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A spectral set is a subset 0 of Rn with Lebesgue measure 0<+(0)<� such that
there exists a set 4 of exponential functions which form an orthogonal basis of
L2(0). The spectral set conjecture of B. Fuglede states that a set 0 is a spectral set
if and only if 0 tiles Rn by translation. We study sets 0 which tile Rn using a
rational periodic tile set S=Zn+A, where A�(1�N1)Z_ } } } _(1�Nn)Z is finite.
We characterize geometrically bounded measurable sets 0 that tile Rn with such a
tile set. Certain tile sets S have the property that every bounded measurable set 0
which tiles Rn with S is a spectral set, with a fixed spectrum 4S . We call 4S

a universal spectrum for such S. We give a necessary and sufficient condition for
a rational periodic set 4 to be a universal spectrum for S, which is expressed
in terms of factorizations A�B=G where G=ZN1

_ } } } _ZNn
, and A :=

A (mod Zn). In dimension n=1 we show that S has a universal spectrum
whenever N1 is the order of a ``good'' group in the sense of Hajo� s, and for various
other sets S. � 1997 Academic Press

1. INTRODUCTION

Let 0/Rn be a Lebesgue measurable set with measure 0<+(0)<�.
We call 0 a spectral set if there exists a subset 4 of Rn such that the set
of functions [e*(x): * # 4] forms an orthogonal basis for L2(0), where
e*(x) :=e2?i* } x. In this case (0, 4) is called a spectral pair and 4 is called
a spectrum or exponent set for 0. (A spectral set 0 may have several
different spectra.)

The notion of spectral set was introduced by Fuglede [3] in his study
of a problem of I. E. Segal: Which open sets 0/Rn have the property that
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the partial differential operators &i(���x1), &i(���x2) , ..., &i(���xn) acting
on the space C �

c (0) of compactly supported smooth functions on 0
extend to a set of commuting self-adjoint operators H=(H1 , H2 , ..., Hn) on
L2(0). This property is called the integrability property in [17]. Fuglede
proved [3, Theorem I(b) and remark (1), p. 108] that any open set 0
which is a spectral set has the integrability property, and that for each
spectrum 4 for 0 there is a unique extension H having 4 as its spectrum.
He also proved a partial converse [3, Theorem I(a)], which states that
any connected open set 0 of finite Lebesgue measure which has the inte-
grability property and which satisfies an extra condition (Nikodym domain)
must be a spectral set. He observed that a converse result does not hold
in general for non-connected sets 0. Later Pedersen [17, Theorem 3.2]
strengthened Fuglede's partial converse by showing that all connected open
sets 0 that have the integrability property are spectral sets.1

This paper studies spectral sets. These sets form a very restrictive class of
sets in Rn. For example, neither a circular disk nor a triangle can be a
spectral set ([3]). Fuglede proved that if 0 is a fundamental domain of a
lattice L, then 0 is a spectral set, with spectrum 4=L*, the dual lattice
of L, which is

L*=[# : # } * # Z for all * # L]. (1.1)

However, not all spectral sets are fundamental domains of a lattice. For
example, the disconnected set 0=[0, 1] _ [2, 3] is a spectral set with
spectrum 4=Z+[0, 1�4].

Fuglede [3, p. 119] conjectured that a set 0 with finite positive
Lebesgue measure is a spectral set if and only if it is a direct summand,
which he defined to be a set that tiles Rn with measure-disjoint translates
up to a measure zero set. Let 01 &02 mean that 01 and 02 differ in a set
of measure zero. We state this conjecture as:

Spectral Set Conjecture. A set 0 in Rn having finite Lebesgue measure
0<+(0)<� is a spectral set if and only if 0 tiles Rn by translation, i.e.,
Rn is the disjoint union (up to sets of measure zero)

Rn$0+S= .
s # S

(0+s), (1.2)

in which S is a discrete set called a tile set.

Extensive studies have been made of spectral sets, by Fuglede [3],
Jorgensen [7], Jorgensen and Pedersen ([9], [10]) and Pedersen
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1 Pedersen [17, p. 125] uses a more general definition of spectral set that includes certain
sets 0 of infinite Lebesgue measure. His definition agrees with the one here in the finite
measure case [17, Corollary 1.11].
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([17], [18]). However the spectral set conjecture has not been resolved in
either direction in any dimension, including dimension 1. In fact it has not
even been resolved for all sets 0=[0, 1]+B where B/Z is a finite set.

This paper studies the spectral set property for bounded sets 0 of
positive measure which tile Rn with a rational periodic tile set. A tile set S

is periodic if there is a (full-rank) lattice L in Rn such that

S :=L+[a1 , ..., am],

and it is rational if in addition all coset differences ai&aj are commensurate
with the lattice L, i.e., there exists an integer N such that N(ai&aj) # L for
all i, j. By an affine transformation we can always reduce a rational
periodic tile set to the case that L=Zn and

S :=Zn+A, (1.3)

with A :=[a1 , ..., am]�(1�N1)Z_(1�N2)Z_ } } } _(1�Nn)Z, for positive
integers N1 , N2 , ..., Nn . We assume that the cosets of Zn given by A are all
distinct, that is

(A&A) & Zn=[0]. (1.4)

This paper makes the observation that certain tiling sets S given by
(1.3) possess a universal spectrum 4=4S . A universal spectrum for S is a
set 4 that is a spectrum simultaneously for all bounded measurable sets 0
that tile R with tiling set S. The result of Fuglede [3, p. 113] stated in
(1.1) above is such a result, in that it says that if S=L is a lattice, then
the dual lattice L* is a universal spectrum for S. We consider as
candidates for universal spectra rational periodic sets in Zn, namely

4=N1Z_N2Z_ } } } _NnZ+[#1 , #2 , ..., #s]. (1.5)

in which 1=[#1 , ..., #s]�Zn has (1&1) & (N1 Z_ } } } _NnZ)=[0].
We give a necessary and sufficient condition for a given rational periodic

set 4 to be a universal spectrum for the tile set S. This condition involves
factorizations of the finite abelian group G=ZN1

_ } } } _ZNn . A factoriza-
tion of a finite abelian group G, written G=A�B, is one in which every
g # G has a unique representation

g=a+b, with a # A, b # B. (1.6)

In what follows, we identify G=ZN1
_ } } } _ZNn with the set (1�N1)Z_ } } }

_(1�Nn)Z (mod Zn) viewed as a subgroup of the n-torus Tn=Rn�Zn.
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Definition 1.1. For A�(1�N1)Z_ } } } _(1�Nn)Z, define Comp(A) to
be the collection of all sets

B=[b1 , ..., bm]�\ 1
N1

Z_ } } } _
1

Nn
Z+& [0, 1]n, (1.7)

such that A :=A (mod Zn) and B :=B (mod Zn) yield a factorization

A�B=ZN1
_ } } } _ZNn :=\ 1

N1

Z_ } } } _
1

Nn
Z+<Zn. (1.8)

Such sets B are called complementing sets for A in ZN1
_ } } } _ZNn .

