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Abstract. For an arbitrary full rank lattice Λ in R2d and a function g ∈ L2(Rd) the

Gabor (or Weyl-Heisenberg) system is G(Λ, g) := {e2πi〈`,x〉g(x − κ)
˛

˛ (κ, `) ∈ Λ}. It is

well-known that a necessary condition for G(Λ, g) to be an orthonormal basis for L2(Rd)
is that the density of Λ has D(Λ) = 1. However, except for symplectic lattices it remains
an unsolved question whether D(Λ) = 1 is sufficient for the existence of a g ∈ L2(Rd) such
that G(Λ, g) is an orthonormal basis. We investigate this problem and prove that this is
true for some of the important cases. In particular we show that this is true for Λ = MZd

where M is either a block triangular matrix or any rational matrix with | detM | = 1.
Moreover, if M is rational we prove that there exists a compactly supported g such that
G(Λ, g) is an orthonormal basis. We also obtain similar results for Gabor frames when
D(Λ) ≥ 1.

1. Introduction

Let Λ be a full rank lattice in R2d and g ∈ L2(Rd). The Gabor (or Weyl-Heisenberg)
system associated with Λ and g is the following family of functions in L2(Rd):

(1.1) G(Λ, g) :=
{

e2πi〈`,x〉g(x − κ)
∣∣∣ (κ, `) ∈ Λ

}
.

Gabor systems were introduced for the purpose of signal processing, and they are closely
related to the representation of the Heisenberg group. In this paper we consider Gabor
orthonormal basis and Gabor frames. Recall that a family of functions {fj} in L2(Rd) is a
frame if there exist constants C1, C2 > 0 such that

(1.2) C1‖f‖2
2 ≤

∑

j

|〈f, fj〉|2 ≤ C2‖f‖2
2

for all f ∈ L2(Rd). The constants C1, C2 are called the frame bounds for the frame. A frame
{fj} is called a tight frame if C1 = C2, and a Parseval tight frame if C1 = C2 = 1. Frames
are natural generalizations of bases by allowing redundancies. Another generalization of
orthonormal basis is Riesz basis {fj} in L2(Rd), which means {fj} is complete in L2(Rd)
and there exist postive constants C1 and C2 such that

(1.3) C1

∑

j

|cj |2 ≤ ‖
∑

j

cjfj‖2 ≤ C2

∑

j

|cj |2
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for all {cj} ∈ l2. A fundamental question in the study of Gabor bases and frames is to find
conditions on g and Λ such that G(Λ, g) is a basis or frame. Well known is the following
theorem, often refered to as the Density Theorem for Gabor systems:

The Density Theorem. Let Λ be a full rank lattice in R2d.

(A) If there exists a g ∈ L2(Rd) such that G(Λ, g) is complete in L2(Rd), then D(Λ) ≥ 1.
(B) If there exists a g ∈ L2(Rd) such that G(Λ, g) is a Riesz basis for L2(Rd), then

D(Λ) = 1.

Part (A) of the above theorem was proved in dimension d = 1 for separable lattices
Λ = αZ × βZ by Daubechies ([Da1], [Da2]) under the additional assumption that αβ is
rational. She in fact gave a constructive proof in that setting. As a corollary of a result
about von Neumann algebras associated with lattices, M. Rieffle indeed proved the theorem
earlier in [Rie] for any separable lattice Λ = αZ×βZ with any α and β. In higher dimensions
the Density Theorem was proved by Ramanathan and Steger [RSt], who also proved that
under the assumption that G(Λ, g) is a frame then D−(Λ) ≥ 1, where D−(.) denotes the
lower Beurling density, even when the lattice condition on Λ is relaxed. Part(B) of the
theorem was also proved in [RSt], and without the lattice condition on Λ. There have been
a great deal of research related to the density of Λ in a Gabor system in various context
using various different approaches, see e.g. [RSh], [CDH], [FS1], [GH1], [Gro], [Wa] and the
references therein.

This paper concerns the converse of the Density Theorem. We consider the following
questions on the existence of Gabor bases or frames: Let Λ be a full rank lattice in R2d. If
D(Λ) = 1 can we always find a g ∈ L2(Rd) such that G(Λ, g) is an orthonormal basis or a
Riesz basis for L2(Rd)? If D(Λ) ≥ 1 can we always find a g ∈ L2(Rd) such that G(Λ, g) is
a frame or even a tight frame for L2(Rd)?

