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If we take equality in ����� this means h�t� 
 c�log���t���� for a sequence of t values

going to �� namely t 
 cr�qj��N � However� the sequence of values qj may be quite erratic�
so it would not be wise to interpolate using the same formula� A better choice is

h�t� 
 supf	�I� � jIj 
 tg����
�

Theorem 	��� Let h�t� be given by ����	� Assume that there exists � � � and an in�nite
sequence of indices j and j� � j such that

�qj � qj� � qj��N������

Then Hh�E� is �nite and positive� and the restriction of Hh to E� is equivalent to 	� in fact

	�A� � Hh�A� � c�	�A������

for any measureable set A � E��

Proof� Since ���
� implies

	�I� � h�jIj�������

the mass distribution principle �see �Fa�� p���� gives the positivity of Hh�E
�� and the left

inequality in ������ It is necessary to observe here that since E� is a subset of a C� curve�
the boundary of K� all coverings used in computing the Hh measure may be taken to be
intervals� Now if A � 
Ik with Hh�A� approximately equal to �h�jIkj�� then ����� yields
the left inequality in ������

Next we will verify that ����� holds for j satisfying ������ We return to the covering
constructed before the proof of Lemma ��� for the index j� associated to j in ������ This
time we do not split intervals when we encounter obstacles� but simply observe that �����
can always be replaced by the inequality

jIp��j � r��jIpj�������

since the two maps eSI �p and eSI ��p are moved apart after the contraction A��� Thus we have

a covering of E� by intervals Ip satisfying

jIpj � r�qj jI
j������

and

	�Ip� 
 �
�qj� �������

Now we want to choose �� to make jI
j as large as possible� We can certainly arrange to
have jI
j � c�qj� for c independent of j

� by choosing one of the qj� intervals Ip in the covering
to be I
� for if not then jE

�j � �jIpj would be too small� By taking qj� large enough we can
replace ������ by

jIpj � r�
����qj� �������

and then using the right inequality in ����� we have

jIpj � r�qj��N �������

On the other hand� using ������ and the left inequality in ����� we have

	�Ip� � �
����qj�������

Now suppose I is any interval satisfying jIj 
 cr�qj��N � To prove ����� we need to show
	�I� � c�q

��
j in view of ���
�� But this follows from ������� since I must be contained in

a �xed number of Ip intervals �this again uses the fact that E� lies in a C� curve� hence
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diameters of adjacent small intervals are essentially additive�� Since we have veri�ed �����
for an in�nite sequence of indices j� it follows from Lemma ��� that Hh�E

�� is �nite�

To get the right inequality in ����� we observe �rst that it su�ces to prove it for A an
interval� Then we simply localize the argument in the proof of Lemma ��� to the interval
A �select the intervals in the covering that meet A��

There are two obvious concerns with this theorem� The �rst is that the formula ���
�
for the gauge function is not explicit� The second is that condition ����� depends on the

continued fraction expansion of e���
� so there is at present no method of either proving it
or disproving it for any given matrix A� Since the size of the ratio qj�qj�� is on the order
of the corresponding continued fraction coe�cient� condition ����� holds �with j� 
 j � ��
whenever there are an in�nite number of coe�cients in the �moderate range�� The upper
inequality excludes very small values� and the lower inequality excludes very large values�
�Of course ����� can also be satis�ed with j� � j � � if there are sequences of consecutive
small values�� Since the control of � in ����� allows the upper bound to be chosen at will�

this condition appears to be generic� in that it should hold for a randomly chosen e��
Part of the proof of the theorem shows that when the ratio qj�qj�� is not too large� we

can interpolate the naive choice h�t� 
 c�log���t���� in between cr�qj����N and cr�qj��N �
We can also say something about the behavior of h�t� in this range when qj�qj�� is large� In

this case the excess of e���
 over pj���qj�� is on the order of �qjqj���
��� so the distribution

of values pe� for � � p � qj�� � � is almost uniform� with pe� � �
k�qj�� � �p mod �
 with
� � �p � c�qj � This means that if we increase p beyond qj�� the values of p� will stay very
close to �
k�qj�� also� More precisely� pick a small value of �� and allow p to increase to

�qj� Then pe� will exceed �
k�qj�� for the appropriate value of k by at most
�qj
qj��


 cqj 

c�

qj��
�

If c� 
 ���� then each interval Jk 
 ��
k�qj��� �
�k � ���qj��� will contain a subinterval

of length at least 
�qj�� with no values of pe� mod �
 for � � p � �qj � Now there are N
obstacle values �i we are trying to avoid� so by choosing the starting value �� appropriately
we can arrange to have all the intervals

Ip 
 ��� � �
p�qj��� �� � �
�p� ���N��qj���

for � � p � �qj avoid all N obstacles� Then since Ip 
 eSp�I
� we have jIpj 
 r�pjI
j and in
particular jI�qj j 
 cr��qj � while 	�I�qj� 
 �
��Nqj��� This shows that

h�cr��qj � � �
��Nqj�������
�

This is considerably larger than the interpolated value c��qj � In particular� if the set of

continued fraction coe�cients for e���
 is unbounded� then ����
� shows that h�t� is larger
than �log���t����� Equivalently� if we used the gauge �log���t���� rather than ���
�� the
Hausdor� measure of E� would be �� Again� the assumption that the continued fraction
coe�cients are not bounded is true generically� but at present it cannot be decided in any
particular instance�
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