Orthonormal Bases of Exponentials for the *n*-Cube

Jeffrey C. Lagarias James A. Reeds Information Sciences Research AT&T Labs - Research Florham Park, New Jersey 07932

Yang Wang ¹ School of Mathematics Georgia Institute of Technology Atlanta, GA 30332

(January 23, 1998)

Abstract

A compact domain Ω in \mathbb{R}^n is a spectral set if there is some subset Λ of \mathbb{R}^n such that $\{\exp(2\pi i \langle \lambda, x \rangle) : \lambda \in \Lambda\}$ when restricted to Ω gives an orthogonal basis of $L^2(\Omega)$. The set Λ is called a spectrum for Ω . We give a criterion for Λ being a spectrum of a given set Ω in terms of tiling Fourier space by translates of a suitable auxiliary set D. We apply this criterion to classify all spectra for the *n*-cube by showing that Λ is a spectrum for the *n*-cube if and only if $\{\lambda + [0, 1]^n : \lambda \in \Lambda\}$ is a tiling of \mathbb{R}^n by translates of unit cubes.

¹Partially supported by NSF grant DMS-97-06793

Orthonormal Bases of Exponentials for the *n*-Cube

Jeffrey C. Lagarias James A. Reeds Information Sciences Research AT&T Labs - Research Florham Park, New Jersey 07932

Yang Wang School of Mathematics Georgia Institute of Technology Atlanta, GA 30332

1. Introduction

A compact set Ω in \mathbb{R}^n of positive Lebesgue measure is a *spectral set* if there is some set of exponentials

$$\mathcal{B}_{\Lambda} := \{ e^{2\pi i \langle \lambda, x \rangle} : \lambda \in \Lambda \} , \qquad (1.1)$$

which when restricted to Ω gives an orthogonal basis for $L^2(\Omega)$, with respect to the inner product

$$\langle f,g \rangle_{\Omega} := \int_{\Omega} \overline{f(x)} g(x) dx$$
 (1.2)

Any set Λ that gives such an orthogonal basis is called a *spectrum* for Ω . Only very special sets Ω in \mathbb{R}^n are spectral sets. However when a spectrum exists, it can be viewed as a generalization of Fourier series, because for the *n*-cube $\Omega = [0, 1]^n$ the spectrum $\Lambda = \mathbb{Z}^n$ gives the standard Fourier basis of $L^2([0, 1]^n)$.

The main object of this paper is to relate the spectra of sets Ω to tilings in Fourier space. We develop such a relation and apply it to geometrically characterize all spectra for the *n*-cube $\Omega = [0, 1]^n$.

Theorem 1.1. The following conditions on a set Λ in \mathbb{R}^n are equivalent.

- (i) The set B_Λ = {e^{2πi⟨λ,x⟩} : λ ∈ Λ} when restricted to [0,1]ⁿ is an orthonormal basis of L²([0,1]ⁿ).
- (ii) The collection of sets $\{\lambda + [0,1]^n : \lambda \in \Lambda\}$ is a tiling of \mathbb{R}^n by translates of unit cubes.

This result was conjectured by Jorgensen and Pedersen [6], who proved it in dimensions $n \leq 3$. We note that in high dimensions there are many "exotic" cube tilings. There are

aperiodic cube tilings in all dimensions $n \ge 3$, while in dimensions $n \ge 10$ there are cube tilings in which no two cubes share a common (n-1)-face (Lagarias and Shor [8]).

In the theorem above the *n*-cube $[0, 1]^n$ appears in both conditions (i) and (ii), but the *n*-cube in (i) lies in the space domain \mathbb{R}^n while the *n*-cube in (ii) lies in the Fourier domain $(\mathbb{R}^n)^*$, so that they transform differently under linear change of variables. Thus Theorem 1.1 is equivalent to the following apparantly more general result.

Theorem 1.2. For any invertible linear transformation $A \in GL(n, \mathbb{R})$, the following conditions are equivalent.

- (i) $\Lambda \subset \mathbb{R}^n$ is a spectrum for $\Omega_A := A([0,1]^n)$.
- (ii) The collection of sets $\{\lambda + D_A : \lambda \in \Lambda\}$ is a tiling of \mathbb{R}^n , where $D_A = (A^T)^{-1}([0,1]^n)$.

Our results apply to more general sets Ω than cubes. Our main result in §3 gives a necessary and sufficient condition for a set Λ to be a spectrum of Ω in terms of a tiling of \mathbb{R}^n by $\Lambda + D$ where D is a specified auxiliary set in Fourier space. The applicability of this result is restricted to cases where a suitable auxiliary set D exists. Theorem 1.2 is then proved in §4.

Spectral sets were originally studied by Fuglede [2], who related them to the problem of finding commuting self-adjoint extensions in $L^2(\Omega)$ of the set of differential operators $-i\frac{\partial}{\partial x_1}, \ldots, -i\frac{\partial}{\partial x_n}$ defined on the common dense domain $C_c^{\infty}(\Omega)$. Our definition of spectrum differs from his by a multiplicative factor of 2π . Fuglede showed that for sufficiently nice regions Ω each spectrum Λ of Ω (in our sense) has $2\pi\Lambda$ as a joint spectrum of a set of commuting self-adjoint extensions of $-i\frac{\partial}{\partial x_1}, \ldots, -i\frac{\partial}{\partial x_n}$, and conversely; we state his result precisely in Appendix B. He also showed that only very special sets Ω are spectral sets. Much recent work on spectral sets is due to Jorgensen and Pedersen, see [4]–[6] and [13].

Fuglede [2, p. 120] made the following conjecture.

Spectral Set Conjecture. A set Ω in \mathbb{R}^n is a spectral set if and only if it tiles \mathbb{R}^n by translation.

