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Abstract. It is well known that a bandlimited function can be reconstructed in theory
from a discrete set of its Fourier samples, provided that the samples are dense enough.
This fact is a direct consequence of extensive studies on Fourier frames for L2([a, b]).
However, when the sample points do not form a lattice there was no practical scheme
(to our knowledge) for the reconstruction of f . In this paper we propose a fast and easy
to implement technique for reconstructing a compactly supported function f from finitely

irregular samples of f . The scheme is based on the cubic-spline interploation and Gaussian
spectral mollifiers. The scheme allows us to eliminate the Gibbs oscillations in many cases.

1. Introduction

Let f(x) be a compactly supported function in L2(R). An important question one often
encounters, both in the study of mathematics itself and in applications, is: Given f(ξ), or

some sample points of f(ξ), how can we reconstruct f(x)? Of course, if f(ξ) is known for

every ξ, then f(x) is readily obtained by the inverse Fourier transform

f(x) =
Rd
f(ξ)e2πixξdξ.

However, it is not necessary that we know f(ξ) for all values ξ, given that f(x) is com-

pactly supported. Suppose that supp(f) ⊆ [a, b]. Far more usful for applications is the

Fourier series inversion formula

f(x) = ∆
λ∈Λ

f(λ)e2πiλx.(1.1)

where Λ = {n∆ : n ∈ Z} is a lattice in R, with 0 < ∆ ≤ (b− a)−1. The inversion formula
(1.1) follows from the well known fact that {e2πiλx : λ ∈ Λ} for the above Λ forms a tight
frame for L2([a, b]) with tight frame bound 1

∆ .
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The tight frame reconstruction requires f(ξ) be known on a regular set, i.e. a lattice in

this case. Unfortunately this is a luxury we may not have in some applications, such as

in MRI (magnetic resonance imaging). In MRI the Fourier transform ρ(ξ), where ρ is the

density function of the scanned image (such as a planar section of patient’s head), is sampled

along several paths, with each path being a curve such as a spiral, a circle or a line. These

sampled points do not contain a regular set (a lattice). So the image reconstruction in MRI

must begin with irregular Fourier samples. Currently, samples are taken along many paths,

resulting in a sufficiently dense set of samples. These sample points allow for a reasonable

interpolation of ρ on a lattice, and therefore a reconstruction of ρ. The drawback is that it

takes time to obtain many samples.

Another challenge we face is the Gibbs oscillation. Since we can only use finitely many

sample points, the Gibbs oscillation is inevitable, even when we do have a regular set of

samples of f . Any reasonable reconstruction scheme therefore must address the problem of

Gibbs oscillation.

In this paper we propose a scheme for reconstruction of f(x) from irregular samples of f .

A key ingredient is a technique called discrete singular convolution, first introduced by Wei

[12]. This technique allows us to virtually eliminate the Gibbs oscillation in many cases.

Our scheme is still in its early stage, and there are areas that need to be refined. The

most important improvement would most likely come from choosing the right bases. In our

study, we have experimented with Haar bases. But it is clear that better results can be

expected from other types of bases, since the speed of decay in the Fourier transform plays

an important role in our scheme. We shall discuss possible improvements for future work

later. Nevertheless, our results have clearly demonstrated its promise. We hope it will serve

our modest goal, that is, a valuable first step in addressing an important theoretical and

practical challenge.

We would like to thank John Benedetto, Yingjie Liu, and Guowei Wei for valuable dis-

cussions.

2. Irregular Fourier Frames and Reconstruction

Since we are concerned only with the reconstruction of compactly supported functions

f(x), we may without loss of generality assume that f ∈ L2([0, 1]). It is well known that
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{e2πinx : n ∈ Z} is an orthonormal basis for L2([0, 1]), which gives us the standard Fourier
series expansion for f(x):

f(x) =
n∈Z

f(n)e2πinx.

However, reconstructing f(x) — at least in theory — can be done often without an ortho-

normal basis. In this paper we focus on reconstructing f(x) using Fourier frames. A set

of elements {vj} in a Hilbert space H is called a frame with frame bounds A,B > 0 if for

every u ∈ H we have

A,u,2 ≤
j

|�u,vjX|2 ≤ B,u,2.(2.1)

If A = B, then vj is called a tight frame. Fourier frames for L
2([0, 1]) are frames of the

form {e2πiλjx}. The following is a well known result of Beurling (cf. [15]):

Theorem 2.1. Supose that Λ = {λj} ⊂ R is uniformly separated and has D−(Λ) > 1,

where D−(Λ) denote the lower Beurling densities given by

D−(Λ) = lim inf
n→∞ inf

a∈R
1

2n
#(Λ ∩ [−n+ a, n+ a]).

Then {e2πiλx : λ ∈ Λ} is a frame for L2([0, 1]).

Nevertheless, if 1 < D−(Λ) ≤ D+(Λ) < ∞ but Λ is irregular then there is no simple

formula to reconstruct f(x) from the Fourier samples {f(λ)}λ∈Λ. Moreover, in practice we
can only take finitely many data, posing an additional challenge to the reconstruction.

