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ABSTRACT

Substitution Delone set families are families of Delone sets X = (X1, . . . , Xn) which satisfy
the inflation functional equation

Xi =
m
∨

j=1

(A(Xj) + Dij), 1 ≤ i ≤ m ,

in which A is an expanding matrix, i.e. all of the eigenvalues of A fall outside the unit circle.
Here the Dij are finite sets of vectors in R

d and
∨

denotes union that counts multiplicity.

This paper characterizes families X = (X1, ..., Xn) that satisfy an inflation functional equa-
tion, in which each Xi is a multiset (set with multiplicity) whose underlying set is discrete. It
then studies the subclass of Delone set solutions, and gives necessary conditions on the coeffi-
cients of the inflation functional equation for such solutions X to exist. It relates Delone set
solutions to a narrower subclass, called self-replicating multi-tiling sets, which arise as tiling
sets for self-replicating multi-tilings.
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1. Introduction

Aperiodic and self-similar structures in R
d have been extensively studied using tilings of

R
d as models. Among these are the classes of self-similar tilings and, more generally, self-

affine tilings. Such tilings have been proposed as models for quasicrystalline structures ([2],
[6], [7].[21], [23]), [31]); they also arise in constructions of compactly supported wavelets and
multiwavelets ( [1],[4], [5]). An alternate method of modelling quasicrystalline structures uses
discrete sets, more specifically Delone sets (defined below), see [13], [14], [15], [25], [26], [27],
[32]. These sets model the atomic positions occupied in the structure. In terms of tilings, such
discrete sets can be viewed either as tiling sets, representing the translations used in forming
tilings by translation of a finite number of different prototile types, or as control points marking
in some way the location of each tile.

Comparison of these two types of models, which appear rather different, motivates the
question: Is there an appropriate notion of self-similarity appropriate to discrete sets and
Delone sets? This paper develops such a notion, which is based on a system of functional
equations dual to the functional equations associated to self-affine tilings and multi-tilings.

We first recall the functional equation associated to the construction of finite sets of tiles
{T1, . . . , Tn} which tile R

d with special kinds of self-affine tilings. The tiles are solutions to
a finite system of set-valued functional equations which we call multi-tile equations, which
encode a self-affine property. An inflation map φ : R

d → R
d is an expanding linear map

φ(x) = Ax in which A is an expanding n× n real matrix, i.e. all its eigenvalues |λ| > 1. Let
{Dij : 1 ≤ i, j ≤ n} be finite sets in R

d called digit sets.

Multi-Tile Functional Equation. The family of compact sets (T1, T2, . . . , Tn) satisfy the
system of equations

A(Ti) =
n
⋃

j=1

(Tj + Dji) (1.1)



for 1 ≤ i ≤ n.

This functional equation is set-valued, i.e. points are counted without multiplicity in the
set union on the right side of (1.1). The subdivision matrix associated to (1.1) is

S = [|Dij |]1≤i,j≤n. (1.2)

These functional equations have a nice solution theory when the substitution matrix satisfies
the following extra condition.

Definition 1.1. A nonnegative real matrix S is primitive if some power Sk has strictly positive
entries.

In the one-dimensional case the subdivision matrix associated to (1.1) is always primitive.
It is known that when S is primitive the functional equation (1.1) has a unique solution

T := (T1, . . . , Tn)

in which all Ti are nonempty compact sets (see [1, Theorem 2.3], [4]). In the imprimitive case
it has a finite number of solutions T := (T1, . . . , Tn) in which all Ti are nonempty compact sets,
see [4] for examples, but the theory becomes more complicated. In this paper we primarily
consider functional equations where the subdivison matrix S is primitive.

We are interested in the case where these sets Ti have positive Lebesgue measure and can
be used in tiling R

n by a self-affine tiling. The tiling sets for such tilings are special solutions
to a second functional equation involving the same data, which is “adjoint” to the multi-tile
functional equation. This functional equation counts multiplicities of sets, unlike (1.1), and we
consider solutions to it that are multisets.

Inflation Functional Equation. The multiset family X := (X1, X2, . . . , Xn) satisfies the
system of equations

Xi =

n
∨

j=1

(A(Xj) + Dij), 1 ≤ i ≤ n, (1.3)

where Dij are finite sets of vectors in R
d.

Here each Xi is a multiset (as defined in §2), and
∨n

j=1 denotes multiset union, as defined
in §2. The multiset equation (1.3) can alternatively be written as a system of equations for
the multiplicity functions:

mXi
(x) =

n
∑

j=1

mA(Xj)+Dij
(x) =

n
∑

j=1

∑

d∈Dij

mXj
(A−1(x − d)), for all x ∈ R

d. (1.4)

A self-replicating multi-tiling consists of a pair of solutions to the multi-tile functional
equation and the inflation functional equation such that:

(1) The solution T := (T1, . . . , Tn) to the multi-tile functional equation has all sets Ti of
positive Lebesgue measure.
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(2) The solution X = (X1, . . . , Xn) to the inflation functional equation are sets (multi-
sets with all multiplicities equal to one) and

⋃n
i=1(Ti +Xi) is a tiling of R

d, using the T ′
is as

prototiles.

We call the family X a self-replicating multi-tiling set. This notion extends the notion of
self-replicating tilings studied in Kenyon [8], [9], which allow only one type of tile (n = 1); later
studies ([10], [11]) allowed n tile types but restricted the inflation matrix A to be a similarity.

It follows from this definition that each Xi is a uniformly discrete set, and in fact is a
Delone set. There are very strong restrictions on the data (A,Dij) on the functional equations
for a self-replicating multi-tiling to exist, e.g. the Perron eigenvalue condition given below.

This paper studies solutions to the inflation functional equation that are discrete, including
solutions that do not correspond to tilings. The inflation functional equation has properties
that significantly differ from those of the multi-tile functional equation. For example, the multi-
tile functional equation has a unique solution (in the case of primitive subdivision matrix)
because the solution T is given by the unique fixed point of a contracting system of mappings.
In contrast, the inflation functional equation involves an expanding system of mappings, and
its solutions are not compact sets. It may have infinitely many different solutions, even very
nice solutions in some cases. Our replacement for the “contracting” condition, is to restrict
attention to solutions X = (X1, . . . , Xn) having the property that all Xj are discrete multisets.
A set X in R

d is discrete if each bounded set in R
d contains finitely many elements of X. A

multiset X is discrete if its underlying set X is discrete and each element in X has a finite
multiplicity.

In §3 we develop a structure theory for solutions to the inflation functional equation that
are discrete multisets. We show they decompose uniquely into a finite number of irreducible
discrete multisets, and show that each irreducible discrete multiset is characterized by a finite
set of data. These results are proved for general inflation functional equations, with no primi-
tivity restriction. We note however that the requirement that a discrete multiset solution exist
puts very significant restrictions on the inflation functional equation data (A,Dij).

In the remainder of the paper we study solutions which correspond more closely to tilings.
A multiset X is weakly uniformly discrete if there is a positive radius r and a finite constant
m ≥ 1 such that each ball of radius r contains at most m points of X, counting multiplicities;
it is uniformly discrete if one can take m = 1. A multiset X is a weak Delone set X if it is
weakly uniformly discrete and relatively dense; it is a Delone set if it is also uniformly discrete.
A solution X = (X1, ..., Xn) to the inflation functional equation is a weak substitution Delone
set family if each multiset Xi is a weak Delone set; it is a substitution Delone set family if in
addition each multiset Xi is a Delone set. In studying solutions which are weak Delone sets, we
restrict attention to inflation functional equations that have a primitive subdivision matrix S.
Then we can make use of Perron-Frobenius theory, which asserts that a primitive nonnegative
real matrix M has a positive real eigenvalue λ(M) such that:

(i) λ(M) has multiplicity one.

(ii) λ(M) > |λ′| for all eigenvalues λ′ of M with λ′ 6= λ(M).

(iii) There are both right and left eigenvectors for λ(M) with positive real entries.

We call λ(M) the Perron eigenvalue of M; it is equal to the spectral radius of M.
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For inflation functional equations whose substitution matrix is primitive, we show that
those multiset equations having a weak Delone set solution must satisfy the following:

Perron eigenvalue condition: The Perron eigenvalue λ(S) of the subdivision matrix S has

λ(S) = |det(A)|.

More generally, there are inequalities relating the Perron eigenvalue and properties of so-
lutions of the multi-tile and inflation functional equations, as follows:

(1) A necessary condition for the multi-tile functional equation with primitive subdivision
matrix to have T = (T1, ..., Tn) with some (and hence all) Ti of positive Lebesgue measure is
that

λ(S) ≥ |det(A)|.

(2) A necessary condition for the inflation functional equation with primitive subdivision
matrix to have a solution X = (X1, ..., Xn) with some (and hence all) Xi weakly uniformly
discrete is that

λ(S) ≤ |det(A)|.

Inequality (1) is established by taking the Lebesgue measure on both sides of the multi-
tile equation (1.1). In the special case when A is a similarity Mauldin and Williams [24]
showed the stronger result that if λ(S) < |det(A)| then the Hausdorff dimension of each
Ti must be less than d. Inequality (2) is shown in §4 as Theorem 4.3. We show that the
existence of substitution Delone set solutions is closely associated with self-affine multi-tilings.
In particular, the associated multi-tile functional equation has a solution T = (T1, T2, . . . , Tn)
with the Ti all having positive Lebesgue measure, see Theorem 2.4 in §2.

In the following section we give precise definitions and statements of some of the main
results in the paper. In the final section §7 we give various examples showing the limits of our
results.

To conclude this introduction, given any Delone set X one can associate a topological
dynamical system ([[X]],Rd) with an R

d-action, in which [[X]] is the orbit closure of X with
the translation action under an appropriate topology, see Solomyak [36]. For substitution
Delone set families these dynamical systems can be viewed as a generalization of substitution
dynamical systems (Queffelec [30]), in that every primitive substitution dynamical system
is topologically conjugate to a suitable substitution Delone set dynamical system. Under
sufficiently strong extra hypotheses substitution Delone set dynamical systems are minimal
and uniquely ergodic. We hope to return to this question elsewhere.

