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Abstract. We give simple necessary and sufficient conditions for self-
affine tiles in R2 to be homeomorphic to a disk.

1. Introduction

Throughout this note we consider integral self-affine tiles with standard
digit sets. Such are tiles T := T (A,D) satisfying

A(T ) = T +D(1)

or

T =
⋃
d∈D

A−1(T + d),(2)

where A is an expanding two by two matrix of integers, and D ⊂ Z2 with
|D| = |detA| is a complete set of coset representatives for Z2/AZ2.

Moreover, we shall assume that T (A,D) tiles by the lattice Z2, that is,
T + Z2 is a tiling of R2. Such tiles will be called self-affine Z2-tiles. There
are standard methods for checking this property [15, 18, 13, 14]. When the
digit set D is primitive, only in special cases the corresponding tile T (A,D)
may not be a Z2-tile, see [14].

The simplest example of a self-affine Z2-tile is the unit square, divided
into n× n small squares:

A = nI =

[
n 0
0 n

]
and D =

{[
i
j

] ∣∣∣ i, j = 1, ..., n
}
.

Figure 1 was obtained from this example, with n = 2, just replacing the
residue [1, 1]T by [−1,−1]T . Figures 2 and 3 were obtained from the 4 × 4
square by replacing two residues in an obvious manner. There are infinitely
many other ways in which residues can be exchanged but nearly all of them
lead to tiles with holes or with disconnected interior.

Question. Given a self-affine Z2-tile T (A,D), under what conditions is
T (A,D) homeomorphic to a disk?
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Lattice tilings by topological disks must satisfy certain combinatorial
properties. We state them here, and they are the keys to answering our
question. Let us say that two tiles T ′ and T ′′ in a tiling are neighbors if
T ′∩T ′′ 6= ∅. We call the tiles vertex neighbors if their intersection is a single
point, and edge neighbors if their intersection contains uncountably many
points. Note that there might be other types of neighbors.

If the tiles are topological disks, an edge will be an arc, as usual. The
tile in Figure 1 will intersect an edge neighbor in a more complicated set
(actually in a Sierpinski gasket).

It should be pointed out that for a given integral self-affine Z2-tile T (A,D)
there is a simple algorithm to determine its neighbors [17].

Proposition 1.1 ([3], Lemma 5.1). Let Ω be a topological disk which tiles
R2 by lattice translates of the lattice L. Then in the tiling Ω + L one of the
following must be true.

(i) Ω has no vertex neighbors and 6 edge neighbors Ω±α,Ω±β,Ω±(α+β)
for some α, β ∈ L, and Zα+ Zβ = L.

(ii) Ω has 4 edge neighbors Ω±α,Ω±β and 4 vertex neighbors Ω±α±β
for some α, β ∈ L, and Zα+ Zβ = L.

Now let F be a finite subset of Z2. We say a subset E ⊂ Z2 is F–connected
if for any u, v ∈ E there exist u0 = u, u1, ..., un = v ∈ E with ui+1 − ui ∈ F .

Figure 1
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Proposition 1.2 (cf. [12]). Let the self-affine Z2-tile T = T (A,D) be a
topological disk whose edge neighbors are T + F, F ⊂ Z2. Then D is F-
connected.

Proof. Note that A(T ) = T +D is a topological disk. Let D1, . . . ,Dk be
the F-connected components of D and assume that k > 1. Let Ti = T +Di.
The set T1 ∩ T2 is countable since T + d1 and T + d2 are not edge neighbors
for d1 ∈ D1, d2 ∈ D2. The same is true for Ti ∩ Tj with i 6= j. Thus A(T )
becomes disconnected when a countable set is removed. This is not possible
for a disk.

Figure 2

2. Main Results

The main contribution of this paper is to show that the necessary con-
ditions given in Propositions 1.1 and 1.2 are also sufficient. These seem to
be the first sufficient conditions for tiles to be disk-like, and they solve a
problem in [12]. It turns out that the type of neighbors is not essential, only
their number and relative lattice position.

Theorem 2.1. Let T (A,D) be a self-affine Z2–tile. Suppose that T has
not more than 6 neighbors T + F . Then T is a topological disk if and only
if D is F–connected.