Here we propose a reconstruction scheme based on cubic-spline interpolation and a tech-

nique along the spirit of the discrete singular convolution (DSC), a technique introduced by

G-W. Wei. The DSC technique in our case is essentially a Gaussian spectral mollifier aimed

to enhance the decay in Fourier transforms of bandlimited functions, and it enables us to

reconstruct singularities much better than without it. We shall discuss the DSC technique

in more details later in the paper.

Let {φn(x)}n∈Z be an orthonormal basis for L2([0, 1]). Then

f(x) =
n∈Z
�f,φn(x)Xφn(x).

Notice that �f,φn(x)X = �f,φn(x)X. Since samples of f are given, it is natural that we
estimate �f,φn(x)X by estimating �f,φn(x)X. Now, given {φn} we can often compute φn(ξ)
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explicitly. Furthermore, f is analytic and limξ→∞ f(ξ) = 0. Suppose we have f(λ) where

λ ∈ Λ. We now interpolate f(ξ)φn(ξ) using {f(λ)φn(λ) : λ ∈ Λ} by cubic splines. Let Gn(ξ)
be the resulting cubic spline interpolation. Then we obtain an estimation of �f,φn(x)X by
RGn(ξ)dξ, and therefore a reconstruction of f by

frec(x) =
n∈Z

cnφn(x), where cn :=
R
Gn(ξ)dξ.(2.2)

If f(x) is known to be real, then we use

frec(x) = Re
n∈Z

cnφn(x) , where cn :=
R
Gn(ξ)dξ.(2.3)

In practice we are given only a finite set of data, i.e. we know {f(λ) : λ ∈ Λ} with
Λ being finite. We can also choose only a finite basis {φn}N−1n=0 . But the technique will

be the same. We use cubic spline to interpolate {f(λ)φn(λ) : λ ∈ Λ}. Let Gn(ξ) be the
resulting interpolation. (Here we need to set Gn(ξ) = 0 for sufficiently large ξ.) Then the

reconstructed f(x) will be

frec(x) =
N−1

n=0

cnφn(x), where cn :=
R
Gn(ξ)dξ,(2.4)

or if f(x) is real,

frec(x) = Re
N−1

n=0

cnφn(x) , where cn =
R
Gn(ξ)dξ.(2.5)

Our experiments indicate that by taking a simple basis such as the Haar basis φn(x) =

χ[ n
N
,n+1
N
)(x), this reconstruction scheme works very well if f(x) ∈ C0([0, 1]), i.e. f(x) is

continuous in R and supp(f) ⊆ [0, 1]. However, the Gibbs oscillation poses a big problem
if f is discontinuous in R, making a “straight out-of-the-box” application of (2.4) or (2.5)
less useful. By incorporating the DSC technique with a Gaussian spectral mollifier, we have

either eliminated or severely curbed the Gibbs oscillation in our reconstructions.

3. DSC Technique and Spectral Mollifiers

Let ψ(x) be a bandlimited function with supp(ψ) ⊆ [−12 .12 ]. The Shannon Sampling
Theorem states that for any 0 < ∆ ≤ 1 we have

ψ(x) = ∆
n∈Z

ψ(n∆)S(∆−1x− n),(3.1)
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where S(x) = sin(πx)/πx is the sync function. While this sampling theorem is the cor-

nerstone in signal processing, it possesses some intrinsic difficulties in applications. The

sampling formula with only finitely many samples among ψ(n∆), which is the case in all

applications, is subject to the Gibbs oscillation in the Fourier domain. But Gibbs oscillation

is only one of the challenges. It is known that the sampling formular (3.1) yields only an

O(∆) approximation for a general C∞ function ψ. This fact explains why (3.1) has little

use in applications such as numerical PDE, in which higher order of approximations are

desired.

These problems are overcome in the work of Wei and his coauthors, see [12] and [14]

as well as the references therein. The key ingredient in their work is to mollify the sync

function with a suitable Gaussian. Let

Sa(x) = S(x)e
−ax2 =

sin(πx)

πx
e−ax

2
, a > 0.

The sampling formula (3.1) is then modified by using Sa(x) in place of S(x), giving the

approximation/reconstruction of ψ(x) by

ψ∗(x) = ∆
n∈Z

ψ(n∆)S(∆−1x− n),(3.2)

where a is chosen to be proportional to be roughly ∆, a = c∆. This simple approximation

proves to be surprisingly powerful: Gibbs oscillation is eliminated completely in many ap-

plications, and extraordinarily high accuracy is achieved in many numerical PDE solutions.

Wei calls this scheme the discrete singular convolution (DSC) scheme. The DSC scheme is

very robust, as the constant c can be taken over a large interval without having apparent

impact on the outcome of the tasks. Despite the high performance many numerical analysts

remained skeptical of the validity of the DSC scheme, as there was no mathematical proof

that it works. Fortunately this is no longer the case, as one of us (Y. Wang [11]) recently

has given a rigorous proof that (3.2) yields an approximation of ψ that is o(∆N ) for any N .