2. Definitions and Main Results

We consider solutions to the inflation functional equation that are multisets.

Definition 2.1. (i) A multiset is a “set” in which an element may be counted for more
than once. Given a multiset X we shall use X to denote the underlying set of X, i.e.
without counting the multiplicity, and eithermX(x) orm(X,x) to denote the multiplicity
function, whcih can be viewed as a discrete measure. A multiset is called an ordinary set
if every element in X has multiplicity 1.

4



(ii) Given multisets X1 and X2 we say X1 ⊆ X2 provided X1 ⊆ X2 and mX1(x) ≤ mX2(x)
for all x ∈ X2. In particular, X ⊆ X.

For example, X = {0, 0, 1, 3, 4, 4, 4} is a multiset in which 0 is counted twice and 4 is
counted 3 times. Thus X = {0, 1, 3, 4} and

mX(0) = 2, mX(1) = mX(3) = 1, mX(4) = 3.

Definition 2.2. For any multisets X and Y the multiset union X ∨ Y is the multiset having
the multiplicity function

mX∨Y = mX +mY , (2.1)

and the multiset intersection X ∧ Y is the multiset having multiplicity function

mX∧Y = min{mX ,mY }. (2.2)

For a multiset X and a set (or multiset) D the multiset sum X + D is

X + D :=
∨

d∈D

(X + d). (2.3)

Definition 2.3. A multiset family X = (X1, . . . , Xn) is a finite vector of multisets Xi. We
call a multiset family X = (X1, . . . , Xn) an n-multiset family. For n-multiset families X (1) and
X (2) we define

X (1) ∨ X (2) = (X
(1)
1 ∨X

(2)
1 , . . . , X(1)

n ∨X(2)
n ).

Definition 2.4. A multiset family X = (X1, ..., Xn) is discrete if for each i the multiset Xi is
discrete, i.e. the underlying set X i is discrete and elements in Xi have finite multiplicity.

In §3 we develop a structure theory for discrete multiset families, which decomposes them
into irreducible families. Let ψ be the inflational operator associated to an inflational functional
equation (defined in §3).

Definition 2.5. A multiset family X = (X1, ..., Xn) satisfying an inflation functional equation
ψ(X ) = X is irreducible if it cannot be partitioned as X = X (1)∨X (2) with each X (i) nonempty
such that ψ(X (i)) = X (i) for each i = 1, 2.

Theorem 2.1 (Decomposition Theorem) Let X be a multiset family X that is discrete
and satisfies an inflation functional equation ψ(X ) = X . Then X uniquely partitions into a
finite number of irreducible discrete multiset families that satisfy the same inflation functional
equation.

An inflational functional equation ψ(X ) = X may not have a discrete solution, see Example
7.4. In §3 we characterize irreducible discrete multiset families X satisfying inflation functional
equations, as follows.
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Theorem 2.2. Let X be a multiset family which satisfies an inflation functional equation
ψ(X ) = X and is discrete and irreducible. Then X is generated by a finite “seed” S (0) =
(S1, S2, ..., Sn), which consists of a periodic cycle Y = {(xj , ij) : 1 ≤ j ≤ p} in which xj ∈ Xij

and there is some dj ∈ Dij+1,ij with xj+1 = Axj + dj, with (xp+1, ip+1) = (x1, i1). That is,

X = lim
N→∞

φN (S(0)).

The periodic cycle Y is the only periodic cycle in X and its elements have multiplicity one.

This result appears, stated in a slightly more precise form, as Theorem 3.3. For each p there
are only finitely many periodic cycles Y and they can be effectively enumerated. However not
all periodic cycles Y generate irreducible discrete multiset families. We show that there is an
algorithmic procedure, which when given any such “seed” as input, has one of three outcomes:

(1) If the generated multiset system X is discrete and irreducible, it eventually halts and
says this holds.

(2) If the generated multiset system X is not irreducible, or if the limit does not exist it
eventually halts and says this holds.

(3) If the generated multiset system X is irreducible and not discrete, the procedure may
not halt.

We also prove in §3 a dichotomy concerning the multiplicities of elements appearing in
the multisets Xi in an irreducible discrete multiset family X satisfying an inflation functional
equation having a primitive subdivision matrix : Either they are all bounded by the period p
of the generating cycle or else they all have unbounded multiplicities. (Theorem 3.4.) We do
not know of an effective computational procedure to tell in general which of these alternatives
occurs.

In §4-§6 we restrict to the case of inflation functional equations having primitive subdivision
matrix. We study Delone set solutions and self-replicating multi-tilings.

Definition 2.6. A multiset X is a weak Delone set if it has the following properties:

(i) Weakly Uniformly discrete. There is an r > 0 and a finite m ≥ 1 such that any open ball
of radius r contains at most m points of X.

(ii) Relatively dense. There is an R > 0 such that any closed ball of radius R contains at
least one point of X.

It is a Delone set if in addition it is a uniformly discrete set, i.e. one can take m = 1 in (i); X
is an ordinary set in this case.

Note that a finite union of weak Delone sets is a weak Delone set.

Definition 2.7. A multiset family X = (X1, . . . , Xn) is a weak substitution Delone set family
if X satisfies the inflation functional equation (1.3) in R

d and each multiset Xi is a weak Delone
set . It is a substitution Delone set family if each Xi is a Delone set (hence has all multiplicities
equal to one.)
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In §4 we prove the following result.

Theorem 2.3 (Perron Eigenvalue Condition) If the inflation functional equation ψ(X ) =
X with primitive subdivision matrix S = [|Dij |] has a solution X that is a weak Delone set fam-
ily, then the Perron eigenvalue λ(S) of S satisfies

λ(S) = |det(A)|.

The narrowest class of solutions to the inflation functional equation are those having the
following tiling property.

Definition 2.8. A multiset family X = (X1, . . . , Xn) is called a self-replicating multi-tiling
for a given system (A,Dij) in (1.3) with primitive subdivision matrix S if

(i) X is a substitution Delone set family for (A,Dij).

(ii) The associated multitile equation (1.1) has a unique solution T := (T1, . . . , Tn) with each
Ti of positive Lebesgue measure.

(iii) The sets {Ti + xi : 1 ≤ i ≤ n and xi ∈ Xi} tile R
d.

Note that this definition requires that the family X give a 1-tiling, rather than a p-tiling
for some p ≥ 2, or a p-packing for some p ≥ 1 that is not a tiling.

In §5 we prove the following result, which shows that substitution Delone sets are related
to the existence of self-replicating multi-tilings. In this result ψN (·) denotes the functional
equation ψ(·) composed with itself N times, whose associated inflation matrix is AN .

Theorem 2.4. Let ψ(X ) = X be a inflation functional equation that has a primitive subdivi-
sion matrix. Then the following conditions are equivalent:

(i) For some N > 0 there exists a substitution Delone set solution ψN (X̂ ) = X̂ .

(ii) For some N > 0 there exists a self-replicating multi-tiling X̂ such that ψN (X̂ ) = X̂ .

(iii) ψ satisfies the Perron eigenvalue condition λ(S) = |det(A)| and the unique compact
solution (T1, . . . , Tn) of the associated multi-tile functional equation consists of sets Ti

that have positive Lebesgue measure, 1 ≤ i ≤ n.

In §6 we give a sufficient condition for a substitution Delone set family to be a self-replicating
multi-tiling (Theorem 6.1). Only very special data ψ = (A,Dij) satisfy the conditions of
Theorem 2.4. A number of different necessary (resp. sufficient) conditions on ψ = (A,Dij)
are known, in order to satisfy Theorem 2.4(iii), for which see Kenyon [8]-[11], Lagarias and
Wang [17], [18], [19], Praggastis [28], [29] and Solomyak [34]–[36]. In §7 we give examples and
counterexamples showing the limits of our results.
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3. Structure of Discrete Multiset Solutions

We consider multiset families X = (X1, . . . , Xn) satisfing the inflation functional equation

Xi =

n
∨

j=1

(A(Xj) + Dij), 1 ≤ i ≤ n. (3.1)

Associated to this system is the inflation operator ψ(·) which takes n-multiset families to n-
multiset families ψ(X ) = X

′

, as follows. Given X (not necessarily satisfying (3.1)), we define
X

′

= (X
′

1, . . . , X
′

n) by

X
′

i :=

n
∨

j=1

(A(Xj) + Dij), 1 ≤ i ≤ n. (3.2)

We write X
′

= ψ(X ), and view ψ(·) as an operator on multiset families X = (X1, . . . , Xn).
The functional equation (3.1) asserts that X = ψ(X ), i.e. X is a fixed point of ψ(·).

In this section we determine the structure of multiset families X that are discrete and satisfy
ψ(X ) = X , where we put no restriction on ψ(·), allowing imprimitive substitution matrices.
We also describe the structure of such sets that are also irreducible (Theorems 3.3 and 3.4). We
show that every multiset family X that is discrete and satisfies ψ(X ) = X uniquely partitions
into a finite number of irreducible sets (Theorem 2.1).

We consider solutions to the inflation functional equation (3.1) built up by an iterative
process starting from a finite multiset which is a “seed.” Let

S(0) := (S
(0)
1 , . . . , S(0)

n ) (3.3)

be a system of finite multisets, and iteratively define the finite multiset family S (i) by S(i) =
ψ(S(i−1)). We say that S (0) satisfies the inclusion property S (0) ⊆ S(1) if

S
(0)
i ⊆ S

(1)
i for 1 ≤ i ≤ n , (3.4)

in the sense of multisets.

Lemma 3.1. If a multiset family S (0) is finite and satisfies the inclusion condition S (0) ⊆
ψ(S(0)) then

S(k) ⊆ S(k+1) for all k ≥ 0 . (3.5)

The following limit set is well-defined

X i := lim
k→∞

S
(k)
i , 1 ≤ i ≤ n , (3.6)

where X i is regarded as a countable point set. For each x ∈ X i the multiplicity function has a
limit,

mXi
(x) := lim

k→∞
m(S

(k)
i ,x), (3.7)

where this multiplicity may take the value +∞. If all multiplicities in (3.7) remain finite, then
the multisets Xi are well-defined and the multiset family X = (X1, . . . , Xn) satisfies ψ(X ) = X .

