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Abstract

This paper proposes a novel Nyquist-rate analog-to-digital (A/D) conversion algorithm which achieves
exponential accuracy in the bit-rate despite using imperfect components. The proposed algorithm is based
on a robust implementation of a beta-encoder with β = φ = (1 +

√
5)/2, the golden ratio. It was

previously shown that beta-encoders can be implemented in such a way that their exponential accuracy
is robust against threshold offsets in the quantizer element. This paper extends this result by allowing for
imperfect analog multipliers with imprecise gain values as well. We also propose a formal computational
model for algorithmic encoders and a general test bed for evaluating their robustness.

Index Terms
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I. INTRODUCTION

The aim of A/D conversion is to quantize analog signals, i.e., to represent signals which take their
values in the continuum by finite bitstreams. Basic examples of analog signals include audio signals and
natural images. Typically, the signal is first sampled on a grid in its domain, which is sufficiently dense
so that perfect (or near-perfect) recovery from the acquired sample values is ensured by an appropriate
sampling theorem. The next stage of A/D conversion consists of replacing the sequence of continuous-
valued signal samples with a sequence of discrete-valued quantized signal, which is then coded suitably
for further stages of the digital pipeline.

Over the years, A/D conversion systems have evolved into two main categories: Nyquist-rate converters
and oversampling converters. Nyquist-rate analog-to-digital converters (ADCs) operate in a memoryless
fashion in that each signal sample is quantized separately; the goal is to approximate each sample value
as closely as possible using a given bit-budget, e.g., the number of bits one is allowed to use to quantize
each sample. In this case, the analog objects of interest reduce to real numbers in some interval, say
[0, 1]. The overall accuracy of Nyquist-rate conversion is thus proportionate to the accuracy with which
each sample is quantized, provided a suitably stable reconstruction filter is used at the digital-to-analog
(D/A) conversion stage. The popular Pulse Code Modulation (PCM) is based on Nyquist-rate conversion.
In contrast, oversampling ADCs incorporate memory elements (i.e., feedback) in their structure so that
the quantized value of each sample depends on other (prior) sample values and their quantization. The
overall accuracy of such converters can only be assessed by comparing the continuous input signal with
the continuous output signal obtained from the quantized sequence after the D/A conversion stage. This
is because signal samples are quantized collectively and the resolution of the quantization alphabet is

Ingrid Daubechies is with the Department of Mathematics and with the Program in Applied and Computational Mathematics,
Princeton University, Princeton, NJ 08544 USA (email:ingrid@math.princeton.edu).
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Özgür Yılmaz is with the Department of Mathematics, The University of British Columbia, Vancouver, BC V6T 1Z2 Canada
(email:oyilmaz@math.ubc.ca).



typically very coarse. In fact, an oversampling ADC can operate with even a one-bit quantization alphabet,
provided the oversampling ratio is sufficiently high.

The type of ADC that is most suitable for a given application depends on many parameters such as the
given bandwidth, the desired conversion speed, the desired conversion accuracy, and the given precision
of the analog circuit elements. Nyquist rate converters can deal with high-bandwidth input signals and
operate relatively fast, but require high-precision circuit elements. Oversampling converters, on the other
hand, have to work with lower-bandwidth input signals, but can incorporate low-cost, imprecise analog
components. One of the main reasons why oversampling converters have been very popular is because
of this robustness property [1], [2].

Robustness of an ADC depends on the very algorithm it is based on. For example, PCM is typi-
cally based on successive approximation, and oversampling converters are based on sigma-delta (Σ∆)
modulation [1]–[3]. Σ∆ modulation itself comes in a wide variety of schemes, each one providing
a different level of accuracy for a given oversampling ratio (or bit-budget). Under perfect operating
conditions, i.e., using precise circuit elements and without noise, the accuracy of Σ∆ modulation falls
short of the asymptotically optimal1 exponential accuracy of PCM [4], even though a lesser form of
exponential accuracy can be achieved with Σ∆ modulation as well [5]. On the other hand, when nonideal
(and therefore more realistic) circuits are considered, Σ∆ modulation is known to perform better. This
robustness is largely attributed to the redundant set of output codes that Σ∆ modulation produces (see,
e.g. [6]). However, the rate-distortion limits of A/D conversion, be in oversampled or Nyquist settings,
is in general not well understood. This paper will focus on Nyquist-rate ADCs and introduce a novel
encoding algorithm in this setting, called the golden ratio encoder (GRE), which will be shown to possess
superior robustness and accuracy properties. To explain what we mean by this, we first present below
the robustness issues of two Nyquist-rate ADC algorithms, the successive approximation algorithm of
PCM, and a robust improvement to PCM based on fractional base expansions (beta-encoders) that has
been proposed more recently.

Pulse Code Modulation (PCM)

Let x ∈ [0, 1]. The goal is to represent x by a finite bitstream, say, of length N . The most straightforward
approach is to consider the standard binary (base-2) representation of x,

x =
∞∑
n=1

bn2−n, bn ∈ {0, 1}, (1)

and to let xN be the N -bit truncation of the infinite series in (1), i.e.,

xN =
N∑
n=1

bn2−n. (2)

It is easy to see that |x − xN | ≤ 2−N so that (b1, b2, . . . , bN ) provide an N -bit quantization of x
with distortion not more than 2−N . This method provides the most efficient memoryless encoding in a
rate-distortion sense.

As our goal is analog-to-digital conversion, the next natural question is how to compute the bits bn
on an analog circuit. One popular method to obtain bn, called successive approximation, extracts the bits
using a recursive operation. Let x0 = 0 and suppose xn is as in (2) for n ≥ 1. Define un := 2n(x− xn)
for n ≥ 0. It is easy to see that the sequence (un)∞0 satisfies the recurrence relation

un = 2un−1 − bn, n = 1, 2, . . . , (3)

1In Section II-A we define a precise notion of asymptotically rate-optimal encoders.
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and the bits can simply be extracted via the formula

bn = b2un−1c =
{

1, un−1 ≥ 1/2,
0, un−1 < 1/2. (4)

Note that the relation (3) is the doubling map in disguise; un = T (un−1), where T : u 7→ 2u (mod 1).
The successive approximation algorithm as presented above provides an algorithmic circuit implemen-

tation that computes the bits bn in the binary (base-2) expansion of x while keeping all quantities (un and
bn) macroscopic and bounded, which means that these quantities can be held as realistic and measurable
electric charges. However, the base-2 representation together with the successive approximation algorithm
is not the most popular choice as an A/D conversion method, even though it is the most popular choice
as a digital encoding format. This is mainly because of its lack of robustness. As said above, analog
circuits are never precise, suffering from arithmetic errors (e.g., through nonlinearity) as well as from
quantizer errors (e.g., threshold offset), simultaneously being subject to thermal noise. Consequently,
all mathematical relations hold only approximately, and all quantities are approximately equal to their
theoretical values. In the case of the algorithm described in (3) and (4), this means that the approximation
error will exceed acceptable bounds after only a finite (small) number of iterations due to the fact that
the dynamics of the above doubling map has “sensitive dependence on initial conditions”.

From a theoretical point of view, the imprecision problem associated to the successive approximation
algorithm is perhaps not a sufficient reason to discard the base-2 representation out of hand. After all, we
do not have to use the specific algorithm in (3) and (4) to extract the bits, and conceivably there could be
better, i.e., more resilient, algorithms to evaluate bn(x) for each x. However, the root of the real problem
lies deeper: the bits in the base-2 representation are essentially uniquely determined, and are ultimately
computed by a greedy method. Since 2−n = 2−n−1 + 2−n−2 + . . . , there exists essentially no choice
other than to set bn according to (4). (A possible choice exists for x of the form x = k2−m, with k an
odd integer, and even then, only the bit bm can be chosen freely: for the choice bm = 0, one has bn = 1
for all n > m; for the choice bm = 1, one has bn = 0 for all n > m.) It is clear that there is no way to
recover from an erroneous bit computation: if the value 1 is assigned to bn even though x < xn−1 +2−n,
then this causes an “overshoot” from which there is no way to “back up” later. Similarly assigning the
value 0 to bn when x > xn−1 + 2−n implies a “fall-behind” from which there is no way to “catch up”
later.