This conjecture concerns tilings by Ω in the space domain; in contrast Theorem 1.2 above describes spectra Λ for the *n*-cube in terms of tilings in the Fourier domain by an auxiliary set *D*. In general there does not seem to be any simple relation between sets of translations *T* used to tile Ω in the space domain and the set of spectra Λ for Ω , see [5]. However our main results in $\S3$ indicate a relation between the Spectral Set Conjecture and tilings in the Fourier domain — this is discussed at the end of $\S3$, where we formulate several conjectures.

Theorem 1.2 also implies a result concerning sampling and interpolation of certain classes of entire functions. Given a compact set Ω of nonzero Lebesgue measure, let $B_2(\Omega)$ denote the set of *band-limited functions* on Ω , which are those entire functions $f : \mathbb{C}^n \to \mathbb{C}$ whose restriction to \mathbb{R}^n is the Fourier transform of an L^2 -function with compact support contained in Ω . A set Λ is a set of sampling for $B_2(\Omega)$ if for each set of complex values $\{c_{\lambda} : \lambda \in \Lambda\}$ with $\sum |c_{\lambda}|^2 < \infty$ there is at most one function $f \in B_2(\Omega)$ with

$$f(\lambda) = c_{\lambda}, \quad \text{for each} \quad \lambda \in \Lambda$$
. (1.3)

A set Λ is a set of interpolation for $B_2(\Omega)$ if for each such set $\{c_{\lambda} : \lambda \in \Lambda\}$ there is at least one function $f \in B_2(\Omega)$ such that (1.3) holds. It is clear that a spectrum Λ of a spectral set Ω is both a set of sampling and a set of interpolation for $B_2(\Omega)$. So Theorem 1.2 immediately yields:

Theorem 1.3. Given a linear transformation A in $GL(n, \mathbb{R})$, set $\Omega_A = A([0, 1]^n)$ and $D_A = (A^T)^{-1}([0, 1]^n)$. If $\Lambda + D_A$ is a tiling of \mathbb{R}^n , then Λ is both a set of sampling and a set of interpolation for $B_2(\Omega_A)$.

Note that the set Λ has density exactly the Nyquist rate $|\det(A)|$, as is required by results of Landau ([10], [11]) for sets of sampling and interpolation. In this connection see also Gröchenig and Razafinjatovo [3].

Theorem 1.2 also can be viewed as providing a collection of "nonharmonic Fourier series" expansions for L^2 -functions on an affine image of the *n*-cube; see Young [16] for a discussion of nonharmonic Fourier series.

We conclude this introduction with three remarks. First, in comparison with other spectral sets, the *n*-cube $[0,1]^n$ has an enormous variety of spectra Λ . It seems likely that a "generic" spectral set has a unique spectrum, up to translations.² Second, the main tiling result in §3 applies to more general sets Ω than linearly transformed *n*-cubes $\Omega_A = A([0,1]^n)$; a one-dimensional example is $\Omega = [0,1] \cup [2,3]$. Third, there are open questions in explicitly describing the commuting self-adjoint extensions of $-i\frac{\partial}{\partial x_1}, \ldots, -i\frac{\partial}{\partial x_n}$ in $L^2([0,1]^n)$ that correspond to cube tilings; see Appendix B.

²It can be shown that "generic" fundamental domain Ω of a full rank lattice L in \mathbb{R}^n has a unique spectrum $\Lambda = L^*$, the dual lattice.

Appendix A to the paper addresses the question of whether an orthogonal cube packing in \mathbb{R}^n can be extended to a cube tiling; Appendix B describes the connection of spectral sets and commuting partial differential operators.

Notation. For $x \in \mathbb{R}^n$, let ||x|| denote the Euclidean length of x. We let

$$B(x;T) := \{y : ||y - x|| \le T\}$$

denote the ball of radius T centered at x. The Lebesgue measure of a set Ω in \mathbb{R}^n is denoted $m(\Omega)$. The Fourier transform $\hat{f}(u)$ is normalized by

$$\hat{f}(u) := \int_{\mathbb{R}^n} e^{-2\pi i \langle u, x \rangle} f(x) dx$$

Throughout the paper we let

$$e_{\lambda}(x) := e^{2\pi i \langle \lambda, x \rangle}, \quad \text{for} \quad x \in \mathbb{R}^n$$
. (1.4)

Note that other authors ([2] [6]) define $e_{\lambda}(x)$ without the factor 2π .

2. Orthogonal Sets of Exponentials and Packings

We consider packings and tilings in \mathbb{R}^n by compact sets Ω of the following kind.

Definition 2.1. A compact set Ω in \mathbb{R}^n is a *regular region* if it has positive Lebesgue measure $m(\Omega) > 0$, is the closure of its interior Ω° , and has a boundary $\partial \Omega = \Omega \setminus \Omega^\circ$ of measure zero.

Definition 2.2. If Ω is a regular region, then a discrete set Λ is a *packing set* for Ω if the sets $\{\Omega + \lambda : \lambda \in \Lambda\}$ have disjoint interiors. It is a *tiling set* if in addition the union of the sets $\{\Omega + \lambda : \lambda \in \Lambda\}$ covers \mathbb{R}^n . In these cases we say $\Lambda + \Omega$ is a *packing* or *tiling* of \mathbb{R}^n by Ω , respectively.