Remark. If all the multiplicities remain finite, we write X := limk→∞ S(k). The limit mul-
tiset family X need not be discrete, and the underlying sets could even be dense.
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Proof. The inclusion (3.5) follows by induction on k, since S (k−1) ⊆ S(k) yields

S(k) = ψ(S(k−1)) ⊆ ψ(S(k)) = S(k+1) .

The other statements follow easily from (3.5).

To further analyze multiset families X that satisfy ψ(X ) = X , we put the structure of a
colored directed graph on X . The vertices of this graph are the points in the disjoint union of
the underlying sets X i, with points in X i being specified as (x, i), where x ∈ R

d and i is the
color (or label). For each xj ∈ Xj and each dj ∈ Dij , set

x′
i := Axj + dj ∈ Xi ,

and put a directed edge xj → x′
i in the graph. x′

i is called an offspring of xj , and xj a preimage
of x′

i. We denote this (infinite) colored directed graph by G(X ). We also assign to each vertex
x ∈ X i a weight which is its multiplicity mXi

(x).

Lemma 3.2. Let X be a multiset family which is discrete and satisfies the inflation functional
equation ψ(X ) = X .

(i) There is a finite multiset family S (0) ⊆ X with the inclusion property, such that

X = lim
k→∞

S(k) . (3.8)

(ii) The directed graph G(X ) contains a directed cycle.

Proof. (i) We show that there exists a radius R > 0, depending only on ψ(·), such that
every vertex in X can be reached by a directed path in the graph G(X ) from some point
x ∈ X ∩BR(0), where BR(0) := {x ∈ R

d : ||x|| ≤ R}. To show this, we set

λ(A−1) = min{|λ| : λ is an eigenvalue of A−1}, (3.9)

and λ(A−1) < 1 since A is expanding. Fix a ρ > 1 such that λ(A−1) < 1/ρ < 1. It is shown in
Lind [22] that there exists a norm ‖ · ‖A on R

d with the property that

‖A−1x‖A ≤
1

ρ
‖x‖A for all x ∈ R

d. (3.10)

The norm is defined by ‖x‖A :=
∑∞

k=1 ρ
k‖A−kx‖.

We claim that there exists an R > 0 such that for any vertex x′
i ∈ Xi with ‖x′

i‖A ≥ R,
any preimage xj ∈ Xj of x′

i must satisfy

‖xj‖A ≤
2

1 + ρ
‖x′

i‖A.

To see this, let

C = max{‖dj‖A : dj ∈ Dij , 1 ≤ i, j ≤ n} and R :=
ρ+ 1

ρ− 1
C. (3.11)
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It follows from xj = A−1(x′
i − dj) that

‖xj‖A ≤
1

ρ

(

‖x′
i‖A + C

)

≤
2

1 + ρ
‖x′

i‖A. (3.12)

Thus if a vertex x has ‖x‖A ≥ R then every preimage of x in the graph G(X ) is smaller in
the norm ‖ · ‖A by a multiplicative constant 2

1+ρ
< 1. It follows that every vertex x in G(X )

can be reached by a finite directed path in G(X ) starting from some vertex x′ with ‖x′‖A ≤ R.

We therefore take the multiset family S (0) = (S
(0)
1 , . . . , S

(0)
n ) such that Si consists of those

elements x of Xi with ‖x‖A ≤ R and counting multiplicities, i.e.

m
S

(0)
i

(x) = mXi
(x) if x ∈ S

(0)
i .

The multiset family S (0) is a finite family since X is discrete. The inclusion property

S(0) ⊆ S(1) = ψ(S(0)) (3.13)

holds because all preimages of vertices of G(X ) in {x ∈ Rd : ‖x‖A ≤ R} lie in this set, since

‖xj‖A ≤ 1
ρ
(R + C) ≤ R. Since S (0) ⊆ X and ψ(X ) = X we obtain S (k) ⊆ X for all k, viewed

as multisets, so that
X ′ = lim

k→∞
S(k)

exists and is a multiset. Now S (0) contains all points x of X with the correct multiplicities for
‖x‖A ≤ R. By induction on k one proves:

(1) For each k, and 1 ≤ i ≤ n, (2) For all x with ‖x‖A ≤
(

1+ρ
2

)k

R, one has for 1 ≤ i ≤ n

that the multiplicity

m(S
(k)
i ,x) = mXi

(x).

The base case k = 0 holds by construction, and the induction step follows because all
preimages of a vertex in {‖x‖ ≤ ( 1+ρ

2 )kR} lie in {‖x‖ ≤ ( 1+ρ
2 )k−1R}.) Thus X ′ = X .

(ii) We choose R as in (i). Pick a point x in X with

x ∈ BR := {y ∈ R
d : ||y||A ≤ R},

which must exist by the argument in (i). All preimages of x necessarily lie in BR. Since X
is discrete, if we follow a chain of successive preimages of a vertex x in G(X ) we stay in the
finite set X ∩BR, so some vertex must occur twice. The path from this vertex to itself forms
a directed cycle in G(X ).

Recall that a multiset family X satisfying an inflation functional equation is irreducible if
it has no nontivial partition X = X1 ∨ X2, with both Xi satisfying the same equation.

Theorem 3.3 (Irreducible Set Characterization) Suppose that the multiset family X is
discrete and satisfies an inflation functional equation ψ(X ) = X . The following are equivalent:

(i) X is irreducible.

(ii) The graph G(X ) contains exactly one directed cycle (which may be a loop), and the
elements of this cycle have multiplicity one.
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If condition (ii) holds, let Y = {x1, . . . ,xp} be the cycle in G(X ) with multiplicity one and

define the multiset family S (0) = (S
(0)
1 , . . . , S

(0)
n ) by Si = {x ∈ Y : x has color i}. Then

S(0) ⊆ ψ(S(0)) and
X = lim

k→∞
S(k). (3.14)

Remark. In view of (ii) and (3.14) we call S (0) the generating cycle of the irreducible multiset
system X , and we call p the period of this cycle.

Proof. (i) ⇒ (ii). Lemma 3.2 shows that X is generated by the points x in X that lie in the
compact region ‖x‖A ≤ R, and that G(X ) contains vertices forming a directed cycle Y inside

this region. The vertices of Y define a finite multiset family S (0) = (S
(0)
1 , . . . , S

(0)
n ), with S

(0)
i =

Xi ∩ Y , and all elements of S
(0)
i have multiplicity one. It is clear that S (0) ⊆ S(1) = ψ(S(0))

since each element of S (0) has a preimage in S (0). Since each S(k) ⊆ X the limit

X ′ := lim
k→∞

S(k) (3.15)

exists and is a multiset family with X ′ ⊆ X .

We claim that X ′ = X . If not, then we obtain a partition X = X ′ ∨ X ′′ into multisets,
and since ψ(X ′) = X ′ we have ψ(X ′′) = X ′′. Both X ′ and X ′′ are discrete since X is, and
this contradicts the irreducibility of X . This proves the claim, and (3.14) follows. Now (3.14)
implies that every element of X is reachable by a directed path starting from any fixed vertex
x0 in the cycle Y .

We next show that X has multiplicity one on the vertices of Y . Suppose not. The elements
of S(0) have multiplicity one, and at some later stage some vertex (x, i) of the cycle Y has
multiplicity exceeding one in some S (k). Thus there exists a path to (x, i) of length k arising
from some vertex (y, j) in S (0), which does not arise purely from moving on the cycle Y . Since
the vertex (y, j) can be reached from (x, i) by moving around the cycle Y , taking l steps,
say, we obtain a directed path from (x, i) to itself of length k + l which does not stay in the
cycle Y . Now we obtain two distinct directed paths of length (k + l)p from (x, i) to itself, one
by wrapping around the cycle Y k + l times, the other by repeating the path of length k + l
p times. Since we can concatenate these two distinct paths in any order, it follows that the
multiplicity of (x, i) in S ((k+l)pm) is at least 2m. This says implies that (x, i) has unbounded
multiplicity as m → ∞, which contradicts the discreteness. Thus X has multiplicity one on
the cycle Y .

Finally we show that X contains only one directed cycle. Suppose not, and that G(X )
contains a directed cycle Y ′ different from Y . The same argument as above says that X is
generated by the cycle Y ′ and that all elements of Y ′ in X have multiplicity one. By exchanging
Y and Y ′ if necessary we may suppose that Y has a vertex not contained in Y ′. Now following
a path from a vertex in Y \Y ′ to Y ′ we see that there exists an x′ ∈ Y ′ that has a preimage not
in Y ′. But x′ also has a preimage in Y ′ because Y ′ is a cycle. This implies that the multiplicity
of x′ is at least 2, a contradiction. Thus G(X ) contains exactly one directed cycle.

(ii) ⇒ (i). Suppose that G(X ) contains exactly one directed cycle Y , of multiplicity one. We
argue by contradiction. Suppose X = X ′ ∨ X ′′. Now Lemma 3.2 (ii) implies that both G(X ′)
and G(X ′′) contain a directed cycle. Therefore G(X ) either contains two directed cycles, or
else contains a directed cycle of multiplicity at least two. This contradicts the hypothesis.
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We can now prove the Decomposition Theorem.

Proof of Decomposition Theorem 2.1. By definition if X is not irreducible then X =
X (1) ∨ X (2) where each X (i) satisfies X (i) = ψ(X (i)). Lemma 3.2 showed that X and X (i) are
generated by elements in the bounded region ‖x‖A ≤ R. So the total multiplicity of elements

of each X (i) in the region ‖x‖A ≤ R is strictly smaller than that of elements of X in the region

‖x‖A ≤ R. If one of X (i) is not irreducible then we can further partition it, and decrease the
total multiplicity in ‖x‖A ≤ R again. Since X is discrete, this process will end in finitely many
steps, yielding

X =

N
∨

i=1

X (i).