A major reason for the improved performance is that by adding a Gaussian factor one

overcome the slow decaying property of the sync function. This is also why the DSC scheme

proves useful not just when the sync function basis is used. Numerical experiments have

indicated similar improvements in performance when other type of basis functions are used.

To reconstruct a function from its Fourier samples we incorporate the DSC scheme to the

Fourier transform of Haar bases.
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We incorporate the DSC technique in our reconstruction by adding a Gaussian mollifier

to the spline interpolation Gn(ξ). It should be pointed out that curbing Gibbs oscillation

using spectral mollifiers has been used by many others, see e.g. Tadmor and Tanner [10] in

all kind of ways. The way we use the mollifiers is different from all the existing methods,

including those by Wei and those by Tadmor and Tanner. Nevertheless all these methods

embody essentially the same goal of controlling the decay of the Fourier transforms. Now

let f(x) ∈ L2([0, 1]) and {f(λj) : 0 ≤ j < M} be given, where Λ = {λj} is inside the
interval [−K,K]. Let φn(x) = χIn(x) where In = [ nN ,

n+1
N ), 0 ≤ n < N . We reconstruct

f(x) from the Fourier samples {f(λj)} in the form

frec(x) =
N−1

n=0

cnφn(x).

Note that N is the “resolution” of the reconstructed function frec, and the selection of

which depends on several factors and the actual application. (In MRI the reconstruction

resolution is typically 128 × 128.) We require that M ≥ N . Now, instead of taking cn =
RGn(ξ) dξ, where Gn is the cubic spline interpolation of f(ξ)φn(ξ) using the sample points

{f(λj)φn(λj)}, we apply the a Gaussian mollifier by setting cn = RGn,a(ξ) dξ for a suitable

a > 0, where Gn,a is the cubic spline interpolation of f(ξ)φn(ξ)e
−aξ2 using the sample points

{f(λj)φn(λj)e−aλ2j}. The Gaussian factor helps making the integrand decay faster. The
end result is improved reconstructions, as shown in the next section.

We should remark that there remains much to be done. The main direction for future

work will be to choose other bases such as perhaps wavelet bases or spline type of bases.

The drawback of Haar bases is that their Fourier transforms decay slowly. A smoother

bases will address this problem. However, we opted for Haar bases because their Fourier

transforms can easily be computed, a property that most of the other type of bases do not

have. It would be a challenge to find a bases that combine both properties.

Finally we remark that the scheme is very fast and easy to implement. On a Pentium III

PC we typically obtain our results in real time with N up to N = 3000.

4. Examples

For all of examples in this section, 900 irregular Fourier samples f(ξi) are used, where

ξi are randomly chosen from [−450, 450], such that ξi < ξi+1, 0.8 < ξi+1 − ξi < 1.2. The
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resolutions, i.e. the number of elements in our Haar bases, are set at N = 512. The value

a = 0.0001 is used for the Gassian mollifier in all examples. We experimented with different

values, and the scheme works fine for all a ∈ [0.00005, 0.0001]. Furthermore, it doesn’t seem
to be affected much by the resolution N . However, we have no theoretical explanation why

it should be so.

Example 1. f(x) = sin 4πx, x ∈ [0, 1]. Figure 4.1 is the reconstruction of f(x) from the

cubic spline interpolation without the Gaussian mollifier. Figure 4.2 is the reconstruction of

f(x) from the cubic spline interpolation with the Gaussian mollifier e−ax2 . As one can see,

there is no discernable difference between the two reconstructions and the original signal.

This is due to the fact that f(x) is continuous in R.
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Example 2. Let f(x) = x, x ∈ [0, 1]. Note that this function has a jump at x = 1. Figure
4.3 is the reconstruction of f(x) from the cubic spline interpolation without the Gaussian

mollifier. One can see the Gibbs oscillation, particularly at x = 0. Figure 4.4 is the

reconstruction of f(x) from the cubic spline interpolation with the Gaussian mollifier e−ax2

. There is no discernable difference between the orginal function and the reconstruction.

The Gibbs oscillation is completely eliminated.
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Example 3. f(x) = χ[ 1
4
, 3
4
], x ∈ [0, 1]. Figure 4.5 is the reconstruction of f(x) from the

Fourier expansion. 900 terms are used and 512 points are plotted. Figure 4.6 is the recon-

struction of f(x) from the cubic spline interpolation without a Gaussian mollifier. In both

reconstructions there are pronounced Gibbs oscillations. Figure 4.7 is the reconstruction

of f(x) from the cubic spline interpolation with a Gaussian mollifier. Gibbs oscillation is

elimnated. The tradeoff are “smoother” discontinuities. Despite this tradeoff we view this

reconstruction to be far superior to the previous two.
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Figure 4.6
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Example 4. This example f(x) is created by using step functions and sinπx. Figure 4.8

is a comparision between the original graph and the reconstruction of f(x) from the cubic

spline interpolation without the Gaussian mollifier. It is not a bad reconstruction but Gibbs

oscillation is clearly present. Figure 4.9 is a comparision between the original graph and

the reconstruction of f(x) from the cubic spline interpolation with a Gauusian mollifier. It

is clearly far superior, with Gibbs oscillation completely eliminated.
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