The existence questions were answered for separable lattices Λ = K × L in which both
K and L are full rank lattices in Rd. For d = 1 the answer is trivial. With Λ = αZ × βZ

we may simply choose g = 1√
|α|

χ[0,|α|). Then it is an easy exercise to check that G(Λ, g)

is a tight frame for L2(R) if D(Λ) ≥ 1 and an orthonormal basis if D(Λ) = 1. The same
results also hold in higher dimensions, although the problem became highly nontrivial. If
D(Λ) = 1 then there exists a g ∈ L2(Rd) such that G(Λ, g) is an orthonormal basis for
L2(Rd). If D(Λ) ≥ 1 then there exists a g ∈ L2(Rd) such that G(Λ, g) is a tight frame for
L2(Rd), see Han and Wang [HW]. They proved the existence results by by studying the
existence of domains that tile simultaneously by two different lattices.

However, for non-separable lattices Λ the existence questions remain unsolved for d > 1.
For d = 1 the existence results hold, and can be proved easily by transforming the lattice
Λ into a separable lattice using symplectic matrices, see Gröchenig [Gro]. We shall give a
short review of the subject in Section 3. Key to this result is the fact that every lattice
in R2 is symplectic. This is no longer true for R2d with d > 1. While the existence
results hold for symplectic lattices in any dimension, they appear to be difficult questions
for non-symplectic lattices. In this paper we prove the existence results for a large class
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of non-symplectic lattices. A useful fact is that the existence of bases and frames are all
equivalent to the existence of complete Gabor systems.

Theorem 1.1. Let Λ be a full rank lattice in R2d with D(Λ) = 1. The following are
equivalent:

(A) There exists a g ∈ L2(Rd) such that G(Λ, g) is complete in L2(Rd).
(B) There exists a g ∈ L2(Rd) such that G(Λ, g) is a Riesz basis for L2(Rd).
(C) There exists a g ∈ L2(Rd) such that G(Λ, g) is an orthonormal basis for L2(Rd).

A similar result holds for the existence of frames.

Theorem 1.2. Let Λ be a full rank lattice in R2d with D(Λ) ≥ 1. The following are
equivalent:

(A) There exists a g ∈ L2(Rd) such that G(Λ, g) is complete in L2(Rd).
(B) There exists a g ∈ L2(Rd) such that G(Λ, g) is a frame for L2(Rd).
(C) There exists a g ∈ L2(Rd) such that G(Λ, g) is a tight frame for L2(Rd).

Note that any full rank lattice Λ in R2d can be written as Λ = RZ2d where R is a non-
singular 2d× 2d matrix. The density of Λ is the D(Λ) = |det(R)|−1. We shall call |det(R)|
the volume of Λ and denote it by v(Λ). We prove the existence of bases and frames for
certain non-symplectic lattices:

Theorem 1.3. Let Λ be a full rank lattice in R2d, Λ = RZ2d. Suppose that R = TM where

T is symplectic and M =

[
A B

C D

]
with either B = 0 or C = 0, where A, B, C, D are all

d × d matrices. Then

(A) There exists a g(x) ∈ L2(Rd) such that G(Λ, g) is an orthonormal basis of L2(Rd)
if and only if D(Λ) = 1.

(B) There exists a g(x) ∈ L2(Rd) such that G(Λ, g) is a tight frame of L2(Rd) if and
only if D(Λ) ≥ 1.

A particularly interesting case is when Λ is rational, i.e. Λ = RZ2d and R has rational
entries. We obtain a stronger conclusion with the following theorem:

Theorem 1.4. Let that Λ = RZ2d for a rational matrix R. If D(Λ) = 1 then there exists
a compactly supported g ∈ L2(Rd) such that G(Λ, g) is an orthonormal basis for L2(Rd). If
D(Λ) ≥ 1 then there exists a compactly supported g ∈ L2(Rd) such that G(Λ, g) is a tight
frame for L2(Rd).

We point out that the existence of a compactly supported g ∈ L2(Rd) such that G(Λ, g)
is a basis (frame) is not solved even for separable lattices for d > 1, or for non-separable
lattices in dimension d = 1. We conjecture that for some lattices Λ with D(Λ) = 1 there
exists no compactly supported g such that G(Λ, g) is a basis even in dimension d = 1. In

particular, we conjecture that for Λ = RZ2 with R =

[
1 b

0 1

]
and b 6∈ Q there exists no

compactly supported g such that G(Λ, g) is an orthonormal basis for L2(R).
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The rest of this paper is organized as follows: In Section 2 we briefly review our lattice
tiling results and discuss how they can be used to the separable lattice case. These results are
also needed in Section 4. Section 3 is a short review on symplectic lattices and the Stone-von
Neumann theorem. Both sections are provided for the convenience of the readers. Section
4 is devoted to proving Theorems 1.1-1.4.