To a vector $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n)$ in \mathbb{R}^n we associate the exponential function

$$e_{\lambda}(x) := e^{2\pi i \langle \lambda, x \rangle}, \quad \text{for} \quad x \in \mathbb{R}^n$$
. (2.1)

Given a discrete set Λ in \mathbb{R}^n , we set

$$\mathcal{B}_{\Lambda} := \{ e_{\lambda}(x) : \lambda \in \Lambda \} .$$
(2.2)

Now suppose that \mathcal{B}_{Λ} restricted to a regular region Ω gives an orthogonal set of exponentials in $L^2(\Omega)$. We derive conditions that the points of Λ must satisfy. Let

$$\chi_{\Omega}(x) = \begin{cases} 1 & \text{for } x \in \Omega \\ 0 & \text{for } x \notin \Omega \end{cases}$$
(2.3)

be the characteristic function of Ω , and consider its Fourier transform

$$\hat{\chi}_{\Omega}(u) = \int_{\mathbb{R}^n} e^{-2\pi i \langle u, x \rangle} \chi_{\Omega}(x) dx, \quad u \in \mathbb{R}^n .$$
(2.4)

Since Ω is compact the function $\hat{\chi}_{\Omega}(u)$ is an entire function of $u \in \mathbb{C}^n$. We denote the set of real zeros of $\hat{\chi}_{\Omega}(u)$ by

$$Z(\Omega) := \{ u \in \mathbb{R}^n : \hat{\chi}_{\Omega}(u) = 0 \} .$$

$$(2.5)$$

Lemma 2.1. If Ω is a regular region in \mathbb{R}^n then a set Λ gives an orthogonal set of exponentials \mathcal{B}_{Λ} in $L^2(\Omega)$ if and only if

$$\Lambda - \Lambda \subseteq Z(\Omega) \cup \{0\} . \tag{2.6}$$

Proof. For distinct $\lambda, \lambda' \in \Lambda$ we have

$$\begin{aligned} \hat{\chi}_{\Omega}(\lambda - \lambda') &= \int_{\mathbb{R}^n} e^{-2\pi i \langle \lambda - \lambda', x \rangle} \chi_{\Omega}(x) dx \\ &= \int_{\Omega} e^{-2\pi i \langle \lambda, x \rangle} e^{2\pi i \langle \lambda', x \rangle} dx \\ &= \langle e_{\lambda}, e_{\lambda'} \rangle_{\Omega} . \end{aligned}$$
(2.7)

If (2.6) holds, then $\langle e_{\lambda}, e_{\lambda'} \rangle_{\Omega} = 0$, and conversely.

This lemma implies that the points of Λ cannot be too close together. Since $\hat{\chi}_{\Omega}(0) = m(\Omega) > 0$, the continuity of $\hat{\chi}_{\Omega}(u)$ implies that there is some ball B(0; R) around 0 that includes no point of $Z(\Omega)$, hence $|\lambda - \lambda'| \ge R$ for all $\lambda, \lambda' \in \Lambda, \lambda \ne \lambda'$.

Definition 2.3. Let Ω be a regular region in \mathbb{R}^n . A regular region D is said to be an *orthogonal* packing region for Ω if

$$(D^{\circ} - D^{\circ}) \cap Z(\Omega) = \emptyset .$$
(2.8)

Lemma 2.2. Let Ω be a regular region in \mathbb{R}^n and let D be an orthogonal packing region for Ω . If a set Λ gives an orthogonal set of exponentials \mathcal{B}_{Λ} in $L^2(\Omega)$ then Λ is a packing set for D.

Proof. If $\lambda \neq \lambda' \in \Lambda$ then Lemma 2.1 gives $\lambda - \lambda' \in Z(\Omega)$. By definition of an orthogonal packing region we have $D^{\circ} \cap (D^{\circ} + u) = \emptyset$ for all $u \in Z(\Omega)$ hence

$$D^{\circ} \cap (D^{\circ} + \lambda - \lambda') = \emptyset$$
,

as required.

As indicated above, each regular region Ω has an orthogonal packing region D given by a ball B(0;T) for small enough T. The larger we can take D, the stronger the restrictions imposed on Λ .

Lemma 2.3. If Ω is a spectral set, and D is an orthogonal packing region for Ω , then

$$m(D)m(\Omega) \le 1 . \tag{2.9}$$

Proof. Let Λ be a spectrum for Ω . Then Λ is a set of sampling for $B_2(\Omega)$, so the density results of Landau [10] (see also Gröchenig and Razafinjatovo [3]) give

$$\mathbf{d}(\Lambda) = \liminf_{n \to \infty} \frac{1}{(2T)^n} \# (\Lambda \cap [-T, T]^n) \ge m(\Omega) \ . \tag{2.10}$$

Now $\Lambda + D$ is a packing of \mathbb{R}^n , hence if $R = \operatorname{diam}(D)$, we have

$$\frac{m(D)}{(2T)^n} \# (\Lambda \cap [-T,T]^n) = \frac{1}{(2T)^n} m \left(\left\{ \bigcup_{\lambda} (\lambda+D) : \lambda \in \Lambda \cap [-T,T]^n \right\} \right) \\
\leq \frac{m([-T+R,T+R]^n)}{(2T)^n} = \left(1 + \frac{R}{2T} \right)^n .$$
(2.11)

Letting $T \to \infty$ and taking the limit yields

$$m(D)\mathbf{d}(\Lambda) \le 1,\tag{2.12}$$

and now (2.10) yields (2.9). \blacksquare

In §3 we give a self-contained proof of Lemma 2.3. The inequality (2.9) of Lemma 2.3 does not hold for general sets Ω . In fact the set $\Omega = [0, 1] \cup [2, 2 + \theta]$ for suitable irrational θ has a Fourier transform $\hat{\chi}_{\Omega}(\xi)$ which has no real zeros, so $Z(\Omega) = \emptyset$, and any regular region D is an orthogonal packing region for Ω .

In view of Lemma 2.3 we introduce the following terminology.

Definition 2.4. An orthogonal packing region D for a regular region Ω is *tight* if

$$m(D) = \frac{1}{m(\Omega)} . \tag{2.13}$$

Lemma 2.4. Let D be a tight orthogonal packing region for a regular region Ω . Then for any $A \in GL(n, \mathbb{R})$ the set $(A^T)^{-1}(D)$ is a tight orthogonal packing region for $A(\Omega)$.