Due to this lack of robustness, the base-2 representation is not the preferred quantization method for
A/D conversion. For similar reasons, it is also generally not the preferred method for D/A conversion.

Beta Encoders

It turns out that fractional base β-representations (β-expansions) are more error resilient [4], [7]–[10].
Fix 1 < β < 2. It is well known that every x in [0, 1] (in fact, in [0, (β − 1)−1]) can be represented by
an infinite series

x =
∞∑
n=1

bnβ
−n, (5)

with an appropriate choice of the bit sequence (bn). Such a sequence can be obtained via the following
modified successive approximation algorithm: Define un = βn(x − xn). Then the bits bn obtained via
the recursion

un = βun−1 − bn,

bn =


0, un−1 ≤ a,
0 or 1, un−1 ∈ (a, b),
1, un−1 ≥ b.

(6)
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satisfy (5) whenever 1/β ≤ a ≤ b ≤ 1/β(β−1). If a = b = 1/β, the above recursion is called the
greedy selection algorithm; if a = b = 1/β(β−1) it is the lazy selection algorithm. The intermediate
cases correspond to what we call cautious selection. An immediate observation is that many distinct
β-representations in the form (5) are now available. In fact, it is known that for any 1 < β < 2, almost
all numbers (in the Lebesgue measure sense) have uncountably many distinct β-representations [11].
Although N -bit truncated β-representations are only accurate to within O(β−N ), which is inferior to the
accuracy of a base-2 representation, the redundancy of β-representation makes it an appealing alternative
since it is possible to recover from (certain) incorrect bit computations. In particular, if these mistakes
result from an unknown threshold offset in the quantizer, then it turns out that a cautious selection
algorithm (rather than the greedy or the lazy selection algorithms) is robust provided a bound for the
offset is known [4]. In other words, perfect encoding is possible with an imperfect (flaky) quantizer
whose threshold value fluctuates in the interval (1/β, 1/β(β − 1)).

It is important to note that a circuit that computes truncated β-representations by implementing the
recursion in (6) has two critical parameters: the quantizer threshold (which, in the case of the “flaky
quantizer”, is the pair (a, b)) and the multiplier β. As discussed above, β-encoders are robust with
respect to the changes in the quantizer threshold. On the other hand, they are not robust with respect
to the value of β (see Section II-C for a discussion). A partial remedy for this has been proposed in
[8] which enables one to recover the value of β with the required accuracy, provided its value varies
smoothly and slowly from one clock cycle to the next.

Accuracy and Robustness

The above discussion highlights the fact that accuracy and robustness are two of the main design criteria
for ADCs. The accuracy of an ADC is typically defined in terms of the relation between the bit rate and
the associated distortion, as mentioned above and formalized in the next section. For example, we say that
an ADC is exponentially accurate if the distortion is bounded by an exponential function of the bit rate.
On the other hand, robustness is harder to assess numerically. A quantitative measure of accuracy together
with a numerical assessment of the robustness properties of ADCs seems to be absent in the literature
(even though an early attempt was made in [4]). In this paper, we shall analyze the implementation of a
wide class of ADCs, including PCM with successive approximation, beta encoders, and Σ∆ modulators,
via a new computational model framework. This model framework incorporates directed acyclic graphs
(DAGs) along with certain scalar circuit parameters that are used to define algorithmic converters, and
makes it possible to formally investigate whether a given ADC is robust with respect to any of its circuit
parameters.

Contribution of This Paper

In Section II-C we specify the DAG models and the associated parameters of the ADCs that we
discussed above. We show that oversampling ADCs (based on Σ∆ modulation) are robust with respect
to their full parameter set. However, the accuracy of such converters is only inverse polynomial in the
bit rate. Beta encoders, on the other hand, achieve exponential accuracy, but they are not robust with
respect to certain circuit parameters (see discussion Section II-C).

Our main contribution in this paper is a novel ADC which we call the golden ratio encoder (GRE).
GRE computes β-representations with respect to base β = φ = (1 +

√
5)/2 via an implementation that

does not fit into one of the above outlined algorithms for β-representations. We show that GRE is robust
with respect to its full parameter set in its DAG model, while enjoying exponential accuracy O(φ−N ) in
the bit rate N . To our knowledge, GRE is the first example of such a scheme.
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Paper Outline

In Section II-A, we introduce notation and basic terminology. In Section II-B we review and formalize
fundamental properties of algorithmic converters. Section II-C introduces a computational model for
algorithmic converters, formally defines robustness for such converters, and reviews, within the established
framework, the robustness properties of several algorithmic ADCs in the literature. Section III is devoted
to GRE and its detailed study. In particular, Sections III-A and III-B introduce the algorithm underlying
GRE and establish basic approximation error estimates. In Section III-C, we give our main result, i.e., we
prove that GRE is robust in its full parameter set. Sections III-D, III-E, and III-F discuss several additional
properties of GRE. Finally, in Section IV, we comment on how one can construct “higher-order” versions
of GRE.

II. ENCODING, ALGORITHMS AND ROBUSTNESS

A. Basic Notions for Encoding

We denote the space of analog objects to be quantized by X . More precisely, let X be a compact
metric space with metric dX . Typically dX will be derived from a norm ‖ · ‖ defined in an ambient
vector space, via dX(x, y) = ‖x − y‖. We say that EN is an N -bit encoder for X if EN maps X to
{0, 1}N . An infinite family of encoders {EN}∞1 is said to be progressive if it is generated by a single
map E : X 7→ {0, 1}N such that for x ∈ X ,

EN (x) = (E(x)0, E(x)1, . . . , E(x)N−1). (7)

In this case, we will refer to E as the generator, or sometimes simply as the encoder, a term which we
will also use to refer to the family {EN}∞1 .

We say that a map DN is a decoder for EN if DN maps the range of EN to some subset of X . Once
X is an infinite set, EN can never be one-to-one, hence analog-to-digital conversion is inherently lossy.
We define the distortion of a given encoder-decoder pair (EN , DN ) by

δX(EN , DN ) := sup
x∈X

dX(x,DN (EN (x))), (8)

and the accuracy of EN by

A(EN ) := inf
DN :{0,1}N→X

δX(EN , DN ). (9)

The compactness of X ensures that there exists a family of encoders {EN}∞1 and a corresponding
family of decoders {DN}∞1 such that δX(EN , DN ) → 0 as N → ∞; i.e., all x ∈ X can be recovered
via the limit of DN (EN (x)). In this case, we say that the family of encoders {EN}∞1 is invertible. For
a progressive family generated by E : X → {0, 1}N, this actually implies that E is one-to-one. Note,
however, that the supremum over x in (8) imposes uniformity of approximation, which is slightly stronger
than mere invertibility of E.

An important quality measure of an encoder is the rate at which A(EN ) → 0 as N → ∞. There
is a limit to this rate which is determined by the space X . (This rate is connected to the Kolmogorov
ε-entropy of X , Hε(X), defined to be the base-2 logarithm of the smallest number k such that there
exists an ε-net for X of cardinality k [12]. If we denote the map ε 7→ Hε(X) by ϕ, i.e., ϕ(ε) = Hε(X),
then the infimum of A(EN ) over all possible encoders EN is roughly equal to ϕ−1(N).) Let us denote
the performance of the optimal encoder by the number

AN (X) := inf
EN :X 7→{0,1}N

A(EN ). (10)
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Fig. 1. The block diagram describing an algorithmic encoder.