In Section 3 we prove the following criterion for a universal spectrum.

Theorem 1.1. Let S=Zn+A with

A=[a1 , ..., am]�
1

N1

Z_ } } } _
1

Nn
Z. (1.9)

Then a set 4=(N1 Z_ } } } _NnZ)+1 with 1�Zn is a spectrum for all
bounded sets 0 that tile Rn with tile set S if and only if 4 is a spectrum for
each of the sets

0B :=_0,
1

N1&_ } } } __0,
1

Nn&+B, B # Comp(A). (1.10)

Since Comp(A) is finite, this result yields an algorithm to test whether
a given set 4 as above is a universal spectrum for S, using Theorem 2.3
in Section 2, which gives a Fourier-analytic criterion to check if 0B has 4
as a spectrum.

Which tiling sets S have universal spectra? As far as we know at
present, the following could be true.

Universal Spectrum Conjecture. Let S :=Zn+A, where A�
(1�N1)Z_ } } } _(1�Nn)Z such that A :=A (mod Zn) admits some factor-
ization A�B=ZN1

_ } } } _ZNn . Then S has a universal spectrum 4 of the
form N1Z_N2Z_ } } } _NnZ+1, with 1�Zn.

For any given set S, this conjecture is checkable in a finite number of
operations using Theorem 1.1 and Corollary 2.3a.

There is currently little evidence supporting this conjecture in dimensions
n�2, and it is open even in dimension 1. In this paper we exhibit many
one-dimensional tiling sets S that have universal spectra. We verify the
universal spectrum conjecture in many specific cases using Theorem 1.1
together with known results about the structure of factorizations of finite
abelian groups G.
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Factorizations of abelian groups have been extensively studied, see the
discussion in Section 4 and the paper of Tijdeman [22]. Given a factoriza-
tion A�B=G of an abelian group G, we call A and B complementing sets,
and we say that B is an A-complement (mod G).

Definition 1.2. Let G=ZN be a finite cyclic group. Call a subset A�G
eligible if there exists A=[a1 , ..., am]�Z with 0 # A and gcd(a1 , ..., am)=1,
such that A :=A (mod N). An eligible set A has the strong Tijdeman
property if there is a proper subgroup H % G such that if B satisfies
A�B=G and 0 # B, then B�H. Equivalently, there is some prime p | |A|
such that if B�Z with 0 # B and B :=B (mod N), then p | B.

Definition 1.3. A group G=ZN has the strong Tijdeman property if all
eligible A�G have the strong Tijdeman property.

The strong Tijdeman property is hereditary in the sense that if G has this
property, so does any subgroup of G. (Lemma 4.1). We prove:

Theorem 1.2. If the cyclic group ZN has the strong Tijdeman property,
then any tile set S=Z+(1�N)A with A�Z has a universal spectrum
4=NZ+1 for some 1�Z.

We show that all cyclic groups that are good in the sense of Hajo� s [5]
have the strong Tijdeman property (Theorem 4.1). The complete list of
finite abelian groups that are good was found by Sands [20], cf. Proposi-
tion 4.1. The cyclic groups ZN which are good are exactly those N that
divide one of pqrs, p2qr, p2q2 or pnq, where p, q, r, s are any distinct primes
and n�1. Fuglede [3] stated without proof that if B�Z is such that
B=B (mod N) is a complementing set for ZN , and ZN is a good group,
then 0=[0, 1]+B is a spectral set. This result follows from Theorems 1.2
and Theorem 4.1.

As far as we know, the following could be true.

Strong Tijdeman Conjecture. Every finite cyclic group ZN has the strong
Tijdeman property.

We use results of Sands [19] and Tijdeman [22], which give certain
other sets A that have the strong Tijdeman property, to prove:

Theorem 1.3. Let S=Z+(1�N)A, where A�Z is such that A

(mod N) is a complementing set of ZN . If either |A| or N�|A| is a prime
power, then S has a universal spectrum 4=NZ+1 with 1�Z.

In the one-dimensional case, it was shown in [15] that every compact
set T that tiles R has a rational periodic tiling. We apply this to show that the
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strong Tijdeman conjecture implies that all compact sets that tile R are
spectral sets (Theorem 5.1).

The approach to finding rational periodic sets that are universal spectra
via the strong Tijdeman property cannot always work in dimensions n�3.
In Section 4 we give an example of an abelian group of rank 3 which con-
tains a set A that does not even have the Tijdeman property, which is a
weak version of the strong Tijdeman property.

There is a ``dual'' approach to the spectral set conjecture, which takes
a set 4 and asks: Which sets 0 have 4 as a spectrum? Jorgensen and
Pedersen [8] showed that in order for 4 to be a spectrum, it must be
uniformly discrete. Fuglede [3, p. 114] showed that if 4 is a lattice L, then
it is a spectrum of exactly those sets 0 which are a fundamental domain
of its dual lattice L*. Pedersen [18, Theorem 2] derives necessary and
sufficient conditions for a set 0 to be a spectral set with a given rational
periodic set 4=Zd+1 as spectrum. These conditions do not reveal
whether or not 0 tiles Rn by translation.

We remark that Fuglede [3, p. 120�121] was certainly aware of relations
between rational periodic spectra and factorizations of abelian groups. He
stated such results, but included no proofs. These results are proved in this
paper, in Theorems 1.2 and 4.1.

The contents of this paper are as follows. In Section 2 we develop a
criterion for a set 0 :=[0, 1]+B with B�Z to have a particular rational
periodic set as a spectrum. To do this we use theorems of [8], [18] which
we reprove using Fourier-analytic methods. In Section 3 we give a struc-
ture theorem for sets 0 that have a rational periodic tiling S in terms of
complementing sets of finite abelian groups, and prove Theorem 1.1. In
Section 4 we survey results on factorizations of finite abelian groups G and
prove that good groups have the strong Tijdeman property. Finally,
Section 5 treats the one-dimensional case, proves Theorems 1.2 and 1.3,
and also proves Theorem 5.1 mentioned above.

2. SPECTRAL SET CRITERION IN Rn

In this section we let 0�Rn be a Lebesgue measurable set with measure
0<+(0)<�; we do not assume 0 is bounded or that 0 tiles Rn by trans-
lation. We develop a criterion to decide whether a given set 4=Zn+1
with 1�Q is a spectrum for 0.