Proof. Since $\hat{\chi}_{A(\Omega)}(u) = |\det(A)|\hat{\chi}_{\Omega}(A^T u), Z(A(\Omega)) = (A^T)^{-1}Z(\Omega)$. Hence $(A^T)^{-1}(D)$ is an orthogonal packing region for $A(\Omega)$. It is tight because

$$m((A^T)^{-1}D) = \frac{1}{|\det(A^T)|} \ m(D) = \frac{1}{|\det(A^T)|} \ m(\Omega) = \frac{1}{m(A(\Omega))} .$$

There are many spectral sets which have tight orthogonal packing regions. For our main result in §4 we show that if $\Omega_A = A([0, 1]^n)$ is an affine image of the *n*-cube, with $A \in GL(n, \mathbb{R})$, then

$$D := (A^T)^{-1}([0,1]^n)$$
(2.14)

is a tight orthogonal packing region for Ω_A . Another example in \mathbb{R}^1 is the region

$$\Omega = [0,1] \cup [2,3] . \tag{2.15}$$

In this case we can take

$$D = \left[0, \frac{1}{4}\right] \cup \left[\frac{1}{2}, \frac{3}{4}\right]$$
 (2.16)

Indeed $\chi_{\Omega}(x)$ is the convolution of $\chi_{[0,1]}(x)$ with the sum of two delta functions $\delta_0 + \delta_2$. Thus

$$\hat{\chi}_{\Omega}(x) = (1 + e^{-4\pi i x}) \hat{\chi}_{[0,1]}(x) .$$
(2.17)

From this it is easy to check that the zero set is given by

$$Z(\Omega) = (\mathbb{Z} \setminus \{0\}) \cup \left(\frac{1}{4} + \mathbb{Z}\right) \cup \left(-\frac{1}{4} + \mathbb{Z}\right) , \qquad (2.18)$$

that D is an orthogonal packing region for Ω , and, since $m(D) = \frac{1}{2} = \frac{1}{m(\Omega)}$, that D is tight. A spectrum for Ω is $\Lambda = \mathbb{Z} \cup (\mathbb{Z} + \frac{1}{4})$.

Lemma 2.3 together with the spectral set conjecture lead us to propose:

Conjecture 2.1. If Ω tiles \mathbb{R}^n by translations, and D is an orthogonal packing region for Ω , then

$$m(\Omega)m(D) \le 1 . \tag{2.19}$$

3. Spectra and Tilings

A main result of this paper is the following criterion which relates spectra to tilings in the Fourier domain.

Theorem 3.1. Let Ω be a regular region in \mathbb{R}^n , and let Λ be such that the set of exponentials \mathcal{B}_{Λ} is orthogonal for $L^2(\Omega)$. Suppose that D is a regular region with

$$m(D)m(\Omega) = 1 \tag{3.1}$$

such that $\Lambda + D$ is a packing of \mathbb{R}^n . Then Λ is a spectrum for Ω if and only if $\Lambda + D$ is a tiling of \mathbb{R}^n .

Proof. \Rightarrow . Suppose first that Λ is a spectrum for Ω . Pick a "bump function" $\gamma(x) \in C_c^{\infty}(\Omega)$, and set

$$\gamma_t(x) = e^{-2\pi i \langle t, x \rangle} \gamma(x), \quad \text{for} \quad t \in \mathbb{R}^n \;.$$

By hypothesis $\mathcal{B}_{\Lambda} = \{e_{\lambda}(x) : \lambda \in \Lambda\}$ is orthogonal and complete for $L^{2}(\Omega)$. Thus, on Ω , we have

$$\gamma_t(x) \sim \sum_{\lambda \in \Lambda} \frac{\langle e^{2\pi i \langle \lambda, x \rangle}, \gamma_t(x) \rangle_{\Omega}}{\|e_{\lambda}\|_2^2} \ e^{2\pi i \langle \lambda, x \rangle} , \qquad (3.2)$$

with coefficients

$$\frac{\langle e^{2\pi i \langle \lambda, x \rangle}, \gamma_t(x) \rangle_{\Omega}}{\|e_{\lambda}\|_2^2} = \frac{1}{m(\Omega)} \int_{\Omega} e^{-2\pi i \langle \lambda, x \rangle} \gamma_t(x) dx
= \frac{1}{m(\Omega)} \int_{\mathbb{R}^n} e^{-2\pi i \langle \lambda + t, x \rangle} \gamma(x) dx
= \frac{1}{m(\Omega)} \hat{\gamma}(\lambda + t) ,$$
(3.3)

where $m(\Omega)$ is the Lebesgue measure of Ω . Since γ is a smooth function,

$$\|\hat{\gamma}(u)\| \le C_{\gamma} \|u\|^{-n-2}, \quad \text{for} \quad u \in \mathbb{R}^n \quad \text{with} \quad \|u\| \ge 1 .$$

$$(3.4)$$

This fact, plus the "well-spaced" property of Λ shows that the right side of (3.2) converges absolutely and uniformly on \mathbb{R}^n . Since $g_t(x)$ is continuous, we have

$$\gamma_t(x) = \frac{1}{m(\Omega)} \sum_{\lambda \in \Lambda} \hat{\gamma}(\lambda + t) e^{2\pi i \langle \lambda, x \rangle}, \quad \text{for all} \quad x \in \Omega .$$
(3.5)

This yields, for all $t \in \mathbb{R}^n$, that

$$\gamma(x) = e^{2\pi i \langle t, x \rangle} \gamma_t(x)$$

= $\frac{1}{m(\Omega)} \sum_{\lambda \in \Lambda} \hat{\gamma}(\lambda + t) e^{2\pi i \langle \lambda + t, x \rangle}$, for all $x \in \Omega$. (3.6)