To see that the partition is unique, to each element Xi of the partition is associated a unique
directed cycle in G(X ) of multiplicity one. But each directed cycle in G(X ), counted with
multiplicity one, must appear in some element of each partition.

We return to the study of discrete multiset families X with ψ(X ) = X that are irreducible.
We can give some further information on the multiplicities that occur in such X , under the
extra hypothesis that the subdivision matrix is irreducible.

Theorem 3.4 (Multiplicity Dichotomy) Suppose that the multiset family X is discrete
and satisfies the inflation functional equation ψ(X ) = X with primitive subdivision matrix. If
X = (X1, X2, ..., Xn) is irreducible, then exactly one of the following cases holds:

(i) Every element of each multiset Xi has multiplicity at most p, the period of the generating
cycle in the directed graph G(X ).

(ii) For each multiset Xi in X , the multiplicities mXi
(x) of x ∈ Xi are unbounded.

Remarks. (1) In the general case of imprimitive S, one can prove a similar result giving a
dichotomy that applies to those Xi such that i is in the strongly connected component of the
underlying graph of S which contains the generating cycle.

(2) There exist irreducible discrete X having a primitive subdivision matrix, such that all
Xi have bounded multiplicity but some of the elements have multiplicity greater than 1, see
Example 7.5.

Proof. The multiplicity of a vertex (x, i) having color i in G(X ) is m(x, i) := mXi
(x). Fix

a point (x0, i0) in the generating cycle. We claim: For any point (x, i) 6= (x0, i0) in X the
multiplicity m(x, i) is equal to the number of cycle-free directed paths from (x0, i0) to (x, i).
This is proved by induction on the length k of the longest cycle-free directed path from x0 to
x, which is bounded by (3.12). The base case k = 1 is immediate. We have

m(x, i) =
∑

(x′,j)∈P (x,i)

m(x′, j)

where P (x, i) is the set of preimages of (x, i) in G(X ), Assuming (x, i) 6= (x0, i0) all preimages
have shorter longest cycle-free path, and the induction step follows.
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Now assume that some vertex (x1, j) has multiplicity m(x1, j) = q > p. Without loss
of generality we may assume that (x1, j) and (x0, i0) have the same color j = i0, for if not
by the primitivity hypothesis we can always find a descendant (x′

1, i0) of (x1, j), and clearly
m(x′

1, i0) ≥ m(x1, j)) > p. By the pigeonhole principle there exist two cycle-free directed paths
from (x0, i0) to (x1, i0), whose lengths are L and L′ respectively with L ≡ L′ (mod p). Say
L = L′ + sp for some s ≥ 0. We can then create a second directed path of length L by first
going around the cycle s times in the beginning and then following the path of length L ′. We
show that these two different directed paths force the multiplicity of vertices to be unbounded.

Since each directed edge can be labeled by elements in Dij , 1 ≤ i, j ≤ m, we label the two
directed paths by

P1 = (d1, . . . ,dL), P2 = (d′
1, . . . ,d

′
L).

The fact that x0 and x1 have the same color i implies that d1 ∈ Dji, dL ∈ Dik and d′
1 ∈ Dj′i,

d′
L ∈ Dik′ for some j, k, j ′, k′. Evaluating the two paths yields

x1 = ALx0 +

L
∑

j=1

Aj−1dj = ALx0 +

L
∑

j=1

Aj−1d′
j. (3.16)

So
∑L

j=1 Aj−1dj =
∑L

j=1 Aj−1d′
j . This means that following the two paths P1 and P2 from

(x1, i0) will lead to the same vertex (x2, i0), which also has color i0. This process can be
continued to obtain vertices (xk, i0), k ≥ 1, all of which have the same color i0. Note that
there are at least 2k distinct directed paths from (x0, i0) to (xk, i0) as we may concatenate P1

and P2 in any combination. These 2k directed paths remain distinct after removing the cycles
in the initial segment. Hence m(xk, i0) ≥ 2k. So the multiplicity of Xi0 is unbounded. Now
primitivity of the subdivision matrix implies that any vertex (x, i0) has a descendant in each
Xi. It follows that the multiplicity function is unbounded on every Xi.

Lemma 3.5. Let ψ(·) be an inflation functional equation with data (A,Dij). Then for each
p ≥ 1 there are at most finitely many discrete multiset families (possibly none) X satisfying
ψ(X ) = X that are irreducible and have a periodic cycle in G(X ) of minimal period p.

Proof. Any periodic cycle {(x0, i0), (x1, i1), . . . , (xp−1, ip−1)} constructed in Theorem 3.3 has
the form

xk = Axk−1 + dk, 1 ≤ k ≤ p

with dk ∈ Dik,ik−1
and (xp, ip) = (x0, i0). It follows that

x0 = Apx0 +

p
∑

k=1

Ap−kdk.

Thus

x0 = −(Ap − I)−1

(

p
∑

k=1

Ap−kdk

)

, (3.17)

where the matrix Ap− I is invertible since A is expanding. There are only a finite set of choices
for the digits {d1, . . . ,dp}, so the number of choices for x0 is finite.

As we have shown, all discrete irreducible multiset families X are generated iteratively
from a cycle as “seed”. However, the multiset family generated from a given cycle need not be
discrete. The following lemma gives a criterion for discreteness.
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Lemma 3.6. Let ψ(·) be an inflation functional equation with data (A,Dij), and let S(0) be a
finite multiset family with the inclusion property S (0) ⊆ S(1) = ψ(S(0)). Set R = R(A,D) equal
to the constant in (3.11). If for some k ≥ 1,

S(k) ∩ {x ∈ R
d : ‖x‖A ≤ R} = S(k+1) ∩ {x ∈ R

d : ‖x‖A ≤ R} (3.18)

counting multiplicities, then the limit

X := lim
k→∞

S(k)

is a multiset family that satisfies ψ(X ) = X , whose underlying sets (X 1, ..., Xn) are discrete.
Conversely, if X is discrete then (3.18) holds for all sufficiently large k.

Proof. The iterative scheme S (k+1) = ψ(S(k)) is geometrically expanding outside the set
{x ∈ R

d : ‖x‖A ≤ R}, i.e. (3.12) gives

‖Ax + d‖ ≥ ρ‖x‖ − C ≥
ρ2 + 1

ρ+ 1
‖x‖.

The condition (3.18) says that S (k) stabilizes inside {x ∈ R
d : ‖x‖A ≤ R}. By induction on

j ≥ 0 one obtains that S (k+j) stabilizes inside the domain

{

x ∈ R
d : ‖x‖A ≤

(

ρ2+1
ρ+1

)j

R

}

. The

limit family X is discrete inside each of these domains, hence is discrete.

Lemma 3.6 leads to an algorithm which recognizes irreducible discrete families. More pre-
cisely, consider the class of inflation functional equations ψ(·) whose data (A,Dij) is drawn
from a computable subfield K of C, which we take to be one in which addition and multiplica-
tion are computable, and one can effectively test equality or inequality of field elements. Then
all finite cycles Y for such ψ(·) will have elements in K, one can give a procedure which tests
whether a given seed S (0) generates an irreducible discrete X, using the criterion of Lemma 3.6,
and which will eventually halt for all such sets. (One does not need to compute R or || · ||A
exactly to guarantee halting.) However it need not halt on sets which are irreducible but not
discrete. This algorithm will detect non-irreducible sets eventually by finding a second cycle
or a cycle with multiplicity.

There are substantial restrictions on (A,Dij) necessary for there to exist some irreducible
discrete multiset family X with ψ(X ) = X . We give a simple case when all irreducible solutions
to the inflation functional equation are discrete (if any exist).

Lemma 3.7. Suppose the inflation functional equation ψ(·) has data (A,Dij), in which A is
an expanding integer matrix and all vectors in Dij have rational entries. Then all irreducible
multiset families generated by a periodic cycle are discrete.

Proof. All cycles Y of period p are generated by solutions of the form (3.17), and the
hypothesis guarantee that such a solution x is a rational vector. Starting from (x, i) one
generates the orbit Y and a seed S (0) which consists of rational vectors. All elements of S (k)

are rational vectors with denominators dividing dD, where d is the denominator of x and D
is the greatest common denominator of all the rationals in Dij . Thus there are only a finite
number of possible choices for rational vectors in the ball of radius R = R(A,D) in (3.11).
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Thus the criterion of Lemma 3.6 applies to conclude that if X = limk→∞ S(k) exists, then it is
necessarily discrete.

Lemma 3.7 does not assert existence of irreducible multiset families, only that they are
discrete if they do exist. Indeed there are cases (A,Dij) satisfying the hypotheses of Lemma 3.7
where no discrete solutions exist, see Example 7.4. At the other extreme, there exist examples
that have infinitely many different irreducible discrete multiset families, see Example 7.3.

We conclude this section by raising two related computational problems:

Computational Problem (i). Given a seed S0 which generates an irreducible discrete multiset
family X satisfying a given inflation functional equation ψ(X ) = X and an index i, determine
whether the multiplicities of points in Xi are bounded or not.

Computational Problem (ii). Given the same data as above, determine the maximum multi-
plicity of points in Xi.

We do not know of algorithms to resolve either of these questions in general. Note that if X is
irreducible, the criterion of Lemma 3.6 will allow this to be certified, for some k.

4. Perron Eigenvalue Condition

In this section we consider inflation functional equations having a primitive subdivision matrix
S so that the Perron eigenvalue λ(S) is defined. Our main object in this section is to show that
the weak Delone set family property constrains the Perron eigenvalue S to satisfy the Perron
eigenvalue condition

λ(S) = |det(A)|, (4.1)

as given in Theorem 2.3. To achieve this we prove several preliminary results. Some of them
apply more generally to multiset families X which are weakly uniformly discrete in the following
sense.

Definition 4.1. A multiset family X is weakly uniformly discrete if the union
∨n

i=1Xi is a
uniformly discrete multiset.