In general an optimal encoder may be impractical, and a compromise is sought between optimality and
practicality. It is, however, desirable when designing an encoder that its performance is close to optimal.
We say that a given family of encoders {EN}∞1 is asymptotically rate-optimal for X , if there exists a
sequence rN → 0 such that

A(EN(1+rN )) ≤ AN (X) (11)

for all N . Here rN represents the fraction of additional bits that need to be sent to guarantee the same
reconstruction accuracy as the optimal encoder using N bits.

An additional important performance criterion for an ADC is whether the encoder is robust against
perturbations. Roughly speaking, this robustness corresponds to the requirement that for all encoders
{ẼN} that are small (and mostly unknown) perturbations of the original invertible family of encoders
{EN}, it is still true that A(ẼN ) → 0, possibly at the same rate as EN , using the same decoders. The
magnitude of the perturbations, however, need not be measured using the Hamming metric on {0, 1}X
(e.g., in the form supx∈X dH(EN (x), ẼN (x))). It is more realistic to consider perturbations that directly
have to do with how these functions are computed in an actual circuit, i.e., using small building blocks
(comparators, adders, etc.). It is often possible to associate a set of internal parameters with such building
blocks, which could be used to define appropriate metrics for the perturbations affecting the encoder.
From a mathematical point of view, all of these notions need to be defined carefully and precisely. For this
purpose, we will focus on a special class of encoders, so-called algorithmic converters. We will further
consider a computational model for algorithmic converters and formally define the notion of robustness
for such converters.

B. Algorithmic Converters

By an algorithmic converter, we mean an encoder that can be implemented by carrying out an
autonomous operation (the algorithm) iteratively to compute the bit representation of any input x. Many
ADCs of practical interest, e.g., Σ∆ modulators, PCM, and beta-encoders, are algorithmic encoders.
Figure 1 shows the block diagram of a generic algorithmic encoder.

Let U denote the set of possible “states” of the converter circuit that get updated after each iteration
(clock cycle). More precisely, let

Q : X × U 7→ {0, 1}

be a “quantizer” and let
F : X × U 7→ U

6



be the map that determines the state of the circuit in the next clock cycle given its present state. After
fixing the initial state of the circuit u0, the circuit employs the pair of functions (Q,F ) to carry out the
following iteration: {

bn = Q(x, un)
un+1 = F (x, un)

}
, n = 0, 1, . . . (12)

This procedure naturally defines a progressive family of encoders {EN}∞1 with the generator map E
given by

E(x)n := bn, n = 0, 1, . . .

We will write AE(Q,F ) to refer to the algorithmic converter defined by the pair (Q,F ) and the implicit
initial condition u0. If the generator E is invertible (on E(X)), then we say that the converter is invertible
as well.

Definition 1 (1-bit quantizer). We define the 1-bit quantizer with threshold value τ to be the function

qτ (u) :=

{
0, u < τ,

1, u ≥ τ.
(13)

Examples of algorithmic encoders:
1. Successive approximation algorithm for PCM. The successive approximation algorithm sets u0 =
x ∈ [0, 2], and computes the bits bn, n = 0, 1, . . . , in the binary expansion x =

∑∞
0 bn2−n via the

iteration {
bn = q1(un)

un+1 = 2(un − bn)

}
, n = 0, 1, . . . (14)

Defining Q(x, u) = q1(u) and F (x, u) = 2(u−q1(u)), we obtain an invertible algorithmic converter
for X = [0, 2]. A priori we can set U = R, though it is easily seen that all the un remain in [0, 2].

2. Beta-encoders with successive approximation implementation [4]. Let β ∈ (1, 2). A β-representation
of x is an expansion of the form x =

∑∞
0 bnβ

−n, where bn ∈ {0, 1}. Unlike a base-2 representation,
almost every x has infinitely many such representations. One class of expansions is found via the
iteration {

bn = qτ (un)
un+1 = β(un − bn)

}
, n = 0, 1, . . . , (15)

where u0 = x ∈ [0, β/(β−1)]. The case τ = 1 corresponds to the “greedy” expansion, and the case
τ = 1/(β − 1) to the “lazy” expansion. All values of τ ∈ [1, 1/(β − 1)] are admissible in the sense
that the un remain bounded, which guarantees the validity of the inversion formula. Therefore the
maps Q(x, u) = qτ (u), and F (x, u) = β(u − qτ (u)) define an invertible algorithmic encoder for
X = [0, β]. It can be checked that all un remain in a bounded interval U independently of τ .

3. First-order Σ∆ with constant input. Let x ∈ [0, 1]. The first-order Σ∆ (Sigma-Delta) ADC sets the
value of u0 ∈ [0, 1] arbitrarily and runs the following iteration:{

bn = q1(un + x)
un+1 = un + x− bn

}
, n = 0, 1, . . . (16)

It is easy to show that un ∈ [0, 1] for all n, and the boundedness of un implies

x = lim
N→∞

1
N

N∑
n=1

bn, (17)
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that is, the corresponding generator map E is invertible. For this invertible algorithmic encoder, we
have X = [0, 1], U = [0, 1], Q(x, u) = q1(u+ x), and F (x, u) = u+ x− q1(u+ x).

4. kth-order Σ∆ with constant input. Let ∆ be the forward difference operator defined by (∆u)n =
un+1− un. A kth-order Σ∆ ADC generalizes the scheme in Example 3 by replacing the first-order
difference equation in (16) with

(∆ku)n = x− bn, n = 0, 1, . . . , (18)

which can be rewritten as

un+k =
k−1∑
j=0

a
(k)
j un+j + x− bn, n = 0, 1, . . . , (19)

where a(k)
j = (−1)k−1−j(k

j

)
. Here bn ∈ {0, 1} is computed by a function Q of x and the previous k

state variables un, . . . , un+k−1, which must guarantee that the un remain in some bounded interval
for all n, provided that the initial conditions u0, . . . , uk−1 are picked appropriately. If we define the
vector state variable un =

[
un, · · · , un+k−1

]>, then it is apparent that we can rewrite the above
equations in the form {

bn = Q(x,un)
un+1 = Lkun + xe− bne

}
, n = 0, 1, . . . , (20)

where Lk is the k × k companion matrix defined by

Lk :=


0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
a

(k)
0 a

(k)
1 · · · a

(k)
k−1

 , (21)

and e =
[
0, · · · , 0, 1

]>. If Q is such that there exists a set U ⊂ Rk with the property u ∈ U
implies F (x,u) := Lku + (x − Q(x,u))e ∈ U for each x ∈ X , then it is guaranteed that the un
are bounded, i.e., the scheme is stable. Note that any stable kth order scheme is also a first order
scheme with respect to the state variable (∆k−1u)n. This implies that the inversion formula (17)
holds, and therefore (20) defines an invertible algorithmic encoder. Stable Σ∆ schemes of arbitrary
order k have been devised in [13] and in [5]. For these schemes X is a proper subinterval of [0, 1].

C. A Computational Model for Algorithmic Encoders and Formal Robustness

Next, we focus on a crucial property that is required for any ADC to be implementable in practice. As
mentioned before, any ADC must perform certain arithmetic (computational) operations (e.g., addition,
multiplication), and Boolean operations (e.g., comparison of some analog quantities with predetermined
reference values). In the analog world, these operations cannot be done with infinite precision due to
physical limitations. Therefore, the algorithm underlying a practical ADC needs to be robust with respect
to implementation imperfections.

In this section, we shall describe a computational model for algorithmic encoders that includes all the
examples discussed above and provides us with a formal framework in which to investigate others. This
model will also allow us to formally define robustness for this class of encoders, and make comparisons
with the state-of-the-art converters.
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Fig. 2. A sample DAG model for the function pair (Q,F ).

Directed Acyclic Graph Model: Recall (12) which (along with Figure 1) describes one cycle of an
algorithmic encoder. So far, the pair (Q,F ) of maps has been defined in a very general context and
could have arbitrary complexity. In this section, we would like to propose a more realistic computational
model for these maps. Our first assumption will be that X ⊂ R and U ⊂ Rd.