The series on the right side of (3.6) converges absolutely and uniformly for all $x \in \mathbb{R}^n$ and t in any fixed compact subset of \mathbb{R}^n , but is only guaranteed to agree with $\gamma(x)$ for $x \in \Omega$. We now integrate both sides of (3.6) in t over all $t \in D$ to obtain:

$$m(D)\gamma(x) = \gamma(x) \int_{\mathbb{R}^n} \chi_D(t)dt$$

= $\frac{1}{m(\Omega)} \sum_{\lambda \in \Lambda} \int_D \hat{\gamma}(\lambda + t) e^{2\pi i \langle \lambda + t, x \rangle} dt$
= $\frac{1}{m(\Omega)} \int_{\Lambda + D} \hat{\gamma}(u) e^{2\pi i \langle u, x \rangle} du$, for all $x \in \Omega$. (3.7)

In the last step we used the fact that the translates $\lambda + D$ overlap on sets of measure zero, because $\Lambda + D$ is a packing of \mathbb{R}^n . Since $m(D) = \frac{1}{m(\Omega)}$, (3.7) yields

$$\gamma(x) = \int_{\mathbb{R}^n} \hat{\gamma}(u) h(u) e^{2\pi i \langle u, x \rangle} du, \quad \text{for all} \quad x \in \Omega , \qquad (3.8)$$

where

$$h(u) = \left\{ egin{array}{ccc} 1 & ext{if} \ u \in \Lambda + D \ 0 & ext{otherwise} \end{array}
ight.$$

Define $k \in L^2(\mathbb{R}^n)$ by $\hat{k} = h\hat{\gamma}$, so (3.8) asserts that $\gamma(x) = k(x)$ for almost all $x \in \Omega$. Plancherel's theorem on $L^2(\mathbb{R}^n)$ applied to k, together with (3.8), gives

$$\begin{aligned} \|\hat{\gamma}\|_{2}^{2} &\geq \|h\hat{\gamma}\|_{2}^{2} = \|k\|_{2}^{2} \\ &\geq \int_{\Omega} |k(x)|^{2} dx = \int_{\Omega} |\gamma(x)|^{2} dx = \|\gamma\|_{2}^{2} . \end{aligned}$$
(3.9)

Since Plancherel's theorem also gives $\|\hat{\gamma}\|_2^2 = \|\gamma\|_2^2$, we must have

$$\|\hat{\gamma}\|_2^2 = \|h\hat{\gamma}\|_2^2 . \tag{3.10}$$

We next show that this equality implies that h(u) = 1 almost everywhere on \mathbb{R}^n . To do this we show that $\hat{\gamma}(u) \neq 0$ a.e. in \mathbb{R}^n . Since γ has compact support, the Paley-Wiener theorem states that $\hat{\gamma}(u)$ is the restriction to \mathbb{R}^n of an entire function on \mathbb{C}^n that satisfies an exponential growth condition at infinity, see Stein and Weiss [15], Theorem 4.9. Thus $\hat{\gamma}(u)$ is real-analytic on \mathbb{R}^n and is not identically zero, hence

$$Z := \{ u \in \mathbb{R}^n : \hat{\gamma}(u) = 0 \}$$

has Lebesgue measure zero. Together with (3.10) this yields

$$h(u) = 1 \quad \text{a.e.} \quad \text{in } \mathbb{R}^n . \tag{3.11}$$

Thus $\Lambda + D$ covers all of \mathbb{R}^n except a set of measure zero.

Finally we show that $\Lambda + D$ covers all of \mathbb{R}^n . By the well-spaced property of Λ and the compactness of D, the set $\Lambda + D$ is locally the union of finitely many translates of D, hence $\Lambda + D$ is closed. Thus the complement of $\Lambda + D$ is an open set. But the complement of $\Lambda + D$ has zero Lebesgue measure, hence it is empty, so $\Lambda + D$ is a tiling of \mathbb{R}^n .

 \Leftarrow . Suppose $\Lambda + D$ tiles \mathbb{R}^n . By hypothesis \mathcal{B}_{Λ} is an orthogonal set in $L^2(\Omega)$, and to show that Λ is a spectrum it remains to show that it is complete in $L^2(\Omega)$. Let S be the closed span of \mathcal{B}_{Λ} in $L^2(\Omega)$. We will show that $C_c^{\infty}(\Omega)$ is contained in S. Since $C_c^{\infty}(\Omega)$ is dense in $L^2(\Omega)$ this implies $S = L^2(\Omega)$.

For each $\gamma \in C_c^{\infty}(\Omega)$ set

$$\gamma_t(x) = e^{-2\pi i \langle t, x \rangle} \gamma(x), \quad \text{for} \quad t \in \mathbb{R}^n$$
.

Since the elements of \mathcal{B}_{Λ} are orthogonal, Bessel's inequality gives

$$\begin{aligned} \|\gamma_t\|^2 &\geq \sum_{\lambda \in \Lambda} \frac{|\langle e_\lambda, \gamma_t \rangle|^2}{\|e_\lambda\|^2} \\ &= \frac{1}{m(\Omega)} \sum_{\lambda \in \Lambda} |\hat{\gamma}(\lambda + t)|^2 , \end{aligned}$$
(3.12)

where the last series converges uniformly on compact sets by the rapid decay of $\hat{\gamma}$ at infinity. Integrating this inequality over $t \in D$ yields

$$\int_D \|\gamma_t\|^2 dt \ge \frac{1}{m(\Omega)} \int_D \sum_{\lambda \in \Lambda} |\hat{\gamma}(\lambda + t)|^2 dt .$$