Note that a finite union of weakly uniformly discrete multisets is itself a weakly uniformly
discrete multiset. So a multiset family X is weakly uniformly discrete if and only if each Xi is.

We first consider an irreducible multiset family X satisfying X = ψ(X ). Let S (0) be the
generating cycle for X and set S (k+1) = ψ(S(k)). Denote

H
(k)
i =

∑

x∈§(k)

m
S

(k)
i

(x),

where (S
(k)
1 , S

(k)
2 , . . . , S

(k)
n ) = S(k) as usual. H

(k)
i is the total multiplicity of the multiset S (k)i .

Lemma 4.1. Let X be an irreducible discrete multiset family satisfying ψ(X ) = X for the

data (A,Dij), with subdivision matrix S. Let H(k) = [H
(k)
1 , . . . ,H

(k)
n ]T . Then H(k) = SkH(0).
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Proof. We prove that H(k+1) = SH(k). Observe that

S
(k+1)
i =

n
∨

j=1

(S
(k)
j + Dij).

Hence

H
(k+1)
i ==

m
∑

j=1

|Dij |H
(k)
j ,

yielding H(k+1) = SH(k). Therefore H(k) = SkH(0).

Theorem 4.2. Let X be an irreducible discrete multiset family satisfying ψ(X ) = X for the
data (A,Dij), with primitive subdivision matrix S = [|Dij |]. Let B1(0) be the unit ball and set

M
(k)
i :=

∑

x∈Xi∩Ak
(B1(0))

mXi
(x). (4.2)

Then there exist constants C1, C2 > 0 such that

C1λ(S)k ≤M
(k)
i ≤ C2λ(S)k for all k. (4.3)

Proof. We first establish the lower bound. Observe that for each element x ∈
∨n

i=1 S
(k)
i there

exist digits d1, . . . ,dk in the collection of digit sets {Dij} such that x = τd1 ◦ · · · ◦ τdk
(x0),

where x0 is in the generating cycle and τd(x) := Ax + d. So

x = Akx0 +

k
∑

j=1

Aj−1dj = Ak
(

x0 +

k
∑

j=1

Aj−1−kdj

)

.

Note that A is expanding. Hence there exists a constant C depending only on {Dij}, A and
S(0) such that

∥

∥

∥x0 +

k
∑

j=1

Aj−1−kdj

∥

∥

∥ ≤ C.

Fix an integer k1 > 0 so that BC(0) ⊆ Ak1(B1). Then x ∈ Ak+k1(B1). It follows that for any
x ∈ X i ∩ Ak+k1(B1) we always have

mXi
(x) = m

S
(k)
i

(x).

Therefore M
(k+k1)
i ≥ H(k) for all k, where by Lemma 4.1 and the primitivity of S we also have

H(k) ≥ C ′
1λ(S)k for some constant C ′

1. The lower bound follows by taking C1 = C ′
1λ(S)−k1 .

To establish the upper bound we first claim that there exists a k2 such that for any k, i
and x ∈ X i ∩ Ak(B1) and any vertex x ∈ X i with x ∈ Ak(B1) we must have

mXi
(x) = m

S
(k+k2)
i

(x). (4.4)

This would imply that M
(k)
i ≤ H

(k+k2)
i . As for the lower bound, it follows from Lemma 4.1

and the primitivity of S that there exists a constant C ′
2 such that M

(k)
i ≤ C ′

2λ(S)k+k2 . The
upper bound is proved by taking C2 = C ′

2λ(S)k2 .
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To prove this claim we note that any x ∈ X i ∩Ak(B1) must be in S
(l)
i for some l as a result

of Lemma 3.1. Suppose that l ≥ k. Then there exist some digits d1,d2, . . . ,dl in Dij’s such
that

x = Akx0 +
l
∑

j=1

Aj−1dj ,

and

x0 = A−lx−
k
∑

j=1

A−jdk+1−j. (4.5)

Observe that x0 is bounded since l ≥ k, A−kx ∈ B1 and A is expanding. Hence there exists a
constant R0 independent of k and l such that ‖x0‖ ≤ R0. Let

k2 =

n
∑

i=1

|X i ∩BsR0(0)|.

Assume that (4.4) is false. Then there exist some k, i and x ∈ X i ∩ Ak(B1) such that
mXi

(x) > m
S

(k+k2)
i

(x). This means there exists a cycle-free directed path in G(X ) of length

l > k+k2 from an element x0 in the generating cycle S (0) to x, say x = τdl
◦ · · · ◦ τd2 ◦ τd1(x0).

Let xj = τdj
(xj−1), 1 ≤ j ≤ l, be the vertices of this directed path. It follows that ‖xj‖ ≤ R0

for 0 ≤ j ≤ l − k. But there are only k2 vertices in BR0(0) and l − k > k2, hence there exist
two identical vertices among {xj : 1 ≤ j ≤ l − k}. This contradicts the assumption that the
directed path is cycle-free, proving (4.4).

Theorem 4.3. Let X be a weakly uniformly discrete n-multiset family satisfying ψ(X ) = X
for the data (A,Dij), with primitive subdivision matrix S. Then λ(S) ≤ |det(A)|.

Proof. We first assume that X is irreducible. The weak uniform discreteness of X implies

that M
(k)
i ≤ CVol(AkB1) = C|det(A)|k for some positive constant C. ¿From Theorem 4.2 it

immediately follows that |det(A)| ≥ λ(S).

If X is reducible, then X =
∨N

j=1 X
(j). The argument above now applies to X (1) to yield

λ(S) ≤ |det(A)|.

Proof of Theorem 2.3. Since X is a weak substitution Delone multiset family, it is weakly
uniformly discrete. By theorem 4.3 this immediately gives λ(S) ≤ |det(A)|.

To prove the other direction, let X =
∨N

j=1 X
(j). Let M

(k)
i,j be as in (4.2), but defined for

X (j). Then the relative denseness of each Xi yields

N
∑

j=1

M
(k)
i,j ≥ C ′Vol(AkB1) = C ′|det(A)|k

for some positive constant C ′. Hence maxj M
(k)
i,j ≥ 1

N
C ′|det(A)|k. Taking the k-th roots and

letting k → ∞ now yields |det(A)| ≤ λ(S), using Theorem 4.2.
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5. Uniformly Discrete Substitution Sets and Tilings

Our object in this section is to relate the existence of substitution Delone set families to that
of self-replicating tilings, and to deduce Theorem 2.4.

In §4 we studied the Perron eigenvalue of S in relation to the geometric properties of discrete
solutions of a primitive inflation functional equation. We showed that the Perron eigenvalue
condition λ(S) = |detA| is necessary for it to have a solution that is a substitution Delone set
family, and λ(S) ≤ |detA| is necessary for it to have a weakly uniformly discrete solution. On
the other hand, λ(S) ≥ |detA| is necessary for the corresponding multi-tile equation to have
a solution in which all Ti have positive Lebesgue measure. To see this, taking the Lebesgue
measure on both sides of the multi-tile equation (1.1) leads to

|det A|µ(Ti) ≤
n
∑

j=1

|Dji|µ(Tj),

where |Dji| denotes the cardinality of Dji (counting multiplicity). Hence eS ≥ |det A|e where
e = [µ(T1), . . . , µ(Tn)] is a positive row vector. This immediately yields λ(S) ≥ |detA|.

In this section the Perron eigenvalue condition is assumed as a hypothesis, then one can
use a weaker assumption on X , that of being uniformly discrete. We will derive Theorem 2.4
from the following result.

Theorem 5.1. Let ψ(X ) = X be a inflation functional equation that has a primitive subdivi-
sion matrix that satisfies the Perron eigenvalue condition

λ(S) = |det(A)|.

Then the following conditions are equivalent:

(i) For some N > 0 there exists a weakly uniformly discrete multiset family X̂ such that
ψN (X̂ ) = X̂ .

(ii) For some N > 0 there exists a uniformly discrete multiset family X̂ such that ψN (X̂ ) =
X̂ .

(iii) For some N > 0 there exists a self-replicating Delone multiset family X̂ such that
ψN (X̂ ) = X̂ .

(iv) The unique compact solution (T1, . . . , Tn) of the associated multi-tile functional equation
consists of sets Ti that have positive Lebesgue measure, 1 ≤ i ≤ n.

We first show that Theorem 2.4 is a consequence of this result.

Proof of Theorem 2.4. (iii) ⇒ (ii). This follows from Theorem 5.1 (iv) ⇒ (iii).

(ii) ⇒ (i). A self-replicating multitiling is a substitution Delone set family.

(i)⇒ (iii). By Theorem 2.3 the inflation functional equation satisfies the Perron eigenvalue
condition. Since a substitution Delone set family is a uniformly discrete family, this follows
from Theorem 5.1 (ii) ⇒ (iv).

To prove Theorem 5.1, we need to first establish properties of the solutions of the multi-tile
functional equation (5.1). We recall a basic result.

18



Proposition 5.2. The multi-tile functional equation

A(Ti) =
n
⋃

j=1

(Tj + Dji), 1 ≤ i ≤ n. (5.1)

with primitive subdivision matrix S has a unique solution (T1, . . . , Tn) in which each Ti is
compact and some Tj 6= φ. In this solution all Tj are nonempty, and

Ti =
{

∞
∑

k=1

A−kdjkjk−1

∣

∣

∣
djkjk−1

∈ Djkjk−1
, (j0, j1, j2, . . .) ∈ {1, 2, . . . , N}Z

+
, j0 = i

}

. (5.2)

Proof. We use Flaherty and Wang [1, Proposition 2.3], which proves without the primitivity
assumption that (5.1) has a unique solution (T1, . . . , Tn) in which all Ti are nonempty compact
sets, under the hypothesis that

⋃n
j=1 Dji is nonempty for each i. The primitivity assumption

in our setting implies
⋃n

j=1 Dji 6= ∅ for each i. Furthermore, it implies that if some Tj is
nonempty then all Ti are nonempty. Thus the Flaherty and Wang result applies to yield the
proposition.