A directed acyclic graph (DAG) is a directed graph with no directed cycles. In a DAG, a source is a
node (vertex) that has no incoming edges. Similarly, a sink is a node with no outgoing edges. Every DAG
has a set of sources and a set of sinks, and every directed path starts from a source and ends at a sink.
Our DAG model will always have d+ 1 source nodes that correspond to x and the d-dimensional vector
un, and d+ 1 sink nodes that correspond to bn and the d-dimensional vector un+1. This is illustrated in
Figure 2 which depicts the DAG model of an implementation of the Golden Ratio Encoder (see Section
III and Figure 4). Note that the feedback loop from Figure 1 is not a part of the DAG model, therefore
the nodes associated to x and un have no incoming edges in Figure 2. Similarly the nodes associated to
bn and un+1 have no outgoing edges. In addition, the node for x, even when x is not actually used as
an input to (Q,F ), will be considered only as a source (and not as a sink).

In our DAG model, a node which is not a source or a sink will be associated with a component, i.e.,
a computational device with inputs and outputs. Mathematically, a component is simply a function (of
smaller “complexity”) selected from a given fixed class. In the setting of this paper, we shall be concerned
with only a restricted class of basic components: constant adder, pair adder/subtractor, constant multiplier,
pair multiplier, binary quantizer, and replicator. These are depicted in Figure 3 along with their defining
relations, except for the binary quantizer, which was defined in (13). Note that a component and the node
at which it is placed should be consistent, i.e., the number of incoming edges must match the number
of inputs of the component, and the number of outgoing edges must match the number of outputs of the
component.

When the DAG model for an algorithmic encoder defined by the pair (Q,F ) employs the ordered k-
tuple of components C = (C1, . . . , Ck) (including repetitions), we will denote this encoder by AE(Q,F, C).

Robustness: We would like to say that an invertible algorithmic encoder AE(Q,F ) is robust if
AE(Q̃, F̃ ) is also invertible for any (Q̃, F̃ ) in a given neighborhood of (Q,F ) and if the generator
E of AE(Q,F ) has an inverse D defined on {0, 1}N that is also an inverse for the generator Ẽ of
AE(Q̃, F̃ ). To make sense of this definition, we need to define the meaning of “neighborhood” of the
pair (Q,F ).

Let us consider an algorithmic encoder AE(Q,F, C) as described above. Each component Cj in C may
incorporate a vector λj of parameters (allowing for the possibility of the null vector). Let λ = (λ1, . . . , λk)
be the aggregate parameter vector of such an encoder. We will then denote C by C(λ).

Let Λ be a space of parameters for a given algorithmic encoder and consider a metric ρΛ on Λ. We
now say that AE(Q,F, C(λ0)) is robust if there exists a δ > 0 such that AE(Q,F, C(λ)) is invertible for
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Fig. 4. Block diagram of the Golden Ratio Encoder (Section III) corresponding to the DAG model in Figure 2.

all λ with ρΛ(λ, λ0) ≤ δ with a common inverse. Similarly, we say that AE(Q,F, C(λ0)) is robust in
approximation if there exists a δ > 0 and a family of decoders {DN}∞1 such that

δX(ẼN , DN ) ≤ CA(EN )

for all ẼN = ẼN (Q,F, λ) with ρΛ(λ, λ0) ≤ δ, where EN = EN (Q,F, λ0) and C > 0 is a constant that
is independent of N .

From a practical point of view, if an algorithmic encoder AE(Q,F, C(λ0)) is robust, and is imple-
mented with a perturbed parameter λ instead of the intended λ0, one can still obtain arbitrarily good
approximations of the original analog object without knowing the actual value of λ. However, here we
still assume that the “perturbed” encoder is algorithmic, i.e., we use the same perturbed parameter value
λ at each clock cycle. In practice, however, many circuit components are “flaky”, that is, the associated
parameters vary at each clock cycle. We can describe such an encoder again by (12), however we need to
replace (Q,F ) by (Qλn , Fλn), where {λn}∞1 is the sequence of the associated parameter vectors. With
an abuse of notation, we denote such an encoder by AE(Qλn , Fλn) (even though this is clearly not an
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algorithmic encoder in the sense of Section II-B). Note that if {λn}∞1 = λN
0 , i.e., λn = λ0 for all n,

the corresponding encoder is AE(Q,F, C(λ0)). We now say that AE(Q,F, C(λ0)) is strongly robust if
there exists δ > 0 such that AE(Qλn , Fλn) is invertible for all {λn}∞1 with ρΛN({λn}∞1 , λN

0 ) ≤ δ with
a common inverse. Here, ΛN is the space of parameter sequences for a given converter, and ρΛN is an
appropriate metric on ΛN. Similarly, we call an algorithmic encoder strongly robust in approximation if
there exists δ > 0 and a family {DN}∞1 such that

δX(Ẽf
N , DN ) ≤ CA(EN )

for all flaky encoders Ẽf
N = Ẽf

N (Qλn , Fλn) with ρN ({λn}N1 , λ0,N ) < δ where ρN is the metric on
ΛN obtained by restricting ρΛN (assuming such a restriction makes sense), λ0,N is the N-tuple whose
components are each λ0, and EN = EN (Q,F, λ0).

Examples of Section II-B: Let us consider the examples of algorithmic encoders given in section II-B.
The successive approximation algorithm is a special case of the beta encoder for β = 2 and τ = 1. As
we mentioned before, there is no unique way to implement an algorithmic encoder using a given class of
components. For example, given the set of rules set forth earlier, multiplication by 2 could conceivably
be implemented as a replicator followed by a pair adder (though a circuit engineer would probably not
approve of this attempt). It is not our goal here to analyze whether a given DAG model is realizable in
analog hardware, but to find out whether it is robust given its set of parameters.

The first order Σ∆ quantizer is perhaps the encoder with the simplest DAG model; its only parametric
component is the binary quantizer, characterized by τ = 1. For the beta encoder it is straightforward to
write down a DAG model that incorporates only two parametric components: a constant multiplier and
a binary quantizer. This model is thus characterized by the vector parameter λ = (β, τ). The successive
approximation encoder corresponds to the special case λ0 = (2, 1). If the constant multiplier is avoided
via the use of a replicator and adder, as described above, then this encoder would be characterized by
τ = 1, corresponding to the quantizer threshold.

These three models (Σ∆ quantizer, beta encoder, and successive approximation) have been analyzed
in [4] and the following statements hold:

1) The successive approximation encoder is not robust for λ0 = (2, 1) (with respect to the Euclidean
metric on Λ = R2). The implementation of successive approximation that avoids the constant
multiplier as described above, and thus characterized by τ = 1 is not robust with respect to τ .

2) The first order Σ∆ quantizer is strongly robust in approximation for the parameter value τ0 = 1
(and in fact for any other value for τ0). However, A(EN ) = Θ(N−1) for X = [0, 1].

3) The beta encoder is strongly robust in approximation for a range of values of τ0, when β = β0

is fixed. Technically, this can be achieved by a metric which is the sum of the discrete metric on
the first coordinate and the Euclidean metric on the second coordinate between any two vectors
λ = (β, τ), and λ0 = (β0, τ0). This way we ensure that the first coordinate remains constant on a
small neighborhood of any parameter vector. Here A(EN ) = Θ(β−N ) for X = [0, 1]. This choice
of the metric however is not necessarily realistic.