Since $\|\gamma_t\| = \|\gamma\|$ for all t, and since $\Lambda + D$ is a tiling, we obtain $m(D)\|\gamma\|^2 \ge \|\hat{\gamma}\|^2/m(\Omega)$. But $m(D) = 1/m(\Omega)$ and $\|\gamma\|^2 = \|\hat{\gamma}\|^2$, so equality must hold in (3.12) for almost all t:

$$\|\gamma\|^2 = \sum_{\lambda \in \Lambda} \frac{|\langle e_\lambda, \gamma_t \rangle|^2}{\|e_\lambda\|_2^2} .$$
(3.13)

Now the right side of (3.13) converges uniformly on compact sets, so (3.13) holds for all t, including t = 0. Hence

$$\|\gamma\|^2 = \sum_{\lambda \in \Lambda} \frac{|\langle e_\lambda, \gamma \rangle|^2}{\|e_\lambda\|_2^2}$$

and so $\gamma \in S$.

At first glance this proof of Theorem 3.1 appears "too good to be true" because it only uses functions $\gamma_t(x)$ supported on a tiny part of Ω . In fact all of Ω is used in the formula (3.6) which is required to be valid for all $x \in \Omega$. The proof of Theorem 3.1 yields a direct proof of Lemma 2.3. If D is an orthogonal packing set, then (3.7) holds for it, hence $m(D)m(\Omega)\gamma(x)$ agrees with k(x) on Ω , hence

$$m(D)m(\Omega) \|\gamma\|_2 \le \|k\|_2 \le \|\gamma\|_2$$

hence (2.9) holds.

The following result is an immediate corollary of Theorem 3.1, which we state as a theorem for emphasis.

Theorem 3.2. Let Ω be a regular region in \mathbb{R}^n , and suppose that D is a tight orthogonal packing region for Ω . If Λ is a spectrum for Ω , then $\Lambda + D$ is a tiling of \mathbb{R}^n .

Proof. The assumption that D is a tight orthogonal packing region guarantees that $\Lambda + D$ is a packing for all spectra Λ , so Theorem 3.1 applies.

Theorem 3.2 sheds some light on Fuglede's conjecture that every spectral set Ω tiles \mathbb{R}^n .

Definition 3.1. A pair of regular regions $(\Omega, \hat{\Omega})$ are a *tight dual pair* if each is a tight orthogonal packing region for the other.

In §4 we show that $(A([0,1]^n), (A^T)^{-1}([0,1]^n))$ are a tight dual pair of regions. The sets $([0,1] \cup [2,3], [0,\frac{1}{4}] \cup [\frac{1}{2},\frac{3}{4}])$ are a tight dual pair in \mathbb{R}^1 .

If $(\Omega, \hat{\Omega})$ are a tight dual pair, then Theorem 3.1 states that if one of $(\Omega, \hat{\Omega})$ is a spectral set, say Ω , then the other set $\hat{\Omega}$ tiles \mathbb{R}^n . If $\hat{\Omega}$ were also a spectral set (as Fuglede's conjecture implies) then Theorem 3.1 would show that Ω tiles \mathbb{R}^n . This raises the question whether the current evidence in favor of Fuglede's conjecture is mainly based on sets Ω which are part of a tight dual pair $(\Omega, \hat{\Omega})$. At present we can only say that there are many nontrivial examples of tight dual pairs.

To clarify matters, we formulate two conjectures.

Conjecture 3.1. (Spectral Set Duality Conjecture) If $(\Omega, \hat{\Omega})$ is a tight dual pair of regular regions, and Ω is a spectral set, then $\hat{\Omega}$ is also a spectral set.

In this case Theorem 3.2 would imply that both Ω and $\overline{\Omega}$ tile \mathbb{R}^n .

The following is a tiling analogue of the conjecture above.

Conjecture 3.2. (Weak Spectral Set Conjecture) If $(\Omega, \hat{\Omega})$ are a tight dual pair of regular regions, and one of them tiles \mathbb{R}^n , then so does the other, and both Ω and $\hat{\Omega}$ are spectral sets.

4. Spectra for the *n*-cube and Cube Tilings

We now prove Theorem 1.2, using the results of $\S3$.

The next two lemmas show that if $\Omega_A = A([0, 1]^n)$ is an affine image of the *n*-cube, with $A \in GL(n, \mathbb{R})$, then

$$D := (A^T)^{-1}([0,1]^n)$$
(4.1)

is a tight orthogonal packing region for Ω_A .

Lemma 4.1. $\mathcal{B}_{\Lambda} := \{e^{2\pi i \langle \lambda, x \rangle} : \lambda \in \Lambda\}$ gives a set of orthogonal functions in $L^2([0, 1]^n)$ if and only if for any distinct $\lambda, \mu \in \Lambda$,

$$\lambda_j - \mu_j \in \mathbb{Z} \setminus \{0\} \quad for \; some j, \quad 1 \le j \le n \; . \tag{4.2}$$

Proof. For $\Omega = [0, 1]^n$ and $u \in \mathbb{R}^n$,

$$\hat{\chi}_{\Omega}(u) = \int_{[0,1]^n} e^{-2\pi i \langle u, x \rangle} dx = \prod_{j=1}^n h_0(u_j) ,$$

where $h_0(\omega) := (1 - e^{-2\pi i\omega})/(2\pi i\omega)$, $\omega \in \mathbb{R}$, and $h_0(0) := 1$. Note that $h_0(\omega) = 0$ if and only if $\omega \in \mathbb{Z} \setminus \{0\}$. Hence $\hat{\chi}_{\Omega}(u) = 0$ if and only if $u_j \in \mathbb{Z} \setminus \{0\}$ for some $j, 1 \leq j \leq n$. The lemma now follows immediately from Lemma 2.1.