We remark that (5.2) is equivalent to saying that for each point x ∈ Ti there exists an
infinite directed path (d1,d2,d3, . . .) in the graph G(X ) with d1 ∈ Dji for some j such that

x =
∞
∑

k=1

A−kdk (5.3)

and vice versa.

Now define the digit multisets

D
(m)
ji :=

n
∨

j1,...,jm−1=1

(Djj1 + ADj1j2 + · · · + Am−1Djm−1i) (5.4)

in which the sum is interpreted as counting multiplicities. It is easy to check that iterating
(5.1) yields

Am(Ti) =

n
⋃

j=1

(Tj + Dm
ji), i = 1, . . . , n. (5.5)

In (5.5) we do not count multiplicity, so it suffices to use Dm
ji instead of Dm

ji .

Definition 5.1. A family of discrete multisets {Eα : α ∈ I} in R
d is equi-uniformly discrete

if there exists an ε0 > 0 such that each Eα is uniformly discrete and any two distinct elements
in Eα are at least ε0 distance apart. {Eα : α ∈ I} is called weakly equi-uniformly discrete if
there exists an M > 0 such that for each α ∈ I and ball B of radius 1 in R

d the number of
elements of Eα in B (counting multiplicity) is bounded by M .

The following theorem is an extention of a theorem in Sirvent and Wang [33].

Theorem 5.3. Let the compact sets (T1, . . . , Tn) satisfy the multi-tile functional equation

A(Ti) =
n
⋃

j=1

(Tj + Dji), i = 1, . . . , n,
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with primitive subdivision matrix. Suppose that the sets {Dm
ji : 1 ≤ i, j ≤ n,m ≥ 1} are

weakly equi-uniformly discrete, and some Ti has positive Lebesgue measure. Then every Ti has
nonempty interior, and each Ti = T o

i .

The primitivity of the subdivision matrix implies that if a single Ti has positive Lebesgue
measure, then they all do. Before proving

Theorem 5.3 we first establish the following lemma.

Lemma 5.4. Under the assumption of Theorem 5.3, let δm be a sequence of positive numbers
whose limit is 0. Then there exist positive constants R0, k2 and subsets Em

1 , . . . , E
m
n of R

d

contained in the ball BR0(0) and cardinality bounded by k2, such that

µ(B1(0) ∩ Ωm) ≥ (1 − 5d+1δm)µ(B1(0)) (5.6)

where Ωm :=
⋃n

j=1(Tj + Em
j ).

Proof. Without loss of generality we assume T1 has positive Lebesgue measure, and hence it
has a Lebesgue point x∗, i.e. there is a sequence rm → 0 such that

µ(Brm(x∗) ∩ T1) ≥ (1 − δm)µ(Brm(x∗)).

It follows that

µ
(

Al(Brm(x∗) ∩ T1)
)

≥ (1 − δm)µ(Al(Brm(x∗))), for all l ≥ 0. (5.7)

We first show that for sufficiently large l, there exists a unit ball B1(y) ⊂ Al(Brm(x∗)) with

µ
(

B1(y) ∩ Al(T1)
)

≥ (1 − 5d+1δm)µ(B1(0)). (5.8)

Indeed, since A is expanding Al(Brm(x∗)) is an ellipsoid Ol,m whose shortest axis goes to
infinity as l goes to infinity. Let O′

l,m be the homothetically shrunk ellipsoid with shortest axis
decreased in length by 2, so that all points in it are at distant at least 1 from the boundary
of Ol,m. By a standard covering lemma (cf. Stein [37, p. 9]) applied to O ′

l,m there is a set of

{B1(y
′)} of disjoint union balls with centers in Ol,m that cover volume at least 5−dµ(O′

l,m).

Also 5−dµ(O′
l,m) ≥ 5−d−1µ(Ol,m) since the shortest axis is of length at least 2(d + 1). All

these balls lie inside Ol,m. By (5.7) at most δmµ(Al(Brm(x∗))) of the volume of Al(Brm(x∗))
is uncovered by Al(Brm(x∗) ∩ T1), so at least one of the disjoint balls {B1(y

′)} must satisfy
(5.8).

By (5.4) we can rewrite the inequality (5.8) as

µ
(

B1(y) ∩
(

n
⋃

j=1

(Tj + Dl
j1)
))

≥ (1 − 5d+1δm)µ(B1(y)),

therefore

µ



B1(y) ∩
(

⋃

j=1

(Tj + Dl
j1 − y)

)



 ≥ (1 − 5d+1δm)µ(B1(0)).
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This shows that if we choose

Em
j =

{

d− y |d ∈ Dl
j1 with (Tj + d− y) ∩B1(0) 6= ∅

}

then (5.6) holds. Since all Tj are compact, all Em
j are inside the ball BR0(0) for R0 :=

1 + maxi diam (Ti). The cardinality of all Em
j are bounded by some k2 > 0 as a result of the

weakly equi-uniformly discreteness of all Dm
ij .

Proof of Theorem 5.3. We apply the previous lemma and choose a subsequence mk so
that {Emk

j } converges for all j, and we denote the limit by E∞
j . This can always be done

because {Em
j } are uniformly bounded and have uniformly bounded cardinality. Clearly E∞

j

has cardinality at most K0. So

µ
(

B1(0) ∩
(

n
⋃

j=1

(Tj + E∞
j )
))

≥ lim inf
k→∞

µ
(

B1(0) ∩
(

n
⋃

j=1

(Tj + Emk

j )
))

≥ lim inf
k→∞

(1 − 5d+1δmk
)µ(B1(0))

= µ(B1(0)).

Since each Tj + E∞
j is a closed set, we must have

B1(0) ∩
(

n
⋃

j=1

(Tj + E∞
j )
)

= B1(0).

This means at least one of Tj ’s must have nonempty interior. But if so then the primitivity of
the subdivision matrix implies that all Tj must have nonempty interior. Let T ′

j = T o
j . Then

(T ′
1, . . . , T

′
n) must also satisfy the same multi-tile equation (5.1). By the uniqueness Tj = T ′

j

for all j.

We now give several characterizations of the property µ(Ti) > 0.

Theorem 5.5. Assume that the family of compact sets (T1, . . . , Tn) satisfies a primitive multi-
tile functional equation with the data (A,Dij) satisfying the Perron eigenvalue condition λ(S) =
|det(A)|. Then the following conditions are equivalent:

(i) The sets {Dm
jk : 1 ≤ i, j ≤ n, m ≥ 1} are equi-uniformly discrete.

(ii) For some fixed k, l the sets {Dm
kl : m ≥ 1} are equi-uniformly discrete.

(iii) The sets {Dm
jk : 1 ≤ i, j ≤ n, m ≥ 1} are weakly equi-uniformly discrete.

(iv) For some fixed k, l the sets {Dm
kl : m ≥ 1} are weakly equi-uniformly discrete.

(v) One set Tj has µ(Tj) > 0.

(vi) Every set Tj has Tj = T 0
j , hence all µ(Tj) > 0.

(vii) All Tj = T 0
j and µ(∂Tk) = 0.
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Proof. The implications (i) ⇒ (ii), (iii) ⇒ (iv), (i) ⇒ (iii) and (ii) ⇒ (iv) are obvious.

(iv) ⇒ (v). First it is easy to check that Sm = [|Dm
ij |] where |Dm

ij | denotes the cardinality
(counting multiplicity) of Dm

ij . The primitivity hypothesis implies that there exists a c0 > 0

such that, for all m ≥ 1, |Dm
ij | ≥ c0λ(S)m for all 1 ≤ i, j ≤ n. Now for all i let T

(0)
i = B1(0)

and

T
(m)
i =

n
⋃

j=1

A−1(T
(m−1)
j + Dji), m > 0.

Then T
(m)
i −→ Ti in the Hausdorff metric (see [1]). We prove that µ(Tl) > 0. To see this, we

notice that

Am (T
(m)
i ) =

n
⋃

j=1

(T
(0)
j + Dm

ji ).

So

Am (T
(m)
l ) =

n
⋃

j=1

(T
(0)
j + Dm

jl ) ⊇ T
(0)
k + Dm

kl. (5.9)

Since {Dm
kl} are weakly equi-uniformly discrete, there exists a constant c1 > 0 such that

|Dm
kl| ≥ c1|D

m
kl| for all m. Now each unit ball contains at most M elements of Dm

kl. Therefore

each point in T 0
k +Dm

kl can be covered by no more that M copies of T
(0)
k +d, d ∈ Dm

kl. Therefore
by (5.9)

|det(A)|mµ(T
(m)
l ) ≥

1

M
|Dm

kl|µ(T
(0)
l ) ≥

1

M
δ c0 c1 λ(S)m,

where δ is the volume of the ball B1(0). This yields µ(T
(m)
l ) ≥ 1

M
δ c0 c1 > 0 as |det(A)| = λ(S).

It follows that
µ(Tl) ≥ lim sup

m→∞
µ(T

(m)
l ) > 0.

(v) ⇒ (i). First we note that µ(Tj) > 0 for all j as a result of the primitivity of S. Let
e = [µ(T1), µ(T2), . . . , µ(Tn)]. Taking the Lebesgue measure on both side of the iterated multi-
tile equation (5.5) we obtain

λm(S)µ(Ti) ≤
n
∑

j=1

µ(Tj)|D
m
ji | ≤

n
∑

j=1

µ(Tj)|D
m
ji |, 1 ≤ i ≤ n. (5.10)

In other words, λm(S)e ≤ eSm. But Sm is a primitive nonnegative matrix with Perron-
Frobenius eigenvalue λm(S). So (5.10) can hold only when e is a left Perron-Frobenius eigen-
vector of S and all inequalities in (5.10) are equalities. This immediately yields |Dm

ji | = |Dm
ji |,

and so Dm
ji is an ordinary set. The equalities in (5.10) also implies that the unions Tj +Dm

ji are
all measure-wise disjoint. So all Dm

ji , and hence all Dm
ji , are equi-uniformly discrete for some

ε > 0.

(v) ⇔ (vi). This is Theorem 5.3 since (v) also implies (i).