Let /0 be the characteristic function of 0 and let Z0 denote the set of
real zeros of its Fourier transform

Z0 :={* # Rn : |
0

e2+i* } x dx=0= . (2.1)
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In order for a set [e2?i* } x: * # 4] to be an orthogonal set in L2(0) we must
have

4&4�Z0 _ [0].

Since Zn�4&4 we certainly need Zn "[0]�4&4. The following result,
due to Jorgensen and Pedersen ([8], Theorem 6.2), characterizes sets 0
with Zn"[0]�Z0 _ [0]. We give a short Fourier-analytic proof, different
from that in [8].

Recall that a fundamental domain of a lattice L is a set D such that
�l # L (D+l ) tiles Rn almost everywhere, i.e., D is a measurable set such
that the mapping ?n : Rn � Rn�L restricted to the domain D is one-to-one
almost everywhere and is onto except for a measure zero set.

Theorem 2.1. Let 0/Rn be a Lebesgue measurable set with measure
0<+(0)<�, and suppose that Zn"[0]�Z0 . Then there exist fundamental
domains D1 , ..., Dm of the lattice Zn such that

0=D1 _ D2 _ } } } _ Dm (2.2)

where +(Di & Dj)=0 for all i{ j. In particular, +(0)=m is a positive
integer.

Proof. Let Tn=Rn�Zn be the n-dimensional torus and ?n : Rn � Tn be
the canonical covering map. We prove that 0 is an m-fold covering of Tn

under ?n (almost everywhere) for some positive integer m. From the
hypothesis on Z0 ,

|
0

e2?ik } x dx=|
Tn

_(z) e2?ik } z dz=0 for all k # Zn"[0]

where _(z) :=�y # ?n
&1(z) /0( y). But [ek : k # Zn] is total in L2(Tn). Hence

_(z)=: almost everywhere for some nonzero constant :. Since /0( y) is
integer-valued, we must have :=m for some positive integer m. Therefore
0 is an m-fold covering of Tn under ?n .

To construct the Dj , order the preimages in 0 of each point x # Tn using
the lexicographic total ordering on Rn, and assign the j th point in this
ordering (when it exists) to Dj . We omit routine details showing that the
Dj are measurable. K

Does 0 tile Rn by translation? Theorem 2.1 shows that 0 gives at least
a multiple tiling of Rn with multiplicity m, using the tile set Zn.
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The following result was originally obtained by Pedersen [18]; we give
an independent proof.

Theorem 2.2. Let 0/Rn be such that 0<+(0)<�. Let 1/Rn be a
finite set with (1&1 ) & Zn=[0], and suppose that [e* : * # Zn+1] is
orthogonal in L2(0). Then (0, Zn+1 ) is a spectral pair if and only if
|1 |=+(0).

Proof. Suppose that (0, Zn+1) is a spectral pair. Then the set Zn+1
is both a set of sampling and a set of interpolation for the function space
B(0) :=[ f� (*): f # L2(0)]. Theorems 3 and 4 of Landau [16] together
imply that +(0)=|1 |, because |1 | is the asymptotic density of Zn+1.

We now prove the converse: if |1 |=+(0) then (0, Zn+1 ) is a spectral
pair. We need only show that [e* : * # Zn+1] is total in L2(0).

Again we let ?n : Rn � Tn denote the canonical covering map from Rn to
the torus Tn=Rn�Zn. Let 1=[#1 , ..., #m]. Since [e* : * # Zn+1] is
orthogonal in L2(0), for any #l{#j we have /̂0(#j&#l+k)=0 for all
k # Zn. So

/̂0(#j&#l+k)=|
0

e2?i(#j&#l+k) } x dx=|
Tn

'(z) e2?ik } z dz=0

for all k # Zn, where

'(z) := :
y # ?n

&1(z)

/0( y) e2?i(#j&#l) } y.

It follows from the totalness of [ek : k # Zn] in L2(Tn) that

'(z)= :
y # ?n

&1(z)

/0( y) e2?i(#j&#l) } y=0. (2.3)

Since Zn"[0]�Z0 , it follows from Theorem 2.1 that 0 is the disjoint
union (up to sets of zero measure) of m fundamental domains of the lattice
Zn, say 0=�m

j=1 Dj . The projection map ?n : Dj � Tn is one-to-one and
onto, and we let _j : Tn � Dj denote its inverse, so that ?n b _j=identity.
Then we may rewrite (2.3) as

:
m

k=1

e2?i(#j&#l) } _k(z)=0, for almost all z # Tn. (2.4)

Now, for any f (x) # L2(0) we define vf (z) # L2(Tn)m by

vf (z) :=[ f (_1(z)), ..., f (_m(z))]T. (2.5)
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Then f [ vf defines a linear map from L2(0) to L2(Tn)m which is one-to-
one and onto. Let Hj (0) be the subspace of L2(0) defined as follows:

Hj (0) :={ :
* # bj+Zn

a*e* : a* # C, :
* # bj+Zn

|a*| 2<�= .

For 1� j�m denote

uj (z) :=[e2?i#j } _1(z), ..., e2?i#j } _m(z)]T. (2.6)

Claim. Let g(x) # L2(0). Then g(x) # Hj (0) if and only if vg(z)=
h(z) uj (z) for some h(z) # L2(Tn).

Proof of Claim. Suppose that g(x) # Hj (0). Then

g(x)= :
k # Zn

ak e2?i(#j+k) } x=e2?i#j } x :
k # Zn

ak e2?ik } x.

Let h(z)=�k # Zn ak e2?ik } y where y is any element in ?&1
n (z). Then for any

z # Tn and 1�l�m,

g(_l (z))=e2?i#j } _l (z) :
k # Zn

ak e2?ik } _l (z)=e2?i#j } _l (z)h(z).

Hence vg(z)=h(z) uj (z).
Conversely, suppose that vg(z)=h(z) uj (z) for some h(z) # L2(Tn). Then

we have h(z)=�k # Zn akek(z). Let x # 0. Then x=_l (z) for some z # Tn

and some 1�l�m. So h(z)=�k # Zn ak e2?i } x. Thus

g(x)= g(_l (z))=e2?i#j } _l (z)h(z)= :
k # Zn

ake2?i(#j+k) } x.

Hence g(x) # Hj (0). This completes the proof of the claim.

We now prove the totalness of [e* : * # 1+Zn] by establishing that

L2(0)=H1(0)+ } } } +Hm(0).