Lemma 4.2. Let $A \in GL(n, \mathbb{R})$ and $\Omega = A([0, 1]^n)$. Then $D = (A^T)^{-1}([0, 1]^n)$ is a tight orthogonal packing region for Ω .

Proof. By Lemma 2.4 we need only check this for $\Omega = [0, 1]^n$. Lemma 4.1 implies that $D = [0, 1]^n$ is an orthogonal packing region for Ω_1 and it is clearly tight.

We will also use the following basic result of Keller [7].

Proposition 4.1. (Keller) If $\Lambda + [0,1]^n$ is a tiling of \mathbb{R}^n , then each $\lambda, \lambda' \in \Lambda$ has

$$\lambda_i - \lambda'_i \in \mathbb{Z} \setminus \{0\} \quad for \ some \quad i, \quad 1 \le i \le n \ . \tag{4.3}$$

Proof. This result was proved by Keller [7] in 1930. A detailed proof appears in Perron [14], Satz 9.

Proof of Theorem 1.2. (i) \Rightarrow (ii). Suppose that Λ is a spectrum for $D = A([0, 1]^n)$. Lemma 4.2 gives that $D = (A^T)^{-1}([0, 1]^n)$ is a tight orthogonal packing set for Ω . By Theorem 3.2 $\Lambda + D$ is a tiling of \mathbb{R}^n .

(ii) \Rightarrow (i). It suffices to prove this direction for the *n*-cube $\Omega = [0, 1]^n$, since the general case follows by a linear change of variables. We take $D = [0, 1]^n$, so $m(\Omega)m(D) = 1$. Let $\Lambda + D$ be a cube-tiling. Now Proposition 4.1 shows that \mathcal{B}_{Λ} is an orthogonal set in $L^2([0, 1]^n)$, by the criterion of Lemma 2.4. The hypotheses of Theorem 3.1 hold, and we conclude that Λ is a spectrum because $\Lambda + D$ is a tiling.

Appendix A. Extending Cube Packings to Cube Tilings

This appendix addresses the problem of when a cube packing in \mathbb{R}^n can be extended to a cube tiling by adding extra cubes.

Definition A.1. A cube packing $\Lambda + [0, 1]^n$ is *orthogonal* if for distinct $\lambda, \mu \in \Lambda$,

$$\lambda_j - \mu_j \in \mathbb{Z} \setminus \{0\} \quad \text{for some } j, \qquad 1 \le j \le n.$$
(A.1)

Keller's theorem (Proposition 4.1) shows that a necessary condition for a cube packing to be extendible to a cube tiling is that it be orthogonal. A natural question is: Can every orthogonal cube packing in \mathbb{R}^n be completed to a cube tiling of \mathbb{R}^n ? The answer is "yes" in dimensions 1 and 2, as can be easily checked. However, we show that it is "no" in dimensions 3 and above.

Theorem A.1. In each dimension $n \ge 3$ there is an orthogonal cube packing that does not extend to a cube tiling of \mathbb{R}^n .

Proof. In dimension 3, consider the set of four cubes $\{v^{(i)} + [0,1]^3 : 1 \le i \le 4\}$ in \mathbb{R}^4 , given by

$$\begin{aligned} v^{(1)} &= \begin{pmatrix} -1, & 0, & -\frac{1}{2} \end{pmatrix} \\ v^{(2)} &= \begin{pmatrix} -\frac{1}{2}, & -1, & 0 \end{pmatrix} \\ v^{(3)} &= \begin{pmatrix} 0, & -\frac{1}{2}, & -1 \end{pmatrix} \\ v^{(4)} &= \begin{pmatrix} \frac{1}{2}, & \frac{1}{2}, & \frac{1}{2} \end{pmatrix} \end{aligned}$$

The orthogonality condition (4.2) is easily verified. The cubes corresponding to $v^{(1)}$ through $v^{(3)}$ contain (0, 0, 0) on their boundary and create a corner (0, 0, 0). Any cube tiling that extended $\{v^{(i)} + [0, 1]^3 : 1 \le i \le 3\}$ would have to fill this corner by including the cube $[0, 1]^3$. However $[0, 1]^3$ has nonempty interior in common with $v^{(4)} + [0, 1]^3$.

This construction easily generalizes to \mathbb{R}^n for $n \geq 3$.

Appendix B. Commuting Self-Adjoint Partial Differential Operators

B. Fuglede [2] studied the problem of finding commuting self-adjoint extensions of the operators $-i\frac{\partial}{\partial x_1}, \ldots, -i\frac{\partial}{\partial x_n}$ to suitable regions in $L^2(\Omega)$. Note that each operator $-i\frac{\partial}{\partial x_i}$ is a "Dirac operator" in the sense that it is the "square root" of the "Laplace operator" $\frac{\partial^2}{\partial x_i^2}$.

Definition B.1 A Nikodym region Ω in \mathbb{R}^n is an open set such that every distribution u on Ω such that $D_j u \in L^2(\Omega)$ for $1 \leq j \leq n$ necessarily has $u \in L^2(\Omega)$.

Any bounded open subset of \mathbb{R}^n of finite measure which is star-shaped with respect to some interior point is a Nikodym region [1, p. 332]. Thus the open unit cube $(0,1)^n$ is a Nikodym region.

Let D_j denote the operator $\frac{\partial}{\partial x_j}$ extended to its maximal domain in $L^2(\Omega)$, given by

$$\operatorname{dom}(D_j) := \{ u \in L^2(\Omega) : D_j u \in L^2(\Omega) \} , \qquad (B.1)$$

where D_j acts in the sense of distributions on $L^2(\Omega)$. Fuglede [2, Theorem 1], proved the following³ result.

Theorem B.1. (Fuglede) Suppose that $\Omega \subset \mathbb{R}^n$ is a Nikodym region.