The authors wish to thank J. P. Gabardo and Chris Heil for helpful comments.

2. Separable Lattices

This section is devoted to reviewing some of the results in Han and Wang [HW] on
the existence of Gabor bases and frames for separable lattices. We shall be using these
results to prove the new results stated in Section 1. Let Λ be a full rank separable lattice,
Λ = AZd × BZd. Motivated by the one dimensional case, one simple idea to prove the
existence of a Gabor basis G(Λ, g) is to test whether g can be chosen as a characteristic
function. This naturally leads to a tiling problem for two different lattices. To state the
problem and the results we need to recall some notations.

Let Ω be a measurable set in Rd (not necessarily bounded), and let L be a full rank
lattice in Rd. We say Ω tiles Rd by L, or Ω is a fundamental domain of L, if

(i)
⋃

`∈L(Ω + `) = Rd a.e.;
(ii) (Ω + `) ∩ (Ω + `′) has Lebesgue measure 0 for any ` 6= `′ in L.

We say that Ω packs Rd by L if only (ii) holds. Equivalently, Ω tiles Rd by L if and only if

(2.1)
∑

`∈L

χΩ(x − `) = 1 for a.e. x ∈ Rd,

and Ω packs Rd by L if and only if

(2.2)
∑

`∈L

χΩ(x − `) ≤ 1 for a.e. x ∈ Rd.

Clearly, µ(Ω) = v(L) if Ω tiles by L, and µ(Ω) ≤ v(L) if Ω packs by L. Furthermore, if Ω
packs Rd by L and µ(Ω) = v(L), then Ω necessarily tiles Rd by L.

Now let Λ = K × L be a full rank lattice in R2d with v(Λ) = v(K) · v(L) = 1. Write
K = AZd and L = BZd. Then |det A| = |det(BT )−1|. It not hard to check that the question
of whether there exists a characteristic function which generates a orthogonal Gabor basis
is equivalent to the question of whether the two lattices AZd and (BT )−1Zd have a common
fundamental domain. Similarly, if v(Λ) ≤ 1, then the question of whether there exists a
characteristic function which generates a tight Gabor frame is equivalent to the question of
whether there exists a measurable set Ω such that it tiles Rd by the lattice AZd and packs
by the lattice (BT )−1Zd. The tiling question has been studied in the area of tiling theory
for many years (cf. [Ko]) and is closely related to a well-known open problem of Steinhaus’
which asks whether there exists a common fundamental domain for all the lattices RθZ

2,
where Rθ is the rotation matrix by angle θ. The following result was proved in Han and
Wang [HW]:
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Theorem 2.1 ([HW]). Let L,K be two full rank lattices in Rd such that v(L) ≥ v(K).
Then there exists a measurable set Ω in Rd such that Ω tiles Rd by K and packs Rd by L.
In particular, when v(L) = v(K), then there exists a measurable set Ω in Rd such that Ω
tiles Rd by both K and L.

If in addition both K and L are rational then Ω can be chosen to be compact, see [HW],
Corollary 2.4. This yields the following:

Theorem 2.2 ([HW]). Let Λ = AZd × BZd be a full rank lattice in R2d with v(Λ) ≤ 1.
Suppose that A and B are in Mn(Q). Then there exists a bounded set Ω such that G(Λ, g)
is a tight Gabor frame for L2(Rd) when g = χΩ.

These two results yield the following existence result for Gabor bases and frames:

Theorem 2.3 ([HW]). Let L, K be two full rank lattices in Rd and let Λ = K × L.

(i) If v(L)v(K) = 1 then there exists a g(x) ∈ L2(Rd) such that G(Λ, g) is an ortho-
normal basis for L2(Rd).

(ii) If v(L)v(K) ≤ 1 then there exists a g(x) ∈ L2(Rd) such that G(Λ, g) is a tight frame
for L2(Rd).

3. Symplectic Lattices

This section is devoted to a short review of symplectic lattices and the Stone-von Neu-

mann Theorem. A matrix M ∈ M2d(R) is symplectic if MT JM = J where J =

[
0 −Id

Id 0

]
.