Theorem 2.2. Let T (A,D) be a self-affine Z2–tile. Suppose that T has
8 neighbors T + {±α,±β,±(α+ β),±(α− β)}. Then T is a topological disk
if and only if D is {±α,±β}–connected.
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Figure 3

Let us give some examples to examine these conditions. The tile in Figure
1 has 6 edge neighbors, and D is F-connected. However, it is not a disk since
there are 6 other vertex neighbors. Figure 2 shows a tile with 6 neighbors
which is disconnected because D is not F-connected. In Figure 3 we have 8
neighbors as assumed in Theorem 2.2, and the tile is connected. It is not a
disk, however, since D is not connected with respect to the edge neighbors
only.

Figure 4 shows that the mere assumption of 8 neighbors in Theorem 2.2
would not suffice. Here A = [ 0 3

1 1 ] and D = {[0, 0]T , [1, 0]T , [−1, 0]T }. The
tile in the middle is T, and the three tiles of the middle row form A(T ). It
is obvious that T has six edge neighbors ±α = ±[1, 0]T , ±β = ±[−2, 1]T

and ±(α+ β). Moreover, the upper left and lower right neighbors ±β meet
with their long narrow peaks in the centre of T. This is only indicated by
the picture, for a proof see [3], 6.1. Thus T is not a topological disk, and T
has two more vertex neighbors ±2β.

For small numbers m = |D| of pieces, all possible disk-like Z2-tiles have
been classified up to affine conjugacy. For m = 2 there are three and for
m = 3 seven non-isomorphic cases [3], for m = 4 their number is 29 [7, 12].
The proof that the tiles are disk-like was given “by inspection”. Even for
tiles like the twindragon which are well known to be topological disks, no
proof of this property seems to be published. Theorems 2.1 and 2.2, together
with the algorithm in [17], now provide rigorous arguments.
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Example. We just indicate the proof for the twindragon where A =
[ 1 1

1 −1 ] and D = {[0, 0]T , [1, 0]T , }. The neighbors are F = {±[1, 0]T ,±[0, 1]T ,

±[1,−1]T }. Thus we have the six neighbor case of theorem 2.1, and it is
enough to see the first neighbor in order to conclude that D is F-connected.
Similarly, all cases for m ≤ 4 can be checked.

Figure 4

Our technique also allows to characterize the connectedness of a self-affine
tile in n-dimensional space (cf. [8, 11]).

Theorem 2.3. Let T (A,D) be a self-affine set in Rn for an integer ma-
trix A ∈Mn(Z) and D ⊂ Zn. Let T+F be the neighbors of T where F ⊂ Zn.
Then T is connected if and only if D is F-connected.

We remark that in Theorem 2.3 we do not require T (A,D) be a tile. For
general data (A,D) the self-affine set T (A,D) given by (1) may not be a
tile. A neighbor of T is nevertheless well defined for general self-affine sets.

Theorems 2.1 and 2.3 combine to give

Corollary 2.4. Let T (A,D) be a self-affine Z2-tile with not more than
six neighbors. Then T is a topological disk if and only if T is connected.
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3. Proof of the Theorems

Proof of Theorem 2.3. It is clear that T + d and T + d′ are neighbors if
and only if d−d′ ∈ F . It is known that the connectedness of a self-affine set
can be expressed as the connectedness of the graph which has the pieces as
vertices and edges between neighbors ([4], Prop. 2, cf. [11]). For A(T ) this
means that D is F-connected.

The following lemma, as well as Theorem 3.2 and Lemma 3.3, does not
use any self-similarity, and the structure of the edges may be as complicated
as in our Figure 3.

Lemma 3.1. Let T be a Z2-tile with neighbors T +F for some F ⊂ Z2.
Let Z[F ] denote the subgroup of Z2 generated by F. Then Z[F ] = Z2.

Proof. Call α1, α2 ∈ Z2 neighbors if α1−α2 ∈ F . Let F0 = {0} and Fn+1

be the neighbors of Fn, n ≥ 0. Define

G =
⋃
n≥0

Fn.

Clearly G ⊆ Z[F ] (in fact they are equal). Assume that G 6= Z2. Then
H = Z2 \ G is nonempty. Set Ω = T + G and Ω′ = T + H. It follows
that Ω ∩ Ω′ = ∅. But both Ω and Ω′ are closed sets and Ω ∪ Ω′ = R2.
This contradicts the connectedness of R2. Therefore G = Z2 and hence
Z[F ] = Z2.