(vi) ⇒ (vii). We only need to prove that µ(∂Tj) = 0 for all j. Let e = [µ(∂T1), . . . , µ(∂Tn)].
We have for all i

Am(∂Ti) = ∂(Am(Ti)) = ∂
(

n
⋃

j=1

(Tj + Dm
ji)
)

⊆
n
⋃

j=1

(∂Tj + Dm
ji).
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Similar to (5.10), taking the Lebesgue measure yields λm(S)e ≤ eSm. Again, this can occur
only when e = 0 or e is a Perron-Frobenius left eigenvector of Sm. Assume that e 6= 0 then
all µ(∂Tj) > 0, and

µ
(

∂(Am(Ti))
)

=

n
∑

j=1

|Dm
ji |µ(∂Tj). (5.11)

But Ti has nonempty interior, so for sufficiently large m > 0 the inflated set Am(Ti) will contain
a sufficiently large ball in its interior. Since Am(Ti) is the union of Tj + Dm

ji , 1 ≤ j ≤ n, there
must be some k and d ∈ Dki such that Tk +d is completely contained in the interior of Am(Ti).
Hence

∂(Am(Ti)) ⊆
n
⋃

j=1

(∂Tj + Dm
ji) \ (Tk + d).

So (5.11) is impossible, a contradiction.

(vii) ⇒ (vi). This is obvious.

Proof of Theorem 5.1. Iterating N times the inflation functional equation X = ψ(X ) on
multisets gives a new inflation functional equation X = ψN (X ), which corresponds to

Xi =

n
∨

j=1

(AN (Xj) + D
(N)
ij ), 1 ≤ i ≤ n, (5.12)

where the sums are interpreted as multiset sums.

(ii) ⇒ (i) and (iii) ⇒ (ii) are obvious.

(i) ⇒ (iv). By assumption there exists an M > 0 such that any unit ball in R
d contains at

most M elements (counting multiplicity) of each Xi. Taking k = mN in (5.12) it follows that
any unit ball contains at most M elements of each DmN

ij . Observe that by (5.4) we have

Dk
ij =

n
∨

l=1

(Dk−1
il + Ak−1Dlj).

Therefore any unit ball contains at most M elements of each Dk−1
ij if it contains at most M

elements of each Dk
ij . This immediately yields the weakly equi-uniform discreteness of all the

sets {Dk
ij}. So T o

i 6= ∅ by Theorem 5.5.

(iv) ⇒ (iii). Since T o
1 6= ∅ it follows from the observation (5.3) that there exists an infinite

directed path (d1,d2,d3, . . .) in the graph G(X ) with d1 ∈ Dj1 for some j such that

x0 =
∞
∑

k=1

A−kdk ∈ T o
1 .

Since all Dij are bounded, there exists an N ′ > 0 such that for all infinite directed paths
(d′

1,d
′
2,d

′
3, . . .) with d′

j = dj for j ≤ N ′ we also have

x′
0 =

∞
∑

k=1

A−kd′
k ∈ T o

1 .
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The primitivity of the subdivision matrix S now implies that we can find an infinite directed
paths (d∗

1,d
∗
2,d

∗
3, . . .) which has d∗

j = dj for j ≤ N ′, and which is periodic for some period

N ≥ N ′ in the sense that d∗
k+N = d∗

k for all k. Let x∗
0 =

∑∞
k=1 A−kd∗

k. Then x∗
0 ∈ T o

1 and

ANx∗
0 = x∗

0 + d for d =
∑N−1

j=0 Ajd∗
N−j . Observe that d ∈ DN

11. So we have

−x∗
0 ∈ AN (−x∗

0) + DN
11. (5.13)

Now consider the inflation functional equation X = ψN (X ). Set X (0) = (X
(0)
1 , . . . , X

(0)
n ),

with
X

(0)
1 = {−x∗

0}, X
(0)
2 = ∅, . . . , X(0)

n = ∅.

Define X (m) = ψN (X (m−1)) = ψmN (X (0)). Now set

X
(1)
1 =

n
∨

j=1

(AN (X
(0)
j ) + DN

1j) = AN ({x∗
0}) + DN

11,

hence we have X
(0)
1 ⊆ X

(1)
1 . by (5.13), and obviously we have ∅ = X

(0)
i ⊆ X

(1)
i for i ≥ 2. So the

inclusion property X (0) ⊆ ψN (X (0)) = X (1) holds. It follows that X (0) ⊆ X (1) ⊆ X (2) ⊆ · · ·.
But notice that

X
(m)
i =

n
∨

j=1

(AmN (X
(0)
j ) + DmN

ij ) = AmN{x∗
0} + DmN

i1 .

We conclude that each X
(m)
i is an ordinary set and is ε0-uniformly discrete. Let Xi =

⋃∞
m=0X

(m)
i and X̂ = (X1, . . . , Xn). Then X̂ = ψN (X̂ ), and X̂ is ε0-uniformly discrete.

It remains to show that X̂ is a Delone family and to establish the tiling property of X̂ .
Observe that 0 is in the interior of T1 − x∗

0. Now

AmN (T1x
∗
0) =

n
⋃

j=1

(Tj + DmN
j1 − AmNx∗

0) =

n
⋃

j=1

(Tj +X
(m)
j ).

Taking limit as m→ ∞ we see that
⋃n

j=1(Tj +Xj) is a tiling of R
d. So all Xj must be relatively

dense as a result of the primitivity of S. This completes the proof.

6. Self-Replicating Delone Sets

In this section we study self-replicating Delone set families as a subclass of substitution Delone
set families.

Theorem 6.1. Let X be an irreducible substitution Delone set family satisfying ψ(X ) = X for
the data (A,Dij), where the subdivision matrix S is primitive and λ(S) = |det(A)|. Suppose
that the fundamental cycle of X has period 1. Then X is a self-replicating Delone set family.

Proof. Since the fundamental cycle of X = (X1, . . . , Xn) has period 1, it contains a single
element {x0}. Without loss of generality we assume that x0 ∈ X1, so x0 = Ax0 + d for some
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d ∈ D11. Let S(0) = (S
(0)
1 , . . . , S

(0)
n ) such that S

(0)
1 = {x0} and all other S

(0)
i = ∅. Define

S(m) := ψ(S(0)) = (S
(m)
1 , . . . , S

(m)
n ). It follows from the expression for ψm given in (5.12) that

S
(m)
i =

n
∨

j=1

(Am(S
(0)
j ) + Dm

ij ) = Amx0 + Dm
i1 . (6.1)

Suppose that (T1, . . . , Tn) is the set of self-affine multi-tiles corresponding to (A,Dij). By
Theorem 5.1 each Ti satisfies T o

i = Ti. We have

n
⋃

j=1

(Tj + S
(m)
j ) =

n
⋃

j=1

(Tj + Amx0 + Dm
j1). (6.2)

It follows from Am(T1) =
⋃n

j=1(Tj + Dm
j1) that

Am(T1 + x0) =
n
⋃

j=1

(Tj + S
(m)
j ). (6.3)

The unions on the right side of (6.3) are all measure-wise disjoint. Taking limit m→∞ we see
that Ω :=

⋃n
j=1(Tj +Xj) is a packing of R

d.

It remains to prove that Ω is a tiling. The set Ω =
⋃n

j=1(Tj +Xj) is closed and satisfies

A(Ω) =

n
⋃

j=1

(

A(Tj) + A(Xj)
)

=
n
⋃

j=1

(

n
⋃

i=1

(Ti + Dij + A(Xj))
)

=

n
⋃

i=1

(

Ti +

n
⋃

j=1

(Dij + A(Xj))
)

=

n
⋃

i=1

(Ti +Xi) = Ω.

We now argue by contradiction, and suppose Ω 6= R
d. Since Ω is closed, there exists a ball B

of radius ε > 0 such that B ∩Ω = ∅, which yields AN (B)∩AN (Ω) = AN (B)∩Ω = ∅. But A is
expanding. So by taking N sufficiently large AN (B) contains a ball of arbitrarily large radius.
This ball is disjoint from Ω, so it is not filled by any translate Tj +xj, xj ∈ Xj and 1 ≤ j ≤ n.
Therefore Xj cannot be a Delone set, a contradiction. Thus we have a tiling.

Remarks. (1) The condition of Theorem 6.1 is sufficient but not necessary. There exist
irreducible self-replicating Delone set families whose fundamental cycles have period exceeeding
1, see Example 7.7.

(2) Let X be an irreducible Delone set family which satisfies an inflation functional equation
ψ(X ) = X with primitive subdivision matrix S and is uniformly discrete and has a fundamental
cycle of period p. By Theorem 2.3 and Theorem 5.1 the unique solution T := (T1, ..., Tn)
consisting of compact sets of the associated multi-tile equation has Ti of positive measure,
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which are the closure of their interiors. The set T + X := ∪n
i=1(Ti + Xi) gives a partial q-

packing of R
d for some q ≤ p, using the tiles Ti. That is, each point of R

d is covered with
multiplicity at most q off a set of measure zero, a set of infinite measure has multiplicity exactly
q, and possibly another set of infinite measure has strictly smaller multiplicity. We propose
the following problem:

Problem. Let X be an irreducible Delone set family which satisfies an inflation functional
equation ψ(X ) = X with primitive subdivision matrix S and is uniformly discrete and has a
fundamental cycle of period p. Is it true that T + X := ∪n

i=1(Ti +Xi) is always a q-tiling for
some q ≤ p? If not, what are the extra conditions needed to ensure it?

7. Examples

Example 7.1. (Substitution multiset with unbounded multiplicity function) Let A = [3] and

D1,1 = {0, 1, 2, . . . ,m}, with m ≥ 3. Take the seed S (0) = S
(0)
1 = {0}. Then the inclusion

property S(0) ⊆ S(1) holds, hence

X1 = lim
k→∞

S
(k)
1

defines a multiset X1. The multiset X1 ⊆ Z≥0 and each point l ∈ Z
+ occurs with finite

multiplicitym(l) → ∞ as l → ∞. In factm(l) = llog3 l+o(1) as l → ∞. This example corresponds
to case (ii) in Theorem 3.4.