If we write M =

[
A B

C D

]
then M is symplectic if and only if ACT = AT C, BDT = BTD

and AT D − CTB = Id. We shall use Sp(d, R) to denote the set of all symplectic matrices
in M2d(R). A lattice Λ in R2d is symplectic if Λ = αMZ2d for some α ∈ R \ {0} and
R ∈ Sp(d, R).

Symplectic matrices arise from the study of the Heisenberg group H and the Schrödinger
representation on H. The Hesenberg group is H = Rd×Rd×T with the group multiplication
given by

(x, y, τ)(u, v, η) = (x + u, y + v, τηeiπ(〈x,v〉−〈y,u〉))

for x, y ∈ Rd and τ, η ∈ T := {λ ∈ C : |λ| = 1}. The Schrödinger (irreducible) unitary
representation π of H on L2(R) is given by

π(x, y, τ)f(t) = τeπixye2πiytf(t + x), f ∈ L2(R).

Stone-von Neumann Theorem. Let ρ be any irreducible unitary representation of H on
a Hilbert space H such that

ρ(0, 0, τ)h = τh, τ ∈ T, h ∈ H.
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Then ρ is unitarily equivalent to the Schrödinger representation π, i.e., there is a unitary
operator U : H → L2(Rd) such that

ρ(x, y, τ) = U ∗π(x, y, τ)U, (x, y, τ) ∈ H.

Note that any M ∈ Sp(d, R) preserves the symplectic form [Mz,Mw] = [z, w] for all
z, w ∈ R2d, where [z, w] = 〈x, v〉−〈u, y〉 with z = [x, y]T and w = [u, v]T . Hence ρ(x, y, τ) =
π(M [x, y]T , τ) defines an irreducible unitary representation for H and satisfies the condition

ρ(0, 0, τ)h = π(0, 0, τ)h = τh, h ∈ L2(Rd), τ ∈ T.

It follows from the Stone-von Neumann theorem that there exists a unitary operator, say
σ(M), on L2(Rd) such that

π(M [x, y]T , τ) = σ(M)ρ(x, y, τ)σ(M)−1 , x, y ∈ Rd, τ ∈ T.

This leads to the following:

Lemma 3.1. Let Λ be a full rank lattice in R2d and let M ∈ Sp(d, R). Then there is a
function g ∈ L2(Rd) such that G(Λ, g) is an orthonormal basis (resp. Riesz basis, frame,
tight frame) for L2(Rd) if and only if there is a function h ∈ L2(Rd) such that G(MΛ, h)
is an orthonormal basis (resp. Riesz basis, frame, tight frame) for L2(Rd).

In general it is hard to find σ. However, for certain M , σ(M) are familiar operators. For

example, if M =

[
0 I

−I 0

]
then σ(M) = i1/2F−1, where F denotes the Fourier transform;

if M =

[
I 0
C I

]
with C = CT then (σ(M)f)(t) = e−πi〈t,Ct〉f(t). For more details about

Stone-von Neumann Theorem and representations of H we refer to [Fol] or [Gro].

For any 2 × 2 real matrix M , it is obvious that M ∈ Sp(1, R) if and only if det(M) = 1.
Now any full rank lattice Λ in R2 can be expressed as Λ = M(αZ2) with α ∈ R and
det(M) = 1. Since the existence results hold for the lattice αZ2, Lemma 3.1 now yields the
following theorem, see [Gro]:

Theorem 3.2. Let Λ be a full rank symplectic lattice in R2.

(A) Suppose that D(Λ) = 1 then there exists a g ∈ L2(R) such that G(Λ, g) is an
orthonormal basis for L2(Rd).

(B) Suppose that D(Λ) ≥ 1 then there exists a g ∈ L2(R) such that G(Λ, g) is a tight
frame for L2(Rd).

The factorization of a matrix into a product of a scalar and a symplectic matrix can no
longer be done for all matrices in higher dimensions. This is the main obstacle in proving
the existence of Gabor bases and frames for a given lattice Λ.
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4. Proof of Theorems

We first prove Theorem 1.3, which we divide up as two lemmas. Note that the phase τ

in π(x, y, τ) ∈ Hd does not affect the basis or frame property of a Gabor system, we will
simply let τ = 1 and denote π(x, y, 1) by π(x, y).