To prove the sufficiency of F-connectedness in Theorem 2.1 and of the
stronger {±α,±β}-connectedness in Theorem 2.2, we can now assume that
T is connected (and hence arcwise connected [4]). Our aim is to show also
that the interior intT of T is connected. First we strengthen our assumptions
in the case of not more than six neighbors.

Theorem 3.2. Let T be a connected Z2-tile with at most six neighbors.
Then there are α, β in Z2 such that the set of neighbors is T + F with
F = {±α,±β,±(α + β)}.

Proof. Let Ω := T + F and Ω̃ := R2 \ (T ∪ Ω). We have d(T, Ω̃) = δ > 0

since T is separated from Ω̃. For ε > 0 let Bε(z) denote the open disk of
radius ε centered at z. The collection of open disks {Bε(z) : z ∈ T} covers T .

So by compactness we may find z1, . . . , zk ∈ T such that Tε =
⋃k
j=1Bε(zj)

covers T . Tε is connected because T is. Now Tε is a finite union of disks,
so ∂Tε consists of a finite number of simple piecewise smooth closed Jordan
curves. Assume that C be the Jordan curve of the outer boundary. For each
y ∈ Z2 \ {0} let zy ∈ C such that 〈zy, y〉 = max {〈z, y〉 : z ∈ C}. It is easy
to see that zy + y ∈ C + y is outside C and d(zy + y,C) ≥ 1. Since there
exists a point z′ ∈ T + y with d(z′, zy + y) < ε, the point z′ must be outside
C if ε < 1/2.
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Choose ε < min{δ/2, 1/2}. Then for each y ∈ F the tile T + y has
points outside C. It also has points inside C because T + y intersects T .
Furthermore d(Tε, Ω̃) > δ/2. So C ⊂ int Ω. Because each neighbor of
T has both points inside and outside C, and because T is connected, C
must intersect all neighbors of T . Parametrize C by z(t), t ∈ [0, 1] with
z(0) = z(1). We now partitition [0, 1] by 0 = t0 < t1 < t2 < · · · < tk = 1
such that each segment Ci = z([ti−1, ti]) of the curve C has diam (Ci) < δ/2.
This partitition yields a sequence

y11, . . . , y1j1 , y11, . . . , y2j1, . . . , yk1, . . . , ykjk

in F such that {yij : 1 ≤ j ≤ ji} consists of all y ∈ F such that (T+y)∩Ci 6=
∅. Pruning the sequence so that any two adjacent elements in the sequence
are distinct we obtain a new sequence y1, . . . , ym, ym+1 = y1. Since each
y ∈ F appears at least once in (yij) it must appear also at least once in the
new sequence (yi). Furthermore points in two adjacent Ci’s are less than δ
apart so d(T + yi, T + yi+1) < δ. Hence yi+1 − yi ∈ F .

Note that F must be centrally symmetric so F can only have 2, 4 or 6
elements. By Lemma 3.1 Z[F ] = Z2. So F contains at least two linearly
independent elements. This immediately rules out two elements for F . If F
has 4 elements then F = {±α,±β} with α and β independent. Thus one of
±α must be followed by one of ±β somewhere in the sequence, yielding one
of ±α± β in F , a contradiction. Hence F must have 6 elements. Again, in
the sequence (yj) there must be two adjacent elements α1 and α2 that are
independent, yielding α1 − α2 ∈ F . Therefore

F = {±α1,±α2,±(α1 − α2)}.

The theorem is proved by setting α = α1 and β = −α2.

Lemma 3.3. Let T be a connected Z2-tile with neighbors T +F, F ⊂ Z2.
If F = {±α,±β,±(α+β),±(α−β)} then T +{±α,±β} are edge neighbors.
If F = {±α,±β,±(α + β)} then T + F are edge neighbors.

Proof. Since Zα+ Zβ = Z2 in both cases by Lemma 3.1 we may without
loss of generality assume that α = [1, 0]T and β = [0, 1]T .