4) The beta encoder is not robust with respect to the Euclidean metric on the parameter vector space
Λ = R2 in which both β and τ vary. In fact, this is the case even if we consider changes in β only:
let E and Ẽ be the generators of beta encoders with parameters (β, τ) and (β + δ, τ), respectively.
Then E and Ẽ do not have a common inverse for any δ 6= 0. To see this, let {bn}∞1 = E(x). Then
a simple calculation shows ∣∣∣ ∞∑

1

bn((β + δ)−n − β−n)
∣∣∣ = Ω(

k

2k+1
δ)

11



where k = min{n : bn 6= 0} <∞ for any x 6= 0. Consequently, Ẽ−1 6= E−1.
This shows that to decode a beta-encoded bit-stream, one needs to know the value of β at least within
the desired precision level. This problem was addressed in [8], where a method was proposed for
embedding the value of β in the encoded bit-stream in such a way that one can recover an estimate
for β (in the digital domain) with exponential precision. Beta encoders with the modifications of
[8] are effectively robust in approximation (the inverse of the generator of the perturbed encoder
is different from the inverse of the intended encoder, however it can be precisely computed). Still,
even with these modifications, the corresponding encoders are not strongly robust with respect to
the parameter β.

5) The stable Σ∆ schemes of arbitrary order k that were designed by Daubechies and DeVore, [13],
are strongly robust in approximation with respect to their parameter sets. Also, a wide family
of second-order Σ∆ schemes, as discussed in [14], are strongly robust in approximation. On the
other hand, the family of exponentially accurate one-bit Σ∆ schemes reported in [5] are not robust
because each scheme in this family employs a vector of constant multipliers which, when perturbed
arbitrarily, result in bit sequences that provide no guarantee of even mere invertibility (using the
original decoder). The only reconstruction accuracy guarantee is of Lipshitz type, i.e. the error of
reconstruction is controlled by a constant times the parameter distortion.

Neither of these cases result in an algorithmic encoder with a DAG model that is robust in its full set
of parameters and achieves exponential accuracy. To the best of our knowledge, our discussion in the
next section provides the first example of an encoder that is (strongly) robust in approximation while
simultaneously achieving exponential accuracy.

III. THE GOLDEN RATIO ENCODER

In this section, we introduce a Nyquist rate ADC, the golden ratio encoder (GRE), that bypasses
the robustness concerns mentioned above while still enjoying exponential accuracy in the bit-rate. In
particular, GRE is an algorithmic encoder that is strongly robust in approximation with respect to its full
set of parameters, and its accuracy is exponential. The DAG model and block diagram of the GRE are
given in Figures 2 and 4, respectively.

A. The scheme

We start by describing the recursion underlying the GRE. To quantize a given real number x ∈ X =
[0, 2], we set u0 = x and u1 = 0, and run the iteration process

un+2 = un+1 + un − bn,
bn = Q(un, un+1). (22)

Here, Q : R2 7→ {0, 1} is a quantizer to be specified later. Note that (22) describes a piecewise affine
discrete dynamical system on R2. More precisely, define

TQ :
[
u
v

]
7→
[
0 1
1 1

]
︸ ︷︷ ︸

A

[
u
v

]
−Q(u, v)

[
0
1

]
. (23)

Then we can rewrite (22) as [
un+1

un+2

]
= TQ

[
un
un+1

]
. (24)

12



Now, let X = [0, 2), U ⊂ R2, and suppose Q is a quantizer on X × U . The formulation in (24) shows
that GRE is an algorithmic encoder, AE(Q,FGRE), where FGRE(x,u) := Au − Q(u) for u ∈ U . Next,
we show that GRE is invertible by establishing that, if Q is chosen appropriately, the sequence b = (bn)
obtained via (22) gives a beta representation of x with β = φ = (1 +

√
5)/2.

B. Approximation Error and Accuracy

Proposition 1. Let x ∈ [0, 2) and suppose bn are generated via (22) with u0 = x and u1 = 0. Then

x =
∞∑
n=0

bnφ
−n

if and only if the state sequence (un)∞0 is bounded. Here φ is the golden mean.

Proof: Note that
N−1∑
n=0

bnφ
−n =

N−1∑
n=0

(un + un+1 − un+2)φ−n

=
N−1∑
n=2

unφ
−n(1 + φ− φ2) + u1 + uNφ

−N+1 + u0 + u1φ
−1 − uNφ−N+2 − uN+1φ

−N+1

= x+ φ−N+1((1− φ)uN − uN+1),

= x− φ−N (uN + φuN+1). (25)

where the third equality follows from 1 +φ−φ2 = 0, and the last equality is obtained by setting u0 = x
and u1 = 0. Defining the N -term approximation error to be

eN (x) := x−
N−1∑
n=0

bnφ
−n = φ−N (uN + φuN+1)

it follows that
lim
N→∞

eN (x) = 0,

provided
lim
n→∞

unφ
−n = 0. (26)

Clearly, (26) is satisfied if there is a constant C, independent of n, such that |un| ≤ C, . Conversely,
suppose (26) holds, and assume that (un) is unbounded. Let N be the smallest integer for which |uN | >
C ′φ3 for some C ′ > 1. Without loss of generality, assume uN > 0 (the argument below, with simple
modifications, applies if uN < 0). Then, using (22) repeatedly, one can show that

uN+k > C ′φ3fk−1 − fk+2 + 1

where fk is the kth Fibonacci number. Finally, using

fk =
φk − (1− φ)k√

5

(which is known as Binet’s formula, e.g., see [15]) we conclude that uN+k ≥ C ′′φk for every positive
integer k, showing that (26) does not hold if the sequence (un) is not bounded.

13



Note that the proof of Proposition 1 also shows that the N -term approximation error eN (x) decays
exponentially in N if and only if the state sequence (un), obtained when encoding x, remains bounded
by a constant (which may depend on x). We will say that a GRE is stable on X if the constant C in
Proposition 1 is independent of x ∈ X , i.e., if the state sequences u with u0 = x and u1 = 0 are bounded
by a constant uniformly in x. In this case, the following proposition holds.

Proposition 2. Let EGRE be the generator of the GRE, described by (22). If the GRE is stable on X , it
is exponentially accurate on X . In particular, A(EGREN ) = Θ(φ−N ).

Next, we investigate quantizers Q that generate stable encoders.

C. Stability and robustness with respect to imperfect quantizers

To establish stability, we will show that for several choices of the quantizer Q, there exist bounded
positively invariant sets RQ such that TQ(RQ) ⊆ RQ. We will frequently use the basic 1-bit quantizer,

q1(u) =

{
0, if u < 1,
1, if u ≥ 1.

Most practical quantizers are implemented using arithmetic operations and q1. One class that we will
consider is given by

Qα(u, v) := q1(u+ αv) =

{
0, if u+ αv < 1,
1, if u+ αv ≥ 1.

(27)

Note that in the DAG model of GRE, the circuit components that implement Qα incorporate a parameter
vector λ = (τ, α) = (1, α). Here, τ is the threshold of the 1-bit basic quantizer, and α is the gain factor
of the multiplier that maps v to αv. One of our main goals in this paper is to prove that GRE, with
the implementation depicted in Figure 4, is strongly robust in approximation with respect to its full set
of parameters. That is, we shall allow the parameter values to change at each clock cycle (within some
margin). Such changes in parameter τ can be incorporated to the recursion (22) by allowing the quantizer
Qα to be flaky. More precisely, for ν1 ≤ ν2, let qν1,ν2 be the flaky version of qτ defined by

qν1,ν2(u) :=


0, if u < ν1,

1, if u ≥ ν2,

0 or 1, if ν1 ≤ u < ν2.

We shall denote by Qν1,ν2α the flaky version of Qα, which is now

Qν1,ν2α (u, v) := qν1,ν2(u+ αv).

Note that (22), implemented with Q = Qν1,ν2α , does not generate an algorithmic encoder. At each clock
cycle, the action of Qν1,ν2α is identical to the action of Qτn,τnα (u, v) := qτn(u+αv) for some τn ∈ [ν1, ν2).
In this case, using the notation introduced before, (22) generates AE(F τnGRE, Q

τn,τn
α ). We will refer to this

encoder family as GRE with flaky quantizer.
1) A stable GRE with no multipliers: the case α = 1: We now set α = 1 in (27) and show that the

GRE implemented with Q1 is stable, and thus generates an encoder family with exponential accuracy (by
Proposition 2). Note that in this case, the recursion relation (22) does not employ any multipliers (with
gains different from unity). In other words, the associated DAG model does not contain any “constant
multiplier” component.