Lemma 4.1. Let Λ be a full rank lattice in R2d such that Λ = MZ2d with

M =

[
A 0
B D

]
.

If v(Λ) = 1 (resp. v(Λ) ≤ 1), then there exists a function g ∈ L2(Rd) such that G(Λ, g) is
an orthonormal basis (resp. tight frame) for L2(Rd). Moreover g can be chosen such that
|g(t)| is the scalar multiple of a characteristic function.

Proof. We will apply a matrix T (which is not necessarily a symplectic matrix, and hence
the Stone-von Neumann Theorem does not apply here) to Λ such that TΛ is a separable
lattice. We then apply Theorem 2.2 to obtain g. Let C = −BA−1 and

T =

[
I 0
C I

]
.

Then

TM =

[
A 0
0 D

]
.

A simple calculation shows that for any x, y ∈ Rd and f ∈ L2(Rd),

π(T [x, y]T )f(t) = π(x,Cx + y)f(t)

= e2πi〈Cx+y,t〉+πi〈x,Cx+y〉f(t + x)

= eπi〈x,(CT −C)t〉e−πi〈t,Ct〉e2π〈y,t〉+π〈x,y〉eπi〈t+x,C(t+x)〉f(t + x)

= eπi〈x,(CT −C)t〉Uπ(x, y)U−1f(t),

where (Uf)(t) = e−πi〈t,Ct〉f(t).

We first consider the case D(Λ) ≥ 1, which is equivalent to v(Λ) = |det(AD)| ≤ 1. Hence
|det A| ≤ |det(DT )−1|. By Theorem 2.1 there exists a measurable set Ω in Rd such that Ω
tiles Rd by AZd and packs Rd by (DT )−1Zd. Thus for any f ∈ L2(Rd) we have

‖f‖2 =
∑

m∈Zd

‖Pmf‖2

and

‖Pmf‖2 =
∑

n∈Zd

|〈f, π(Am,Dn)h(t)〉|2

where h(t) = 1√
| det A|

χΩ and Pm is the orthogonal projection onto L2(Ω + Am). Now we

define g(t) = U−1h(t). We claim that {π(x, y)g : (x, y) ∈ Λ} is a tight frame for L2(Rd)
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(and hence G(Λ, g) is a tight frame). Indeed, for any f ∈ L2(Rd) we have
∑

(x,y)∈Λ

|〈f, π(x, y)g〉|2 =
∑

(x,y)∈Λ

|〈f, eπi〈x,(C−CT )t〉U−1π(T (x, y)T )Ug〉|2

=
∑

(x,y)∈Λ

|〈e−πi〈x,(C−CT )t〉Uf, π(T (x, y)T )h〉|2

=
∑

(m,n)∈Zd×Zd

|〈e−πi〈Am,(C−CT )t〉Uf, π(Am, D̃n)T )h〉|2

=
∑

(x,y)∈Λ

|〈e−πi〈x,(C−CT )t〉Uf, π(T (x, y)T )h〉|2

=
∑

m∈Zd

∑

n∈Zd

|〈e−πi〈Am,(C−CT )t〉Uf, π(Am, D̃n)T )h〉|2

=
∑

m∈Zd

‖Pme−πi〈Am,(C−CT )t〉Uf‖2

=
∑

m∈Zd

‖Pmf‖2 = ‖f‖2.

Thus {π(x, y)g : (x, y) ∈ Λ} is a tight frame as claimed. In fact it is a Parseval tight frame.
This shows that G(Λ, g) is a tight frame for L2(Rd).

In the case of D(Λ) = 1 we follow the exact same procedure. However in this case Ω tiles
by both AZd and (DT )−1Zd. This yields a Gabor orthonormal basis G(Λ, g) for L2(Rd),
see also [HW].

We remark that in both cases |g| = 1√
| det(A)|χΩ

.

Lemma 4.2. Let Λ be a full rank lattice in R2d such that Λ = MZ2d with

M =

[
A B

0 D

]
.

If v(Λ) = 1 (resp. v(Λ) ≤ 1), then there exists a function g ∈ L2(Rd) such that G(Λ, g) is
an orthonormal basis (resp. tight frame) for L2(Rd). Moreover g can be chosen such that
|ĝ(t)| is the scalar multiple of a characteristic function.

Proof. Note that the Fourier transform of gκ,` := e2π〈`,x〉g(x − κ) is e2π〈`,κ〉ĝ`,−κ. Hence

G(Λ, g) is an orthonormal basis (resp. tight frame) if and only if G(Λ̃, ĝ) is, where Λ̃ =

M̃Z2d with

M̃ =

[
D 0
−B −A

]
.