Let A(z) be the m_m matrix with its entries aj, l (z)=e2?i#j } _l (z). It follows
from (2.4) that AA*=A*A=mI, where A*=A� T. Now for any given
f (x) # L2(0), let

f1(z) h1(z) f1(z)

vf (z)=_ b & , and _ b &=
1
m

A(z) _ b & .

fm(z) hm(z) fm(z)
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Then hj (z) # L2(Tn) for all j and A*(z)[h1(z), ..., hm(z)]T=[ f1(z), ..., fm(z)]T.
So

:
m

j=1

e2?i#j } _l (z)hj (z)= fl (z). (2.7)

Now, for each 1� j�m let gj (x) # L2(0) satisfy

vgj
(z)=[e2?i#j } _1(z)hj (z), ..., e2?i#j } _m(z)hj (z)].

Then gj (x) # Hj (0). Moreover, vf = vg1
+ } } } + vgm , hence f (x) =

g1(x)+ } } } + gm(x). This completes the proof. K

We now study sets 0 :=[0, 1]n+B with B�Zn. We associate to B the
function

fB(*) := :
b # B

e2?ib } *= :
b=(b1 , ..., bn) # B

e2?i(*1b1+ } } } +*nbn). (2.8)

Its Fourier zero set is:

Z( fB) :=[* # Rn : fB(*)=0]. (2.9)

The set Z( fB) is periodic (mod Zn).

Theorem 2.3. Let 0=[0, 1]n+B, where B�Zn is a finite set. Suppose
that 1�(1�N1)Z_ } } } _(1�Nn)Z is a set of distinct residue classes
(mod Zn), i.e., (1&1 ) & Zn=[0]. Then 4=Zn+1 is a spectrum for 0 if
and only if |1 |=|B| and

1&1�Z( fB) _ [0]. (2.10)

Proof. We have

|
0

e2?i* } x dx= :
b # B

e2?i* } b |
[0, 1]n

e2?i* } x dx

= fB(*) |
[0,1]n

e2?i* } x dx. (2.11)

o . Suppose that |1 |=|B| and (2.10) holds. Given *i , *j # 4, set
*i=mi+#i with mi # Zn and #i # 1, and similarly set *j=mj+#j . If *i{*j ,
(2.11) gives
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|
0

e2?i(*i&*j) } x= fB(*i&*j) |
[0,1]n

e2?i(*i&*j) } x dx

= fB(#i&#j) |
[0,1]n

e2?i(#i&#j+mi&mj) } x dx

=0,

since either #i{#j and fB(#i&#j)=0 by (2.10), or else #i=#j and mi&mj #
Zn=[0], so the integral over [0, 1]n is 0. Thus [e* : * # 4] is an
orthogonal set. Since |1 |=|B|=+(0), Theorem 2.2 shows that 4 is a
spectrum for 0.

O . Suppose that 4 is a spectrum for B. Then [e*: * # 4] is orthog-
onal, and Theorem 2.2 shows that |4|=+(0)=|B|. Now orthogonality for
*i{*j and (2.11) together give

0=|
0

e2?i(*i&*j) } x dx= fB(*i&*j) |
[0, 1]n

e2?i(*i&*j) } x dx.

To obtain 1&1�Z( fB) _ [0] it suffices to show that if #, #$ # 1 with
#{#$, then

|
[0,1]n

e2?i(#&#$) } x dx{0. (2.12)

The value of the integral depends only on #&#$ (mod Zn), and we may
choose +##&#$ (mod Zn) with +=(+1 , ..., +n) so that &1�2�+i<1�2.
Now

|
[0, 1]n

e2?i+ } x dx= `
n

j=1 \|
1

0
e2?i+j xj dxj+ .

Each one-dimensional integral

|
1

0
e2?i+j xj dxj={

1 if +j=0,

1
2?i+j

(e2?i+j&1) if +j{0,

and since &1<+j<1 this is never zero, so (2.12) follows. K

For later applications, we rescale this result by sending xi � (1�Ni)xi , to
obtain:
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Corollary 2.3. Let 0=[0, 1�N1]_ } } } _[0, 1�Nn]+B, where B�
(1�N1)Z_ } } } _(1�Nn)Z is a finite set. Suppose that 1�Zn is a set of distinct
residue classes (mod N1Z_ } } } _Nn Z), i.e. (1&1) & (N1 Z_ } } } _Nn Z)
=[0]. Then 4=(N1Z_ } } } _Nn Z)+1 is a spectrum for 0 if and only if
|1 |=|B| and

1&1�Z( fB) _ [0].

Note that in this corollary the function fB(*) given by (2.8) is periodic
with period N1Z_ } } } _Nn Z.

3. STRUCTURE THEOREM FOR TILES

In this section we assume that 0 is a bounded Lebesgue measurable set
with measure 0<+(0)<� that tiles Rn with a rational periodic tile set S.
We characterize those sets 0 that tile with a given S and apply this to
prove Theorem 1.1.

Given any b� # Rn, we write

b :=b� (mod Zn)

to mean that b&b� # Zn and 0�bi<1. If b� # (1�N1)Z_ } } } _(1�Nn)Z,
then so is b, and we view b as an element of the finite abelian group
ZN1

_ } } } _ZNn in the torus Rn�Zn.
The following structure theorem is a weak n-dimensional analogue of

Theorem 3 in [15].

Theorem 3.1. Suppose that a bounded Lebesgue measurable set 0 tiles Rn

with the rational periodic tile set S=Zn+A, where A�(1�N1)Z_ } } } _
(1�Nn)Z with integers Ni and (A&A) & Zn=[0]. Then 0 has a finite parti-
tion, up to a set of measure zero, of the form

0= .
J

j=1

(0� Bj
+Bj), (3.1)

satisfying the conditions:

(i) Each Bj � (1�N1) Z_ } } } _(1�Nn) Z is a set of cardinality
(N1N2 } } } Nn)�|A|.
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(ii) The set A :=A (mod Zn) together with each Bj :=Bj (mod Zn)
yield a group factorization

A�Bj=ZN1
_ } } } _ZNn . (3.2)

(iii) The sets 0� Bj
are measurable and satisfy

.
J

j=1

0� Bj
=_0,

1
N1&__0,

1
N2&_ } } } __0,

1
Nn& , (3.3)

up to a set of measure zero.
This partition is unique up to measure zero sets.

Proof. For each x # [0, 1�N1]_ } } } _[0, 1�Nn], set

B(x) :={b #
1

N1

Z_ } } } _
1

Nn
Z : x+b # 0= . (3.4)

Because 0 is bounded, there are only finitely many different sets B that
satisfy B=B(x) for some x. Define

0� B :={x # _0,
1

N1&_ } } } __0,
1

Nn& : B(x)=B= . (3.5)

Each 0� B is measurable, since each set

0�� B := .
B�B$

0� B$=\_0,
1

N1&_ } } } __0,
1

Nn&+& \ .
b # B

(0&b)+ ,

is measurable. Now 0� B is extracted by inclusion-exclusion from the 0�� B .
We discard all sets 0� B of measure zero, and retain the rest, which by

construction gives a partition (3.1). Property (iii) holds by definition.
The tiling of Rn by 0 yields a measure-disjoint partition

Rn=0+A+Zn

= .
J

j=1

(0� Bj
+Bj+A+Zn).