14



Proposition 3. Consider TQ1 , defined as in (23). Then RQ1 := [0, 1]2 satisfies

TQ1(RQ1) = RQ1 .

Proof: By induction. It is easier to see this on the equivalent recursion (22). Suppose (un, un+1) ∈
RQ1 , i.e., un and un+1 are in [0, 1]. Then un+2 = un+un+1−q1(un+un+1) is in [0, 1], which concludes
the proof.

It follows from the above proposition that the GRE implemented with Q1 is stable whenever the initial
state (x, 0) ∈ RQ1 , i.e., x ∈ [0, 1]. In fact, one can make a stronger statement because a longer chunk of
the positive real axis is in the basin of attraction of the map TQ1 .

Proposition 4. The GRE implemented with Q1 is stable on [0, 1 +φ), where φ is the golden mean. More
precisely, for any x ∈ [0, 1 + φ), there exists a positive integer Nx such that un ∈ [0, 1] for all n ≥ Nx.

Corollary 5. Let x ∈ [0, 1 + φ), set u0 = x, u1 = 0, and generate the bit sequence (bn) by running the
recursion (22) with Q = Q1. Then, for N ≥ Nx,

|x−
N−1∑
n=0

bnφ
−n| ≤ φ−N+2.

One can choose Nx uniformly in x in any closed subset of [0, 1 + φ). In particular, Nx = 0 for all
x ∈ [0, 1].

Remarks.
1) The proofs of Proposition 4 and Corollary 5 follow trivially from Proposition 3 when x ∈ [0, 1]. It

is also easy to see that Nx = 1 for x ∈ (1, 2], i.e., after one iteration the state variables u1 and u2

are both in [0, 1]. Furthermore, it can be shown that

0 < x < 1 +
fN+2

fN+1
− 1
fN+1

⇒ Nx ≤ N,

where fn denotes the nth Fibonacci number. We do not include the proof of this last statement here,
as the argument is somewhat long, and the result is not crucial from the viewpoint of this paper.

2) In this case, i.e., when α = 1, the encoder is not robust with respect to quantizer imperfections. More
precisely, if we replace Q1 with Qν1,ν21 , with ν1, ν2 ∈ (1−δ, 1+δ), then |un| can grow regardless of
how small δ > 0 is. This is a result of the mixing properties of the piecewise affine map associated
with GRE. In particular, one can show that [0, 1] × {0} ⊂ ∪nSn, where Sn ⊂ [0, 1]2 is the set of
points whose nth forward image is outside the unit square. Figure 5 shows the fraction of 10,000
randomly chosen x-values for which |uN | > 1 as a function of N . In fact, suppose u0 = x with
x ∈ [0, 1] and u1 = 0. Then, the probability that uN is outside of [0, 1] is O(Nδ2 +φ−N ), which is
superior to the case with PCM where the corresponding probability scales like Nδ. This observation
suggests that “GRE with no multipliers”, with its simply-implementable nature, could still be useful
in applications where high fidelity is not required. We shall discuss this in more detail elsewhere.

2) Other values of α: stable and robust GRE: In the previous subsection, we saw that GRE, imple-
mented with Qα, α = 1, is stable on [0, 1 + φ), and thus enjoys exponential accuracy; unfortunately, the
resulting algorithmic encoder is not robust. In this subsection, we show that there is a wide parameter
range for ν1, ν2 and α for which the map TQ with Q = Qν1,ν2α has positively invariant sets R that do
not depend on the particular values of νi and α. Using such a result, we then conclude that, with the
appropriate choice of parameters, the associated GRE is strongly robust in approximation with respect
to τ , the quantizer threshold, and α, the multiplier needed to implement Qα. We also show that the
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Fig. 5. We choose 10,000 values for x, uniformly distributed in [0, 1] and run the recursion (22) with Q = Qν1,ν21 with
νi ∈ (1− δ, 1 + δ). The graphs show the ratio of the input values for which |uN | > 1 vs. N for δ = 0.05 (solid) and δ = 0.1
(dashed).

invariant sets R can be constructed to have the additional property that for a small value of µ > 0 one
has TQ(R) + Bµ(0) ⊂ R, where Bµ(0) denotes the open ball around 0 with radius µ. In this case, R
depends on µ. Consequently, even if the image of any state (u, v) is perturbed within a radius of µ, it
still remains within R. Hence we also achieve stability under small additive noise or arithmetic errors.

Lemma 6. Let 0 ≤ µ ≤ (2φ2
√
φ+ 2)−1 ≈ 0.1004. There is a set R = R(µ), explicitly given in (29),

and a wide range for parameters ν1, ν2, and α such that TQν1,ν2α
(R) ⊆ R+Bµ(0).

Proof: Our proof is constructive. In particular, for a given µ, we obtain a parametrization for R,
which turns out to be a rectangular set. The corresponding ranges for ν1, ν2, and α are also obtained
implicitly below. We will give explicit ranges for these parameters later in the text.

Our construction of the set R, which only depends on µ, is best explained with a figure. Consider the
two rectangles A1B1C1D1 and A2B2C2D2 in Figure 6. These rectangles are designed to be such that
their respective images under the linear map T1, and the affine map T2, defined by

T1 :
[
u
v

]
7→
[
0 1
1 1

]
, and T2 :

[
u
v

]
7→
[
0 1
1 1

] [
u
v

]
−
[
0
1

]
, (28)

are the same, i.e., T1(A1B1C1D1) = ABCD = T2(A2B2C2D2).
The rectangle ABCD is such that its µ-neighborhood is contained within the union of A1B1C1D1 and

A2B2C2D2. This guards against additive noise. The fact that the rectangles A1B1C1D1 and A2B2C2D2

overlap (the shaded region) allows for the use of a flaky quantizer. Call this region F . As long as the
region in which the quantizer operates in the flaky mode is a subset of F , and TQ = T1 on A1B1C1D1\F
and TQ = T2 on A2B2C2D2 \ F , it follows that TQ(A1B1C1D1 ∪ A2B2C2D2) ⊂ ABCD. It is then
most convenient to choose R = R(µ) = A#

1 B2C
#
2 D1 and we clearly have TQ(R) + Bµ(0) ⊂ R. Note

that if Q = Qν1,ν2α , any choice ν1, ν2, and α for which the graph of v = − 1
αu + ν

α remains inside the
shaded region F for ν1 ≤ ν ≤ ν2 will ensure TQ(R) ⊆ R+Bµ(0).

Next, we check the existence of at least one solution to this setup. This can be done easily in terms
the parameters defined in the figure. First note that the linear map T1 has the eigenvalues −1/φ and φ
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Fig. 6. A positively invariant set and the demonstration of its robustness with respect to additive noise and imperfect quantization.

with corresponding (normalized) eigenvectors Φ1 = 1√
φ+2

(φ, −1) and Φ2 = 1√
φ+2

(1, φ). Hence T1 acts
as an expansion by a factor of φ along Φ2, and reflection followed by contraction by a factor of φ along
Φ1. T2 is the same as T1 followed by a vertical translation of −1. It follows after some straightforward
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algebraic calculations that the mapping relations described above imply

r1 =
φ√
φ+ 2

+ φ2µ

l1 =
φ2

√
φ+ 2

+ φ2µ

r2 =
2φ√
φ+ 2

+ φ2µ

l2 =
1√
φ+ 2

+ φ2µ

h1 = h2 =
φ√
φ+ 2

− 2φµ

d1 = φµ

d2 =
1√
φ+ 2

+ φµ.