Example 7.2. (Discrete substitution set that is not uniformly discrete) Let A = [3] and D1,1 =

{0, 1, π}, with π = 3.14159 . . .. Take the seed S (0) = S
(0)
1 = {0}. Then S(0) ⊆ S(1) and the

limit
X1 = lim

k→∞
S

(k)
1

exists. In this case the multiset X1 ⊆ R≥0 is discrete, and its elements all have multiplicity

one. It is easy to show that it has linear growth. Indeed the 2 · 3n−1 elements in S
(n)
1 \ S

(n−1)
1

all satisfy
3n ≤ x ≤ π(3n + 3n−1 + · · · + 3 + 1) ≤ 2π · 3n .

The associated multitile functional equation is

A(T1) = T1 ∪ (T1 + 1) ∪ (T1 + π) .

The compact solution T1 to this equation has Lebesgue measure zero, see Kenyon [12] or
Lagarias and Wang [16]. It follows from Theorem 5.1 that X1 cannot be uniformly discrete.

Example 7.3. (Inflation functional equation having infinitely many discrete solutions) Let
A = [2] and D1,1 = {0, 1}, which satisfies the hypotheses of Lemma 3.7. The associated tile
is T1 = [0, 1]. The allowed starting points for a cycle Y of period p are given by (3.17), which
gives

x0 = −
m

2p − 1
for 0 ≤ m ≤ 2p − 1.

Any such x0 with gcd(m, 2p−1 − 1) = 1 generates an irreducible multiset Xm,p = (X1), which
has all multiplicities one, and which corresponds to a multiple tiling of R with multiplicity p.
(Note that the placement of the tile T1 + x0 includes 0 in its interior, and the same holds for
the other p− 1 tiles in the periodic cycle.)
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Example 7.4. (Inflation functional equation having no nonempty discrete multiset solution)
Let A = [2] and D11 = D12 = D21 = D22 = {0, 1}. This data satisfies the hypotheses of
Lemma 3.7. Then the inflational equation ψ(X ) = X has no discrete multiset solution. If fact,
all elements in X must have infinite multiplicity. To see this we iterate the inflational equation
to obtain

Xi = (X1 + Dm
i1) ∨ (X2 + Dm

i2), i = 1, 2.

Now each Dm
ij has an underlying set Dm

ij = {0, 1, . . . , 2m−1} with each element having multi-
plicity 2m. Therefore the multiplicity of each element in Xi is at least 2m. Hence no element
in any Xi can have a finite multiplicity.

Example 7.5. (Discrete substitution set with bounded multiplicities, with some multiplicities
exceeding one) Consider the inflation functional equation A = [3] on R, with D1,1 = {π + 3},

D1,2 = {1}, D2,1 = {−1
3 , π}, D2,2 = ∅. The subdivision matrix S =

[

1 1
2 0

]

is primitive, and

its Perron eigenvalue λ(S) = 2. We claim that the cycle Y = {0 ∈ X1, 1 ∈ X2} of period
p = 2 generates a discrete irreducible multiset family X = (X1, X2). Outside the interval
[−2, 2] all maps in the inflation functional equation are expanding by a factor at least 1.4. The
cycle Y are the only points of X inside [−2, 2] and the only point exiting from the cycle is
y = (π+3, 1), which has multiplicity 2; thus X exists, and is irreducible and discrete. All other
points are descendents of y, and they have the form x = (3kak +3k−1ak−1 + ...+3a1 +a0)π+r,
in which each ai = 0 or 1 and r is a rational number, and k ≥ 1. The sequence (ak, ..., a0)
completely specifies the digit sequence leading to x, and every such digit sequence is legal.
Since all seqences 3kak +3k−1ak−1 + ...+3a1 + a0 give distinct integers, and π is irrational, we
conclude that all x are distinct. Thus all points in X1 and X2 have multiplicity two, except
the generating cycle Y , whose two points have multiplicity one.

Example 7.6. (Substitution Delone set that is not self-replicating) Let A = [3] and D1,1 =
{−1, 0, 1}. The associated tile T1 = [−1

2 ,
1
2 ], which corresponds to balanced all ternary expan-

sions

x =
∞
∑

j=1

dj3
−j , dj ∈ {−1, 0, 1} .

The values
S(0) = {x0 = −1/8, x1 = −3/8}

has S(0) ⊆ ψ(S(0)) = {−17/8,−11/8,−9/8,−3/8,−1/8, 5/8}, hence generates an irreducible
discrete multiset family X = {X1} which consists of the single set X1 given by

X1 =
∑

k→∞

S(k) .

The set X1 is irreducible and S0 is its generating cycle of period 2. A calculation gives

X1 =

(

−
3

8
+ Z

)

∪

(

−
1

8
∪ Z

)

.

It is a Delone set, and X1 +T is a multiple tiling of R of multiplicity 2. The multiplicity equals
the period of the generating cycle, since both elements S (0) lie in the interior of the tile T1.
Thus X1 is a substitution Delone set but not a self-replicating Delone set.
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Example 7.7. (Self-replicating Delone set having a primitive cycle of order larger than one)
Let A = [−2] and D11 = {−2,−1}. Then X = (X1) with X1 = Z is an irreducible substitution
Delone set family whose fundamental cycle is {0,−1} and has period 2. The corresponding
self-affine tile is T1 = [0, 1]. So T +X = T1 +X1 tiles R, hence is a self-replicating Delone set.

Example 7.8. (Non-periodic self-replicating Delone sets) An example of a two-dimensional
self-replicating Delone set, which not fully periodic, but has a one-dimensional lattice of peri-
ods, was given in Lagarias and Wang[17, Example 2.3]. Recently Lee and Moody [20] construct
many self-replicating Delone sets which are non-periodic, including aperiodic examples, whose
points are contained in a lattice in R

d. They give such examples associated to non-periodic
tilings including the sphinx tiling of Godreche [3] and the chair tiling.
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[5] K. Gröchenig and W. Madych, Multiresolution analysis, Haar bases and self-similar tilings,
IEEE Trans. Info. The. IT-38, No. 2, Part II (1992), 556–568.

[6] A. Hof, Quasicrystals, Aperiodicity and Lattice Systems, Thesis, U. of Groningen, 1992.

[7] C. Janot, Quasicrystals: A Primer, Oxford U. Press, Oxford 1992.

[8] R. Kenyon, Self-Similar Tilings, Ph.D. thesis, Princeton 1990.

[9] R. Kenyon, Self-replicating tilings, in: Symbolic Dynamics and Its Applications (P. Wal-
ters, Ed.), Contemp. Math. Vol. 135, AMS: Providence 1992, pp. 239–264.

[10] R. Kenyon, Inflationary tilings with a similarity structure, Comm. Math. Helv. 69 (1994),
169–198.

[11] R. Kenyon, The Construction of Self-Similar Tilings, GAFA 6 (1996), 471–488.

[12] R. Kenyon, Projecting the one-dimensional Sierpinski gasket, Israel J. Math. 97 (1997),
221–238.

[13] J. C. Lagarias, Meyer’s Concept of Quasicrystal and Quasiregular Sets, Comm. Math.
Phys. 179 (1996), 365–376.

[14] J. C. Lagarias, Geometric Models for Quasicrystals I. Delone sets of finite type, Discrete
& Comput. Geom. 21 (1999) 161–191.

28



[15] J. C. Lagarias, Geometric Models for Quasicrystals II. Local Rules under Isometries,
Discrete & Comput. Geom. 21 (1999) 345–372.

[16] J. C. Lagarias and Y. Wang, Tiling the line with translates of one tile, Invent. Math. 124
(1996), 341–365.

[17] J. C. Lagarias and Y. Wang, Self-affine tiles in R
n, Adv. Math. 121 (1996), 21–49.

[18] J. C. Lagarias and Y. Wang, Integral Self-Affine Tiles in R
n I. Standard and Nonstandard

Digit Sets, J. London Math. Soc. 54 (1996), 161–179.

[19] J. C. Lagarias and Y. Wang, Integral Self-Affine Tiles in R
n Part II. Lattice Tilings, J.

Fourier Anal. Appl. 3 (1997), 83–102.

[20] J.-Y. Lee and R. V. Moody, Lattice Substitution Systems and Model Sets, Disc. & Comp.
Geom. 25 (2001), 173–202.

[21] D. Levine and P. J. Steinhardt, Quasicrystals: A New Class of Ordered Structures, Phys.
Rev. Lett. 53 (1984), 2477–2480.

[22] D. Lind, Dynamic properties of quasihyperbolic total automorphisms, Ergod. Th. Dyn.
Sys. 2 (1982), 49–68.

[23] W. F. Lunnon and P. A. B. Pleasants, Quasicrystallographic tilings, J. Maths. Pures Appl.
66 (1987), 217–263.

[24] R. D. Mauldin and S. Williams, Hausdorff dimension in graph directed constructions,
Trans. Amer. Math. Soc. 309 (1988), 811-829.

[25] Y. Meyer, Quasicrystals, Diophantine Approximation and Algebraic Numbers, in: Beyond
Quasicrystals (F. Axel and D. Gratias, Eds.), Les Editions de Physique: Springer-Verlag
1995, pp. 3.

[26] R. V. Moody, Meyer Sets and the Finite Generation of Quasicrystals, in: Symmetries in
Science VIII (B. Gruber, Ed.) Plenum: New York 1995.

[27] R. V. Moody, Meyer sets and their duals, in: The Mathematics of Long Range Aperiodic
Order (R. V. Moody and J. Patera, Eds.), Kluwer Academic Publ.: Norwell, MA 1997.

[28] B. Praggastis, Markov partitions for hyperbolic focal automorphisms, Ph.D. Thesis, Univ.
of Washington 1992.

[29] B. Praggastis, Numeration systems and Markov partitions from self-similar tilings, Trans.
Amer. Math. Soc. 351 (1999), 3315–3349.
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