Since

Bj+A+Zn�
1

N1

Z_ } } } _
1

Nn
Z,
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we have

.
J

j=1

(0� Bj
+Bj+A+Zn)

� .
J

j=1

0� Bj
+\ 1

N1

Z_ } } } _
1

Nn
Z+

=\_0,
1

N1&_ } } } __0,
1

Nn&++\ 1
N1

Z_ } } } _
1

Nn
Z+

=Rn. (3.6)

Both sides of (3.6) are measure-disjoint partitions of Rn, hence Bj+A+Zn

=(1�N1) Z_ } } } _(1�Nn) Z, and it follows that

A�Bj=ZN1
_ } } } _ZNn ,

which is (ii). Finally |Bj |=|Bj |=(N1 } } } Nn)�|A|=(N1 } } } Nn)�|A|, proving (i).
The steps of this construction are reversible, to prove that there is a

unique partition (3.1) satisfying (i)�(iii), up to sets of measure zero. K

Various examples of sets 0 having rational periodic tilings arise from
self-affine constructions, see [4], [14] and [21].

We now combine Theorem 3.1 with Theorem 2.3 to prove Theorem 1.1.

Proof of Theorem 1.1. O Suppose that 4 is a universal spectrum
for S. We observe that each set 0B given by (1.10) tiles Rn using tile
set S=Zn+A. Indeed (1.8) yields

.
s # S

(0B+s)=\_0,
1

N1&_ } } } __0,
1

Nn&++(A+B+Zn)=Rn,

up to measure zero sets. Thus 4 is a spectrum for 0B .

o We are given a set 4=N1Z_ } } } _Nn Z+1 with 1=[#1 , ..., #s]
�Zn, which is a spectrum for all sets

0B=_0,
1

N1&_ } } } __0,
1

Nn&+B, B # comp(A),

i.e., B satisfies (1.7) and (1.8). Now let 0 tile Rn with the tile set S=
Zn+A. It suffices to prove that [e* : * # 4] is an orthogonal set, for
Theorem 2.2 then applies to show that 4 is a spectrum for 0.
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Now the partition of 0 given by Theorem 3.1 gives, for *, *$ # 4,

|
0

e2?i(*&*$) } x dx= :
J

j=1
|

0� j+Bj

e2?i(*&*$) } x dx

= :
J

j=1

fBj
(*&*$) |

0� j

e2?i(*&*$) } x dx. (3.7)

Define Bj*�[0, 1]n & ((1�N1)Z_ } } } _(1�Nn)Z) by B j* :=Bj (mod Zn).
Then Bj* satisfies (1.7) and (1.8), so 4 is a spectrum of 0Bj*

by hypo-
thesis. Write *=m+# and *$=m$+#$ with m$, m # N1Z_ } } } _NnZ and
#, #$ # 1. Since *&*$ # Zn we have

fBj*
(*&*$)= fBj*

(*&*$)= fBj*
(#&#$).

If #{#$, Theorem 2.3 gives fBj*
(#&#$)=0, hence all fBj

(*&*$)=0 in (3.7),
so that

|
0

e2?i(*&*$) } x dx=0.

If #=#$, then fBj*
(#&#$)=|Bj*|=N�|A|. In this case, substituting (3.3) in

(3.7) yields

|
0

e2?i(*&*$) } x dx=
N

|A| |[0, 1�N1]_ } } } _[0, 1�Nn]
e2?i(m&m$) } x dx=0,

since m&m$ # (N1 Z_ } } } _Nn Z)"[0]. This establishes the orthogonality
of [e* : * # 4]. K

4. FACTORIZATIONS OF FINITE ABELIAN GROUPS

To apply Theorem 1.1 to obtain universal spectra we need to know
properties of factorizations of finite abelian groups.

Let G be an abelian group and let A, B�G. We call the sum A+B a
direct sum if all a+b with a # A and b # B are distinct. We denote a direct
sum by A�B. We call any A�B=G a factorization of G, and we say that
A (or B) is a complementing set (mod G) and that B is an A-complement
(mod G).

The rank of a finite abelian group G is the minimal n�1 such that G is
a quotient group of Zn. The complexity of the set of factorizations of G
grows with the number of prime factors in |G|, and with its rank.
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The structure of complementing sets is well-understood for a special class
of groups, called good groups by Ha� jos [5]. A subset A of G is periodic if
there exists g # G with g{0 such that g+A=A. A group G is good if
for every factorization A�B=G, at least one of A and B is periodic.
Subgroups of good groups are good, and a complete structure theory for
factorizations of good groups is obtained by induction on the order of G.
de Bruijn [1] asked if all groups are good, and Ha� jos [5] found a coun-
terexample. Later de Bruijn [2] showed that the group Z72 is not good,
using the factorization2

A=[0, 8, 16, 18, 26, 34], B=[0, 5, 6, 9, 12, 29, 33, 36, 42, 48, 53, 57].

Sands [19], [20] determined the complete set of finite abelian groups
which are good.

Proposition 4.1 (Sands). A finite abelian group is good if and only if it
is contained in a group of one of the following types: ( p, 2, 2, 2, 2),
( p, q, r, s), ( p, q, 2, 2), ( p2, 2, 2, 2), ( p2, q, r), ( p3, 2, 2), ( p, 22, 2), ( p, 3, 3),
( pn, q), ( p2, q2), (32, 3), (2n, 2), (22, 22) and ( p, p), where p, q, r, s are
distinct primes and p may equal 2.

In particular, the good groups that are cyclic are ZN where N divides
one of pqrs, p2qr, p2q2 or pnq, where p, q, r, s are any distinct primes. The
cyclic group of the smallest order which is not good is Z72 .

A number of weaker structural properties have been studied for fac-
torizations of cyclic groups. Call a factorization A�B=G quasiperiodic if
either A or B, say B, can be partitioned into disjoint subsets B1 , ..., Bm with
m>1 such that there is a subgroup H=[h1 , ..., hm] of G with

A+Bi=A+B1+hi .

The example of de Bruijn above is quasiperiodic, with H=[0, 36] where
B is partitioned as:

B1=[0, 6, 9, 12, 33, 57], B2=[5, 29, 36, 42, 48, 53].

Call a group G quasiperiodic if all factorizations of G are quasiperiodic.