Let δ > 0 denote the minimal distance between two disjoint tiles in the
lattice tiling. Denote S1 = int (T +αZ). This is an open set near the x1-axis
which by the assumption of our lemma separates the set B+ consisting of
all tiles T +mβ + nα with positive m from the set B− consisting of all tiles
with negative m. The distance between B+ and B− is ≥ δ. Take an integer
k with 1/k < δ/2. Write x = [x1, x2]T and let

f(x1) = sup{x2 : d(x,B−) < δ/2}

for all x with x1 = n/k with n ∈ Z. Thus the points z = [x1, f(x1)]T fulfil
d(x,B−) = δ/2 ≤ d(x,B+). We extend f linearly between these points and
let

C1 = graph of f = {z(s) = [s, f(s)]T : s ∈ R}.
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Since f(s+ 1) = f(s), the polygonal line C1 is periodic: C1 = C1 + α. Now
we prove that C1 ⊂ S1. Take z(s) on a line segment of C1 and let z(x1) be
that vertex of the line segment for which f(x1) ≤ f(s). For x′ = [x1, f(s)]T

we have

δ/2 ≤ d(x′, B−) ≤ |x1 − s|+ d(z(s), B−) < δ/2 + d(z(s), B−),

which implies d(z(s), B−) > 0. Similarly we see that d(z(s), B+) > 0. The
connectedness of T, and hence of B− and B+, now implies that all points of
B− lie below C1 and all points of B+ above. Hence C1 ⊆ S1.

Note that C1 must cross from one tile into another, say from T to T+mα.
Clearly m = ±1, or the two tiles are disjoint. Say m = 1. So part of C1

must lie in int (T ∪ (T + α)). This can only happen if T ∩ (T + α) contains
uncountably many points. Therefore T + α is an edge neighbor.

The proofs for the other cases are identical.

Let T = T (A,D) be a self-affine tile satisfying (1). Iterating (1) yields

Ak(T ) = T +Dk, where Dk := D +AD + ...+Ak−1D.(3)

Note that Dk = Dk−1 +AkD, with D0 := {0}.

Lemma 3.4. Let T (A,D) be a self-affine Z2-tile with neighbors T + F,
F ⊂ Z2. If F = {±α,±β,±(α + β)} and D is F-connected then so is Dk
for all k ≥ 0. If F = {±α,±β,±(α + β),±(α − β)} and D is {±α,±β}-
connected then so is Dk for all k ≥ 0.

Proof. In the 6 neighbors case note that Ak(T ) = T + Dk and T is con-
nected. By Theorem 2.3 Dk must be F-connected.

In the 8 neighbors case let F0 = {±α,±β}. We prove F0-connectedness
of Dk by induction on k. Observe that D0 = {0} is clearly F0-connected,
and Dk = D+ADk−1. We assume that Dk−1 is F-connected and show that
Dk is F-connected.

It will be sufficient to show that for u, u′ ∈ Dk−1 with u − u′ ∈ F there
exist d, d′ ∈ D such that (d+Au)− (d′ +Au′) is also in F . But u− u′ ∈ F
means that T + u and T + u′ are edge neighbors. Hence the larger tiles
A(T ) +Au and A(T ) +Au′ are also edge neighbors: they have uncountably
many common points. Since A(T ) =

⋃
d∈D T + d, there must exist d, d′ ∈ D

such that T + d+Au and T + d′ +Au′ also have uncountably many points.
Thus they are edge neighbors and the difference of the vectors is in F by
our assumptions. Lemma 3.4 is proved.

Lemma 3.5. Under the assumptions of Theorem 2.1 or 2.2, intT is con-
nected.

Proof. We prove that intT is connected under the assumptions of Theorem
2.2. The other case is virtually identical (in fact a little simpler). Denote

F = {±α,±β,±(α + β),±(α− β)} and F0 = {±α,±β}.
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Let z1 and z2 be two points in intT. We shall construct an arc from z1

to z2 within int T. Let K0 ∈ Z such that K0 > max {|x| : x ∈ T} and
let R > 5K0. Choose k sufficiently large so that BR(Akzi) ⊆ Ak(intT ).
It follows from Ak(T ) = T + Dk and the F0-connectedness of Dk that we
may find y0, y1, . . . , yN ∈ Dk such that yi+1 − yi ∈ F0 and Akz1 ∈ T + y0,
Akz2 ∈ T + yN . Hence |Akz1 − y0| < K0 and |Akz2 − yN | < K0. We prove
there exists an arc connecting Akz1 and Akz2 that lies within int (AkT ).