Consequently, the positively invariant set R is the set of all points inside the rectangle A#
1 B2C

#
2 D1

where

A#
1 = −l2Φ1 + d1Φ2

B2 = −l2Φ1 + (d2 + h2)Φ2

C#
2 = r1Φ1 + (d2 + h2)Φ2

D1 = r1Φ1 + d1Φ2 (29)

Note that R depends only on µ. Moreover, the existence of the overlapping region F is equivalent to the
condition d1 + h1 > d2 which turns out to be equivalent to

µ <
1

2φ2
√
φ+ 2

≈ 0.1004.

Flaky quantizers, linear thresholds: Next we consider the case Q = Qν1,ν2α and specify ranges for
ν1, ν2, and α such that TQ(R(µ)) ⊆ R(µ) +Bµ(0).

Proposition 7. Let 0 < µ < 1
2φ2
√
φ+2

and α such that

αmin(µ) := 1 + 2µφ
√
φ+ 2 ≤ α ≤ 3− 10µφ

√
φ+ 2

1 + 4µ
√
φ+ 2

=: αmax(µ) (30)

be fixed. Define

νmin(α, µ) :=

{
1 + µφ

√
φ+ 2, α ≤ φ,

α
(
φ+1
φ+2 + 2µφ2

√
φ+2

)
+
(

1−φ
φ+2 −

µφ2
√
φ+2

)
, α > φ,

(31)

νmax(α, µ) :=

{
α− µφ

√
φ+ 2, α ≤ φ,

α
(

1
φ+2 −

2µφ2
√
φ+2

)
+
(

1+2φ
φ+2 + µφ2

√
φ+2

)
, α > φ.

(32)

If νmin(α, µ0) ≤ ν1 ≤ ν2 ≤ νmax(α, µ0), then TQν1,ν2α
(R(µ)) ⊆ R(µ) +Bµ(0) for every µ ∈ [0, µ0].

Remarks.
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1) The dark line segment depicted in Figure 6 within the overlapping region F , refers to a hypothetical
quantizer threshold that is allowed to vary within F . Proposition 7 essentially determines the vertical
axis intercepts of lines with a given slope, −1/α, the corresponding segments of which remain in
the overlapping region F . The proof is straightforward but tedious, and will be omitted.

2) In Figure 7 we show νmin(α, µ) and νmax(α, µ) for µ = 0, 0.01, 0.03. Note that νmin and νmax are
both increasing in α. Moreover, for α in the range shown in (30), we have νmin(α, µ) ≤ νmax(α, µ)
with νmax(α, µ) = νmin(α, µ) at the two endpoints, αmin(µ) and αmin(µ). Hence, νmin and νmax
enclose a bounded region, say G(µ). If {α} × [ν1, ν2] is in G(µ), then TQ(R(µ)) ⊆ R(µ) +Bµ(0)
for Q = Qν1,ν2α .

3) For any αL ∈ (αmin(µ), αmax(µ)), note that νmin is invertible at αL and set

α∗U := ν−1
min(νmax(αL)).

Then, for any αU ∈ (αL, α∗U ), we have

(αL, αU )× (ν1, ν2) ∈ G(µ)

provided
νL := νmin(αU ) ≤ ν1 < ν2 ≤ νmax(αL) =: νU .

Note also that for any (α1, α2) ⊂ (αL, α∗U ), we have νmin(α2) < νmax(α1). Thus,

(α1, α2)× (ν1, ν2) ⊂ G(µ)

if νmin(α2) ≤ ν1 < ν2 ≤ νmax(α1). Consequently, we observe that

TQν1,ν2α
(R(µ)) ⊆ R(µ) +B(µ)

for any α ∈ (α1, α2) and [ν1, ν2] ⊂ [νmin(α2), νmax(α1)].
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4) We can also determine the allowed range for α, given the range for ν1, ν2, by reversing the argument
above. The extreme values of νmin and νmax are

νmin(αmin) = 1 + µφ
√
φ+ 2, (33)

νmin(αmax) =
6φ+ 2 + 3µ(4φ+ 3)

√
φ+ 2

(φ+ 4µφ2
√
φ+ 2)(φ+ 2)

. (34)

For any νL in the open interval between these extreme values, set

ν∗U := νmax(ν−1
min(νL)).

Then, for any νU ∈ (νL, ν∗U ), (αL, αU )× (νL, νU ) is in the allowed region G(µ) where

αL := ν−1
max(νU ) (35)

αU := ν−1
min(νL). (36)

This is shown in Figure 7. Consequently, we observe that GRE implemented with Q = Qν1,ν2α

remains stable for any ν1, ν2 and α provided [ν1, ν2] ⊂ (νL, νU ) and α ∈ (αL, αU ).
5) For the case µ = 0, the expressions above simplify significantly. In (30), αmin(0) = 1 and αmax(0) =

3. Consequently, the extreme values νmin and νmax are 1 and 2, respectively. One can repeat the
calculations above to derive the allowed ranges for the parameters to vary. Observe that µ = 0 gives
the widest range for the parameters. This can be seen in Figure 7.

We now go back to the GRE and state the implications of the results obtained in this subsection. The
recursion relations (22) that define GRE assume perfect arithmetic. We modify (22) to allow arithmetic
imperfections, e.g., additive noise, as follows

un+2 = un+1 + un − bn + εn,

bn = Q(un, un+1), (37)

and conclude this section with the following stability theorem.

Theorem 8. Let µ ∈ [0, 1
2φ2
√
φ+2

), αmin(µ) and αmax(µ) as in (30). For every
α ∈ (αmin(µ), αmax(µ)), there exists ν1, ν2, and η > 0 such that the encoder described by (37) with
Q = Qν1,ν2α′ is stable provided |α′ − α| < η and |εn| < µ.

Proof: This immediately follows from our remarks above. In particular, given α, choose αL < α
such that the corresponding α∗U = ν−1

min(νmax(αL)) > α. By monotonicity of both νmin and νmax, any
αL ∈ (ν−1

max(νmin(α)), α) will do. Next, choose some αU ∈ (α, α∗U ), and set η := min{α−αL, αU −α}.
The statement of the theorem now holds with ν1 = νmin(αU ) and ν2 = νmax(αL).

When µ = 0, i.e., when we assume the recursion relations (22) are implemented without an additive
error, Theorem 8 implies that GRE is strongly robust in approximation with respect to the parameter
α, ν1, and ν2. More precisely, the following corollary holds.

Corollary 9. Let x ∈ [0, 1], and α ∈ (1, 3). There exist η > 0, and ν1, ν2 such that bn, generated via (22)
with u0 = x, u1 = 0, and Q = Qν1,ν2α′ , approximate x exponentially accurately whenever |α′ − α| < η.
In particular, the N -term approximation error eN (x) satisfies

eN (x) = x−
N−1∑
n=0

bnφ
−n ≤ Cφ−N

where C = 1 + φ.
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Fig. 8. Demonstration of the fact that reconstruction error saturates at the noise level. Here the parameters are ν1 = 1.2,
ν2 = 1.3, α = 1.5, and |εn| < 2−6.

Proof: The claim follows from Proposition 1 and Theorem 8: Given α, set µ = 0, and choose ν1, ν2,
and η as in Theorem 8. As the set R(0) contains [0, 1]×{0}, such a choice ensures that the corresponding
GRE is stable on [0, 1]. Using Proposition 1, we conclude that eN (x) ≤ φ−N (uN + φuN+1). Finally, as
(uN , uN+1) ∈ R(0),

uN + φuN+1 ≤ max
(u,v)∈R(0)

u+ φv = 1 + φ.