Quasiperiodicity Conjecture (Hajo� s [5]). All finite abelian groups G are
quasiperiodic.

For cyclic groups de Bruijn [2] obtained some partial results on this
question.
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Tijdeman [22] has studied a somewhat stronger property that a factor
A of a cyclic group G=ZN may have. Call a subset A of a cyclic group
ZN primitive if 0 # A and there is A�Z with A=[a1 , ..., an] having
gcd(ai)=1 and A :=A (mod N).

Definition 4.1. A primitive complementing set A�ZN has the
Tijdeman property if for each B�ZN such that A�B=ZN and 0 # B, there
is a subgroup H % G such that B�H. Equivalently, if B=[0, b1 , ..., bm],
there is a prime p | |A| such that p | bi for all i, and B�ZN�p . We say that
A has the strong Tijdeman property if the subgroup H can be chosen to
depend only on A, i.e., it can be taken the same for all complements B with
0 # B.

Tijdeman [22] gives examples showing that the subgroup H of ZN

cannot be chosen independent of A.

Definition 4.2. A finite cyclic group G=ZN has the Tijdeman property
(resp. strong Tijdeman property) if every eligible complementing set A has
the Tijdeman property (resp. strong Tijdeman property).

Tijdeman [22] shows that if a group G and all its subgroups have the
Tijdeman property, then G is quasiperiodic.

Conjecture (Tijdeman). Every finite cyclic group ZN has the Tijdeman
property.

In order to construct universal spectra we need to use the uniformity
condition embodied in the strong Tijdeman property. We proceed to show
that all good groups have the strong Tijdeman property.

Lemma 4.1. If a finite cyclic group G has the strong Tijdeman property,
then every subgroup of G has the strong Tijdeman property.

Proof. We argue by contradiction. Let G=ZN , and suppose there
exists d | N such that Zd does not have the strong Tijdeman property. Then
there exists a set A�Z with 0 # A and gcd[a # A]=1, such that A :=A

(mod d ) has |A|=|A|, and there are complementing sets A�Bj=Zd ,
with Bj�Z such that 0 # Bj and Bj :=Bj (mod N) for 1� j�k, such that
no prime factor p of |A| divides all elements of Bj . Let N=md and define

Cj :=Bj�[0, d, ..., (m&1)d]�Z, 1� j�k.

Then (A, Cj) is a complementing pair (mod N) for 1� j�k, and no prime
factor p| |A| divides all elements of all Cj . This contradicts ZN having the
strong Tijdeman property. K
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Theorem 4.1. Let G be a finite cyclic group which is a good group. Then
G has the strong Tijdeman property.

Proof. Let G=ZN . We prove the result by induction on d(N), the
number of divisors of N. The base case is d(N)=2, where N= p is prime,
and the hypothesis is trivially true.

Assume that the induction hypothesis is true if d(N)<k. Now let
d(N)=k and assume that ZN is good. Let A be a complementing set
(mod N) such that 0 # A and gcd(a: a # A)=1. We prove that there exists
a prime factor p of |A| such that p | B for all A-complementing sets B

with 0 # B.
Suppose first that A is periodic, i.e., A+ g#A (mod N), with g�0

(mod N). Since any multiple mg of g also makes A periodic, i.e.,
A+mg=A, we may without loss of generality take g to be a (proper)
factor of N. Then there exists A1�Z with 0 # A1 and

A#[0, g, 2g, ..., N& g]�A1 (mod N). (4.1)

For any A-complementing set B (mod N) with 0 # B, the set (A1 , B)
(mod g) is a complementing pair for Zg . Set

f1=gcd(a: a # A1).

Then ( f1 , g) = 1, otherwise we contradict gcd(a: a # A) = 1. Thus
((1�f1) A1 , B) (mod g) is also a complementing pair for Zg , hence (1�f1) A1

(mod g) is a complementing set for Zg . Since d( g)<k, the induction
hypothesis gives a prime factor p of |A1|, and hence of |A|, such that p | B

for every A-complementing set B (mod g) with 0 # B.
Suppose next that A is not periodic, and that |A| is a prime power.

Then the strong Tijdeman property for A follows from a result of
Tijdeman [22, Theorem 3].

Suppose now that A is not periodic, and that |A| has at least two dis-
tinct prime factors. Since ZN is a good group, if B is an A-complementing
set (mod N) with 0 # B then B is periodic. Since |A| | N, N has at least
two prime factors. We have the following cases.

Case 1. N= pkq with k�2, and |A|= peq with 1�e<k. Write
B+ g#B (mod N), with g | N and g{N. Then g is a multiple of |A|,
hence g= plq with e�l<k. Set g*= pk&1q, and then for all B, we have
B+ g*#B (mod N). As above,

B#[0, g*, 2g*, ..., N& g*]�B1 (mod N)

for some set B1�Z with 0 # B1 , such that (A, B1) is a complementing pair
(mod g*). Since d( g*)<k, the induction hypothesis says there exists a
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prime factor t of |A| independent of B1 , that divides B1 . Now t is either
p or q, and since pq | g*, we obtain t | B. Thus the induction step holds.

Case 2. N= p2q2 and |A|= pqd with d=1, p or q. Write B+ g#B

(mod N) with g | N and g{N, and note that g is a multiple of |A|. If d= p
or q, then g=|A|, hence B (mod N) can only be the subgroup of ZN of
order q or p, respectively. So in this case, pq | B.

The hard subcase is d=1 where |A|= pq. All complementing sets B

have |B|= pq and fall into three classes, according to whether their mini-
mal period g dividing p2q2 is g= pq, p2q or pq2. (The periods of B form
a subgroup of ZN , so if p2q and pq2 are both periods, then so is pq). If
g= pq then B+ pq=B (mod N) implies that B is the subgroup of ZN of
order pq, hence pq | B. In the remainder of the proof we show that for at
least one of the classes g= p2q and g= pq2 all B have pq | B, while all B

in the other class have t | B for t= p or q. This then implies that t | B for
all complementing sets B.

Consider first the case g= p2q. Then there exists a set B1�Z with 0 # B1

such that

B#[0, p2q, ..., (q&1) p2q]�B1 (mod N), (4.2)

and (A, B1) is a complementing pair (mod p2q) with |B1|= p. If A is not
periodic (mod p2q) then the argument of Case 1 applies to (A, B1) to
show that

B1#[0, pq, 2pq, ..., ( p&1) pq] (mod p2q).