The lemma now follows from Lemma 4.1.

Proof of Theorem 1.3. Let Λ = RZ2d with R = TM where T is symplectic and M is block
triangular. Let Γ = MZ2d. We have already established the existence of an orthonormal



THE EXISTENCE OF GABOR BASES AND FRAMES 9

Gabor basis (resp. tight Gabor frame) if D(Γ) = 1) (resp. D(Γ) ≥ 1). The theorem now
follows directly from Lemma 3.1.

Corollary 4.3. Let Λ be a full rank lattice in R2d such that Λ = MZ2d with

M =

[
A B

C D

]
.

and assume that v(Λ) = 1 (resp. v(Λ) ≤ 1). If either CA−1 or BD−1 is symmetric, then
there exists a function g ∈ L2(Rd) such that G(Λ, g) is an orthonormal basis (resp. tight
frame) for L2(Rd).

Proof. If CA−1 is symmetric, we define T =

[
I 0

−CA−1 I

]
; whereas if BD−1 is symmetric

we let T =

[
I −BD−1

0 I

]
. The matrix T is in Sp(d, R). Furthermore let Γ = TMZ2d

then there exists an h ∈ L2(Rd) such that G(Γ, h) is an orthonormal basis (resp. a tight
frame) because TM is block triangular and v(Γ) = v(Λ) = 1 (resp. v(Γ) = v(Λ) ≤ 1). Since
Λ = T−1Γ and T−1 is symplectic, the corollary now follows directly from Lemma 3.1.

We now prove Theorem 1.4. To do so we need to establish the following lemma.

Lemma 4.4. Let M ∈ Mn(Z). Then there exists a unmodular P ∈ Mn(Z) such that MP

is lower triangular.

Proof. Let [a11, a12, · · · , a1n] be the first row of M with gcd(a1j) = d1. It follows from
elementary number theory that

x1a11 + x2a12 + · · · + xna1n = d1

for some integers x1, x2, . . . , xn with gcd(xj) = 1. Let P1 be the unimodular integer matrix
with [x1, x2, · · · , xn]T as its first column. Such a matrix is well known to exist, see Newman
[Ne], Theorem II.1, page 13. Observe that

M1 := MP1 =




d1 b12 · · · b1n

b21 b22 · · · b2n
...

...
. . .

...
bn1 bn2 · · · bnn


 .

Since each b1j is a linear combination of a1j ’s, d1 | b1j for j = 2, ..., n. Therefore we may use
column Gaussian elimination to reduce M1 to

M2 =




d1 0 · · · 0
c21 c22 · · · c2n
...

...
. . .

...
cn1 cn2 · · · cnn


 .

Note that M2 = M1P2 with a unimodular P2 ∈ Mn(Z). Now The lemma is proved by
induction on n.
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Proof of Theorem 1.4. We have Λ = RZ2d with R ∈ M2d(Q). Write R = 1
q R̃ such that

R̃ ∈ M2d(Z) and q ∈ Z. It follows from Lemma 4.4 that R̃ = T̃ P where T̃ ∈ M2d(Z)

is a lower triangular integral matrix and P is unimodular integral matrix. Thus R̃Z2d =
T̃ PZ2d = T̃Z2d. Set T = 1

q T̃ and thus Λ = TZ2d.

Now T is lower triangular, and write T =

[
A 0
B D

]
. Therefore in the case D(Λ) = 1 it

follows from Theorem 1.3 and its proof that there exists a g ∈ L2(Rd) such that G(Λ, g) is
an orthonormal basis, with |g| = 1√

|det(A)|
χΩ for any domain Ω that tiles by both AZd and

(DT )−1Zd. Since both A and D are rational, we may choose a bounded domain Ω ([HW],
Corollary 2.4). Hence we may choose a compactly supported g. In the case D(Λ) ≥ 1 the
same argument shows that we may choose a g with |g| = 1√

| det(A)|
χΩ, where Ω can be any

domain that tiles by AZd and packs by (DT )−1Zd. Again a bounded such Ω exists since
both A and D are rational ([HW]). The theorem is now proved.

We conclude the paper by proving Theorems 1.1 and 1.2.

Proof of Theorem 1.1. To Be Filled.

Proof of Theorem 1.2. To Be Filled.
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