D. Effect of additive noise and arithmetic errors on reconstruction error

Corollary 9 shows that the GRE is robust with respect to quantizer imperfections under the assumption
that the recursion relations given by (22) are strictly satisfied. That is, we have quite a bit of freedom
in choosing the quantizer Q, assuming the arithmetic, i.e., addition, can be done error-free. We now
investigate the effect of arithmetic errors on the reconstruction error. To this end, we model such
imperfections as additive noise and, as before, replace (22) with (37), where εn denotes the additive
noise. While Theorem 8 shows that the encoder is stable under small additive errors, the reconstruction
error is not guaranteed to become arbitrarily small with increasing number of bits. This is observed in
Figure 8 where the system is stable for the given imperfection parameters and noise level, however the
reconstruction error is never better than the noise level.

Note that for stable systems, we unavoidably have
N−1∑
n=0

bnφ
−n = x+

N−1∑
n=0

εnφ
−n +O(φ−N ), (38)
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where the “noise term” in (38) does not vanish as N tends to infinity. To see this, define εN :=∑N−1
n=0 εnφ

−n. If we assume εn to be i.i.d. with mean 0 and variance σ2, then we have

Var(εN ) =
1− φ−2N

1− φ−2
σ2 → φσ2 as N →∞.

Hence we can conclude from this the x-independent result

E
∣∣∣x− ∞∑

n=0

bnφ
−n
∣∣∣2 = φσ2.

In Figure 8, we incorporated uniform noise in the range [−2−6, 2−6]. This would yield φσ2 =
2−12φ/3 ≈ 2−13, hence the saturation of the root-mean-square-error (RMSE) at 2−6.5. Note, however,
that the figure was created with an average over 10,000 randomly chosen x values. Although independent
experiments were not run for the same values of x, the x-independence of the above formula enables us
to predict the outcome almost exactly.

In general, if ρ is the probability density function for each εn, then εN will converge to a random
variable the probability density function of which has Fourier transform given by the convergent infinite
product

∞∏
n=0

ρ̂(φ−nξ).

E. Bias removal for the decoder

Due to the nature of any ‘cautious’ beta-encoder, the standard N -bit decoder for the GRE yields
approximations that are biased, i.e., the error eN (x) has a non-zero mean. This is readily seen by the
error formula

eN (x) = φ−N (uN + φuN+1)

which implies that eN (x) > 0 for all x and N . Note that all points (u, v) in the invariant rectangle RQ
satisfy u+ φv > 0.

This suggests adding a constant (x-independent) term ξN to the standard N -bit decoding expression
to minimize ‖eN‖. Various choices are possible for the norm. For the ∞-norm, ξN should be chosen to
be average value of the minimum and the maximum values of eN (x). For the 1-norm, ξN should be the
median value and for the 2-norm, ξN should be the mean value of eN (x). Since we are interested in the
2-norm, we will choose ξN via

ξN = φ−N
1
|I|

∫
I

(uN (x) + φuN+1(x)) dx,

where I is the range of x values and we have assumed uniform distribution of x values.
This integral is in general difficult to compute explicitly due to the lack of a simple formula for

uN (x). One heuristic that is motivated by the mixing properties of the map TQ is to replace the average
value |I|−1

∫
I uN (x) dx by

∫
Γ u dudv. If the set of initial conditions {(x, 0) : x ∈ I} did not have zero

two-dimensional Lebesgue measure, this heuristic could be turned into a rigorous result as well.
However, there is a special case in which the bias can be computed explicitly. This is the case α = 1

and ν1 = ν2 = 1. Then the invariant set is [0, 1)2 and[
uN (x)
uN+1(x)

]
=

〈[
0 1
1 1

]N [
x
0

]〉
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Fig. 9. Efficient digital implementation of the requantization step for the Golden Ratio Encoder.

where 〈·〉 denotes the coordinate-wise fractional part operator on any real vector. Since
∫ 1

0 〈kx〉 dx = 1/2
for all non-zero integers k, it follows that

∫ 1
0 uN (x) dx = 1/2 for all N . Hence setting I = [0, 1], we

find
ξN = φ−N

1 + φ

2
=

1
2
φ−N+2.

It is also possible to compute the integral
∫

Γ u dudv explicitly when α = φ and ν1 = ν2 = ν for some
ν = [1, φ]. In this case it can be shown that the invariant set Γ is the union of at most 3 rectangles whose
axes are parallel to Φ1 and Φ2. We omit the details.

F. Circuit implementation: Requantization

As we mentioned briefly in the introduction, A/D converters (other than PCM) typically incorporate
a requantization stage after which the more conventional binary (base-2) representations are generated.
This operation is close to a decoding operation, except it can be done entirely in digital logic (i.e.,
perfect arithmetic) using the bitstreams generated by the specific algorithm of the converter. In principle
sophisticated digital circuits could also be employed.

In the case of the Golden Ratio Encoder, it turns out that a fairly simple requantization algorithm exists
that incorporates a digital arithmetic unit and a minimum amount of memory that can be hardwired.
The algorithm is based on recursively computing the base-2 representations of powers of the golden
ratio. In Figure 9, φn denotes the B-bit base-2 representation of φ−n. Mimicking the relation φ−n =
φ−n+2 − φ−n+1, the digital circuit recursively sets

φn = φn−2 − φn−1, n = 2, 3, ..., N − 1

which then gets multiplied by qn and added to xn, where

xn =
n−1∑
k=0

qkφ
−k, n = 1, 2, ..., N.

The circuit needs to be set up so that φ1 is the expansion of φ−1 in base 2, accurate up to at least B
bits, in addition to the initial conditions φ0 = 1 and x0 = 0. To minimize round-off errors, B could be
taken to be a large number (much larger than logN/ log φ, which determines the output resolution).

IV. HIGHER ORDER SCHEMES: TRIBONACCI AND POLYNACCI ENCODERS

What made the Golden Ratio Encoder (or the ‘Fibonacci’ Encoder) interesting was the fact that a beta-
expansion for 1 < β < 2 was attained via a difference equation with ±1 coefficients, thereby removing
the necessity to have a perfect constant multiplier. (Recall that multipliers were still employed for the
quantization operation, but they no longer needed to be precise.)
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This principle can be further exploited by considering more general difference equations of this same
type. An immediate class of such equations are suggested by the recursion

Pn+L = Pn+L−1 + · · ·+ Pn

where L > 1 is some integer. For L = 2, one gets the Fibonacci sequence if the initial condition is given
by P0 = 0, P1 = 1. For L = 3, one gets the Tribonacci sequence when P0 = P1 = 0, P2 = 1. The
general case yields the Polynacci sequence.

For bit encoding of real numbers, one then sets up the iteration

un+L = un+L−1 + · · ·+ un − bn
bn = Q(un, . . . , un+L−1) (39)

with the initial conditions u0 = x, u1 = · · · = uL−1 = 0. In L-dimensions, the iteration can be rewritten
as 

un+1

un+2
...

un+L−1

un+L

 =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . . . . .

...
0 0 · · · 0 1
1 1 · · · 1 1




un
un+1

...
un+L−2

un+L−1

− bn


0
0
...
0
1

 (40)

It can be shown that the characteristic equation

sL − (sL−1 + · · ·+ 1) = 0

has its largest root βL in the interval (1, 2) and all remaining roots inside the unit circle (hence βL is a
Pisot number). Moreover as L→∞, one has βL → 2 monotonically.

One is then left with the construction of quantization rules Q = QL that yield bounded sequences (un).
While this is a slightly more difficult task to achieve, it is nevertheless possible to find such quantization
rules. The details will be given in a separate manuscript.

The final outcome of this generalization is the accuracy estimate∣∣∣∣∣x−
N−1∑
n=0

bnβ
−n
L

∣∣∣∣∣ = O(β−NL )

whose rate becomes asymptotically optimal as L→∞.
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[4] I. Daubechies, R. DeVore, C. Güntürk, and V. Vaishampayan, “A/D conversion with imperfect quantizers,” IEEE

Transactions on Information Theory, vol. 52, no. 3, pp. 874–885, March 2006.
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