(i) Let $H = (H_1, \ldots, H_n)$ denote a commuting family (if any) of self-adjoint restrictions H_j of D_j on $L^2(\Omega)$. Then H has a discrete joint spectrum $\sigma(H)$ in which each point $2\pi\lambda \in \sigma(H)$ is a simple eigenvalue with eigenspace $\mathbb{C}e_{\lambda}$, and if $\Lambda = \frac{1}{2\pi}\sigma(H)$ then $\mathcal{B}_{\Lambda} = \{e_{\lambda} : \lambda \in \Lambda\}$ is an orthogonal basis of $L^2(\Omega)$.

(ii) Conversely, let Λ be a subset (if any) of \mathbb{R}^n such that $\{e_{\lambda} : \lambda \in \Lambda\}$ is an orthogonal basis for $L^2(\Omega)$. Then there exists a unique commuting family $H = (H_1, \ldots, H_n)$ of selfadjoint restrictions H_j of D_j on $L^2(\Omega)$ such that $\{e_{\lambda} : \lambda \in \Lambda\} \subset \operatorname{dom}(H)$, or equivalently that $\Lambda = \frac{1}{2\pi}\sigma(H)$.

We apply this theorem to the special case where $\Omega = [0, 1]^n$ is the *n*-cube. Theorem 1.1 classified all orthogonal bases of exponentials for Ω , and the result above shows that there is a unique commuting family H_{Λ} associated to each cube tiling Λ . Can one give a precise description of H_{Λ} in terms of the data Λ ?

³Note that our exponential e_{λ} corresponds to Fuglede's exponential $e_{2\pi\lambda}$.

The self-adjoint extensions of $-i\frac{\partial}{\partial x_j}$ acting on $C^{\infty}([0,1]^n)$ inside the Hilbert space $L^2([0,1]^n)$ may be thought of as being specified by boundary conditions; this is described in Jorgensen and Pedersen [6, Lemma 3.1]. The boundary conditions for $-i\frac{\partial}{\partial x_j}$ are imposed on the two opposite (n-1)-faces of the cube $H_j^{(0)}$ and $H_j^{(1)}$ given by

$$H_j^{(k)} := \{ x \in [0, 1] : x_j = k \} \quad \text{for} \quad k = 0, 1 .$$
 (B.2)

Each self-adjoint extension V_j of $-i\frac{\partial}{\partial x_j}$ corresponds to a partial isometry

$$U_{V_j}: \mathcal{D}^{(j)}_+ \longrightarrow \mathcal{D}^{(j)}_-$$

in which $\mathcal{D}^{(j)}_+ \subseteq L^2(H^{(0)}_j)$ and $\mathcal{D}^{(j)}_- \subseteq L^2(H^{(1)}_j)$ are suitable dense subspaces. Can the boundary condition operators $(U_{V_1}, \ldots U_{V_n})$ for $H = H_\Lambda$ be explicitly constructed for a tiling Λ ?

As one example, consider the translated Fourier basis $\Lambda = \mathbb{Z} + t$. If we identify each $L_2(H_j^{(i)})$ with $L^2([0, 1]^{n-1})$ in the obvious way, then the corresponding boundary conditions are given by

$$U_{V_j}(f) = e^{2\pi i t_j} f, \quad 1 \le j \le n$$
 (B.3)

Here the domain and range of U_{V_i} are all of $L^2([0, 1]^{n-1})$.

References

- J. Deny and J. L. Lions, Les espaces du type de Beppo Levi, Ann. Inst. Fourier 5 (1953/54), 305–370.
- B. Fuglede, Commuting self-adjoint partial differential operators and a group theoretic problem, J. Funct. Anal. 16 (1974), 101–121.
- [3] K. Gröchenig and H. Razafinjatovo, On Landau's necessary density conditions for sampling and interpolation of band-limited functions, J. London. Math. Soc. 54 (1996), 557– 565.
- [4] P. E. T. Jorgensen and S. Pedersen, Spectral theory for Borel sets in ℝⁿ of finite measure,
 J. Funct. Anal. 107 (1992), 72–104.
- [5] P. E. T. Jorgensen and S. Pedersen, Group-theoretic and geometric properties of multivariable Fourier series, Expo. Math. 11 (1993), 309–329.
- [6] P. E. T. Jorgensen and S. Pedersen, Spectral Pairs in Cartesian Coordinates, preprint.
- [7] O. H. Keller, Über die luckenlose Einfüllung des Raumes mit Würfeln, J. reine Angew.
 163 (1930), 231–248.
- [8] J. C. Lagarias and P. Shor, Keller's Conjecture on Cube Tilings is False in High Dimensions, Bull. Amer. Math. Soc. 27 (1992), 279–287.
- [9] J. C. Lagarias and Y. Wang, Spectral Sets and Factorizations of Finite Abelian Groups, J. Funct. Anal. 145 (1997) 73–98.
- [10] H. Landau, Necessary density conditions for sampling and interpolation of certain entire functions, Acta Math. 117 (1967), 37–52.
- [11] H. Landau, Sampling, data transmission and the Nyquist rate, Proc. IEEE, 55 (1967), 1701–1706.
- [12] S. Pedersen, Spectral theory of commuting self-adjoint partial differential operators, J. Funct. Anal. 73 (1987), 122–134.
- [13] S. Pedersen, Spectral sets whose spectrum is a lattice with a base, J. Funct. Anal. 141 (1996), 496–509.

- [14] D. Perron, Über luckenlose Ausfüllung des n-dimensionalen Raumes durch Kongruente Würfel, Math Z. 46 (1940), 1–26 and 161–180.
- [15] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press: Princeton 1971.
- [16] R. Young, An Introduction to Nonharmonic Fourier Series, Academic Press: New York 1980.