Thus pq | B1 , so that pq | B, for all B having g= p2q. If A is periodic
(mod p2q) then, since d( p2q)<k, we apply the induction hypothesis to
conclude there is a prime t1 | B1 , independent of the A-complementing set
B1 (mod p2q), with t1= p or q. Now (4.2) gives t1 | B in this case, for all
B having g= p2q. If q= pq2 an identical argument says that if A is not
periodic (mod pq2) then pq | B, while if A is periodic (mod pq2) then there
exists a t2= p or q such that t2 | B for all B having q= pq2.

There remains an exceptional case, in which A is periodic both
(mod p2q) and (mod pq2). We show that this case never occurs. We argue
by contradiction. Suppose A were periodic (mod p2q). Then A+ g$#A

(mod p2q), with g$ | p2q and |A|= pq divides g$, so g$= pq. Then (4.1)
gives

A#[0, pq, ..., ( p&1) pq]�A$ (mod p2q).

It follows that the number of elements a # A with a#0 (mod pq) is a mul-
tiple of p. If A were also periodic (mod pq2) a similar argument shows that
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the number of elements of A with a#0 (mod pq) is a multiple of q. This
number is thus a multiple of pq, and since 0 # A and |A|= pq, we
conclude all elements of A have a#0 (mod pq). This forces

A#[0, pq, 2pq, ..., ( pq&1) pq] (mod p2q2),

hence A+ pq#A (mod N), contradicting the hypothesis that A is not
periodic (mod N).

Case 3. N= pqr, p2qr or pqrs. The arguments are similar to case 2. As
one example: N= p2qr and |A|=qr. If B+ g#B (mod N) with g=qr
then B is necessarily the subgroup of N of order p2, hence qr | B; if g= pqr
then

B#[0, pqr, ..., ( p&1) pqr]�B1 (mod N)

hence any prime t | B1 has t | B, and the induction hypothesis gives t | B1

for all B1 , for some t=q or r.

These cases are exhaustive, and the induction step follows. K

For finite abelian groups G of rank n, with n large, there are many
``exotic'' factorizations. In particular, a natural analogue of the Tijdeman
property is not valid for rank n�3. For example, consider the factorization
A�B=(Z4)3 with A=[0, 1]3=[(0, 0, 0), ..., (1, 1, 1)] and

B=[(0, 0, 0), (2, 0, 1), (1, 2, 0), (0, 1, 2), (2, 0, 3),

(3, 2, 0), (0, 3, 2), (2, 2, 2)],

which appears in Table I of [13]. In this example both A and B generate
(Z4)3, so neither A nor B are contained in a proper subgroup H of (Z4)3.

5. ONE-DIMENSIONAL CASE

We establish the existence of universal spectra for certain one-dimen-
sional tile sets S=Z+(1�N)A with A�Z, by establishing the strong
Tijdeman property.

Proof of Theorem 1.2. Since translating A�Z does not affect the
result, we assume without loss of generality that 0 # A. Set A :=A

(mod N), and by hypothesis |A|=|A|.
Theorem 1.1 says that 4=NZ+1 with |1 |=N�|A| is a universal

spectrum for S=Z+(1�N)A if and only if 4 is a spectrum for all
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sets 0=[0, 1�N]+(1�N)B with B�0, 1, 2, ..., N&1, such that 0 # B and
A�B=ZN , where B :=B (mod N). In particular a necessary and suf-
ficient condition for the existence of a set 0 that tiles R with tile set S is
that B be a complementing set for ZN . Now Corollary 2.3 states that 4 is
a spectrum for a particular 0 if and only if

1&1�Z( fB) _ [0], (5.1)

where Z( fB) is the real zero set of

fB(*)= :
b # B

e2?i*b, * # R. (5.2)

We prove the theorem by induction on d(N), the number of divisors of
N (counting 1 and N as divisors). The base case is d(N)=2, where N= p
is prime, and the only possibilities are A=[0], B=Zp , in which case 1=
[0, 1, ..., p&1] and 4=Z, and A=Zp , B=[0], in which case 1=[0]
and 4= pZ.

Now suppose that the theorem is true for all N with d(N)<k that have
the strong Tijdeman property. We prove the theorem for d(N)=k. We
treat two cases, depending on the value of f :=gcd(a: a # A).

Case 1. f and N are relatively prime. In this case, let A$ :=[a�f : a # A].
If (A, B) is a complementing pair (mod N), then so is (A$, B), by [21,
Theorem 1]. Thus without loss of generality we may suppose that f =1.
Now A is eligible, so the strong Tijdeman property applies to give a prime
p | |A| such that p | B for every A-complementing set B (mod N) with
0 # B. Set C=[a # A : a#0 (mod p)] and C$=[c�p: c # C]. Then for each
A-complementing set B (mod N) with 0 # B, let B$=(1�p)B and observe
that (C$, B$) is a complementing pair (mod N�p). Now let N$=N�p, and
ZN$ has the strong Tijdeman property by Lemma 4.1. Since d(N�p)<k,
there exists a universal spectrum 4$=(N�p)Z+1$ for the tile set
Z+(1�N$)C$, which has |1 $|=N$�|C$| and (1 $&1 $) & (N�p)Z=[0].
Observe that (1�N$)B$=(1�N)B, hence Corollary 2.3 applied to 0$=
[0, 1�N$]+(1�N$)B$ gives

1 $&1 $�Z( f(1�N$) B$) _ [0]=Z( f (1�N)B) _ [0], (5.3)

and this holds for all A-complementing sets B (mod N) with 0 # B. We
claim that

4 :=NZ+1 $

is a spectrum for all B above. This follows immediately from (5.3), by
Corollary 2.3 applied to 0=[0, 1�N]+(1�N)B. Thus 4 is a universal
spectrum for the tile set Z+(1�N)A, completing the induction step.
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Case 2. f and N are not relatively prime. In this case, let p be a prime
dividing both f and N. Suppose that B is an A-complementing set
(mod N). Then B (mod p) contains the same number of elements in each
residue class (mod p). For 0� j� p&1 set

Bj=[b # B : b# j (mod p)], Cj={b& j
p

: b # Bj= .

Then ((1�p)A, Cj) is a complementing pair (mod N$) where N$=N�p for
0� j� p&1. In particular (1�p)A is a complementing set (mod N$), and
d(N$)<k. The induction hypothesis applies to give a universal spectrum for
the tile set Z+(1�N$)((1�p)A)=Z+(1�N)A of the form 4=N$Z+1 $
with 1 $/Z, having |1 $|=N�( p |A| ) and (1 $&1 $) & (N�p)Z=[0]. But
4=(N�p)Z+1 $=NZ+1 where

1=1 $�{0,
N
p

, 2
N
p

, ..., ( p&1)
N
p = .