Let δ > 0 be the minimal distance between two disjoint tiles in the Z2-
tiling and let Tε be as in the proof of Theorem 3.2 with ε < min (1, δ/4).
Then the set

Ω =
⋃

y∈Z2\{yi}

(Tε + y) \
(
BR(Akz1) ∪BR(Akz2)

)

is an open set whose boundary consists of finitely many circular arcs. Fur-
thermore R2 \Ω ⊆ int (AkT ). Assume that BR(Akz1) and BR(Akz2) belong
to the same connected component of R2 \ Ω. Then we can find an arc in
R2 \ Ω that connects Akz1 and Akz2. This arc is in int (AkT ). So we may
connect z1 and z2 by an arc in intT .

Now assume that BR(Akz1) and BR(Akz2) belong to two different con-
nected components of R2 \ Ω, say Ω1 and Ω2, respectively. We derive a
contradiction. Choose a simple closed curve C ⊆ ∂Ω1 such that BR(Akz1)
and BR(Akz2) are on separate sides of C, and without loss of generality
assume that BR(Akz1) is on the inside of C. We parametrize C by x(t)
where t ∈ [0, 1] with x(0) = x(1). As t varies from 0 to 1 the curve
wraps around BR(Akz1). Take points xi = x(ti) for 0 ≤ i ≤ m where
0 = t0 < t1 < · · · < tm = 1 such that |xi+1 − xi| < δ/4. Each xi is in the
closure of Tε + wi for some wi 6∈ {yj} with w0 = wm. It is easy to see that
d(T + wi+1, T + wi) < δ for 0 ≤ i < m. Without loss of generality we may
assume that wi+1 6= wi for all 0 ≤ i ≤ m, or we may remove the redundant
vertices. It follows that wi+1 −wi ∈ F .

Let C1 be the closed piecewise linear curve with vertices w0, w1, . . . , wm,
which is a closed curve. Since each |xi−wi| ≤ K0 + ε < 2K0, we must have
|wi − Akz1| ≥ 3K0 and |wi − Akz1| ≥ 3K0. Therefore d(Akzi, C1) > 2K0.
It follows that C1 must wrap around BK0(Akz1) as it traverses w0 through
wm while leaving BK0(Akz2) outside. Hence any path from y0 to yN must
cross C1. In particular, the piecewise arc C2 with vertices y0, y1, . . . yN must
intersect C1. This means some line segment wiwi+1 must intersect some line
segment yjyj+1. But yj+1− yj ∈ F0 and wi+1−wi ∈ F0. It is easy to check
that the only way the two line segments can intersect is that they share at
least one common vertex. This contradicts the assumption that the yj and
the wi are disjoint.

Therefore intT must be connected.
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Proof of Theorems 2.1 and 2.2. We first observe that Lemma 3.3 implies
that intT is simply connected. That is, each simple closed curve C ⊂ int T
contracts to a point within the set intT , briefly, intT contains no holes.

If there are holes, they must contain points of another tile T ′, and even
interior points of T ′. By the lemma, the interior of T ′ is connected and must
therefore be completely surrounded by T. This is not possible since in a
lattice tiling T ′ = T + x for some x.

By the Riemann mapping theorem there is a homeomorphism (even a
conformal map) f from intT to the open disk U. This map extends to a
homeomorphism from T to the closed disk U if each boundary point x of T
is simple (cf. [16], 14.20). That means that for each sequence (xn) in intT
converging to x there is a ray (homeomorphic image of [0,∞)) connecting x1

with x2, x3, ... which also converges to x. Our proof will be complete when
we are able to construct such rays.

In the proof of Lemma 3.3 we constructed arcs [x, y] inside intT between
any two points x, y of intT . Moreover, when x, y belonged to the same piece
A−k(T ′) of T, or to two neighboring pieces, then the arc could be chosen
inside that piece, or those neighboring pieces, respectively. So let us take
the ray as the composition of arcs [xi, xi+1] where i ≥ 1. We show that this
ray converges to x when the rays ar properly chosen.

Let us consider k-th level pieces of T for some fixed k. The boundary
point x of T can belong to at most two pieces in the hexagonal case and
to at most three pieces in the octagonal case, since x is also contained in a
piece of a neighbor of T. The union of these pieces forms a neighborhood Vk
of x. Since xn → x, all xn with n ≥ nk belong to these two or three pieces of
T. However, since these pieces are edge neighbors, the arcs [xn, xn+1] can be
chosen inside the union of these pieces, that is, inside Vk for n ≥ nk. Since
this holds for all k and the Vk shrink down to x, the ray converges to x. The
proof is finished.
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