This proves the hypothesis for d(N)=k, completing the induction step. K

Proof of Theorem 1.3. We treat the cases where |A| and N�|A| are
prime powers separately. By Theorem 1.1 and Corollary 2.3 it suffices to
show that there exists 4=NZ+1 with |1 |=N�|A| and (1&1 ) &
NZ=[0] such that

1&1�Z( f (1�N)B) _ [0] (5.4)

for all A-complementing sets B (mod N) with 0 # B.

(i) Suppose |A|=qe, where q is prime. We proceed by induction on
the number of divisors d(N) of N. If d(N)=2 then N is a prime, and the
result is true since ZN is a good group (Theorems 1.2 and 4.1).

For the induction step, suppose that a universal spectrum as above exists
whenever we have d(N)<k, and let d(N)=k. We use an argument similar
to that of Theorem 1.2, treating two cases according to the value of
f =gcd(a: a # A).

Case 1. f and N are relatively prime. We reduce to the case f =1 by
noting that (A, B) is a complementing set (mod N) if and only if
((1�f ) A,B) is complementing set (mod N), according to Tijdeman [22,
Theorem 1]. Now [22, Theorem 3] states that if |A|=qe and then q | B

for all A-complementing sets B (mod N) with 0 # B, which is the strong
Tijdeman property. This case is now handled exactly as in Case 1 of
the proof of Theorem 1.2. There is a complementing pair (C$, (1�q)B)

94 LAGARIAS AND WANG



File: 580J 300823 . By:CV . Date:18:03:97 . Time:11:13 LOP8M. V8.0. Page 01:01
Codes: 3045 Signs: 2097 . Length: 45 pic 0 pts, 190 mm

(mod N�q) with C$=[1�q: a # A with a#0 (mod q)], and any universal
spectrum 4$=(N�q)Z+1 $ for the tile set Z+(q�N)C lifts to a universal
spectrum 1=NZ+1 $ for A.

Case 2. f and N are not relatively prime. Let p be a prime factor of
both f and N. Then any A-complementing set B (mod p) contains equal
numbers of elements in each residue class (mod p). Set Bj=[b # B : b# j
(mod p)] and Cj$=[(b& j )�p : b # Bj]. Then ((1�p) A, Cj$) is a complemen-
ting pair (mod N�p) for 0� j� p&1, and |(1�p)A|=qe, and d(N�p)<k, so
the induction hypothesis now applies to (1�p)A. This case is now com-
pleted identically to Case 2 in the proof of Theorem 1.2.

These cases are exhaustive, so the induction is complete.

(ii) Suppose that N�|A|=qe for a prime q. We prove the result by
induction on the number of divisors d(N), with the base case d(N)=2
being immediate.

Assume the universal spectrum exists when d(N)<k, and suppose that
d(N)=k. We again treat two cases.

Case 1. A is periodic (mod N). There exists a proper divisor g of N
such that A+ g=A (mod N), therefore there exists A1�Z such that

A#[0, g, 2g, ..., N& g]�A1 (mod N).

Let B be any A-complementing set (mod N). Then B is also an
A1-complementing set (mod g). Since N�g |A1|=|A| , we have g�|A1|=
N�|A|=qe, and d( g)<k, so the induction hypothesis applies to give a
universal spectrum 4$= gZ+1 $ for the tile set Z+(1�g)A1 with |1 $|=
g�|A1|=qe and

1 $&1 $�Z( f(1�g) B) _ [0].

We take 4=NZ+1 with 1=1 $, and observe that (5.4) holds, hence 4 is
a universal spectrum for the tile set Z+(1�N)A.

Case 2. A is not periodic (mod N). If B is any A-complementing set
(mod N) then Sands [18, Theorem 2] proved that B must be periodic.
Thus there exists a proper factor g of N such that B+ g#B (mod N).
Now any multiple g* of g is a period, and there exists g*=(N�p) for some
prime p. The elements of B are then grouped into cycles [b, b+ g*,
b+2g*, ..., b+( p&1) g*] of length p, hence p | |B|=N�|A|=qe. Thus
p=q, hence g*=N�q is a period for all A-complementing sets B (mod N).
Therefore for any such B there exists a B1�Z such that

B=[0, g*, 2g*, ..., (q&1) g*]�B1 (mod N), (5.5)

hence (A, B1) is a complementing pair (mod g*).

95SPECTRAL SETS



File: 580J 300824 . By:CV . Date:18:03:97 . Time:11:13 LOP8M. V8.0. Page 01:01
Codes: 2596 Signs: 1401 . Length: 45 pic 0 pts, 190 mm

We now know that A is a complementing set (mod g*). Furthermore
g*�|A|=qe&1 and d( g*)<k, so the induction hypothesis applies to give a
universal spectrum 4$= g*Z+1 $ for the tile set Z+(1�g*)A, where
1 $�Z is such that |1 $|=qe&1 and (1 $&1 $) & g*Z=[0]. Thus

1 $&1 $�Z( f (1�g*)B1
) _ [0] (5.6)

for all A-complementing sets B1 (mod g*) containing 0. We claim that
4=NZ+1, where

1=q1 $+[0, 1, ..., q&1],

is a universal spectrum for Z+(1�N)A.
Clearly |1 |=q |1 $|=qe=N�|A|, and (1&1) & NZ=[0]. It remains to

show that (5.4) holds for all A-complementing sets B. Given #1 , #2 # 1,
write

#1&#2=q(#$1&#$2)+(m1&m2)

with #i$ # 1 $ and mi # [0, 1, ..., q&1], so that &q<m1&m2<q. Now (5.5)
and g*=N�q yield

f(1�N)B(*)=\ :
q&1

j=0

e2?ij*�q+ f (1�N)B1
(*)+(e2?i*&1) g(*).

for some exponential polynomial g(*). For *=#1&#2 # Z the last term
vanishes, and using f (1�N)B1

(q*)= f (q�N)B1
(*), we have

f (1�N)B(#1&#2)=\ :
q&1

j=0

e2?ij(#1&#2)�q+ f (q�N)B1
(#$1&#$2),

because f (q�N)B1
is periodic with period (N�q)Z. If #$1 { #$2 , then

f(q�N)B1
(#$1&#$2)=0, while if #$1=#$2 and m1{m2 , then

:
q&1

j=0

e2?ij(#1&#2)�q= :
q&1

j=0

e2?ij(m1&m2)�q=0.

Thus (5.4) holds, and the induction step is complete. K

Theorem 5.1. If the strong Tijdeman conjecture is true, then all compact
sets 0 that tile R by translation are spectral sets.

Proof. Every such set 0 has a rational periodic tiling of R by [15,
Theorem 2]. The result now follows from Theorem 1.2 and the strong
Tijdeman conjecture. K
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All bounded measurable sets 0 that tile R have a periodic tiling by [12,
Theorem 6.1].
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