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Abstract

K.-H. Grochenig and A. Haas asked whether for every expanding integer matrix
A € M,,(Z) there is a Haar-type orthonormal wavelet basis having dilation factor A
and translation lattice Z™. They proved that this is the case when the dimension n = 1.
This paper shows that this is also the case when the dimension n = 2.
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1 Introduction

The Haar basis of L?(R) constructed in 1910 by A.Haar [10] consists of step functions on
dyadic intervals. This construction has recently been viewed as the simplest example of a
compactly supported wavelet basis of L?(R) constructed by a multiresolution analysis, see
Mallat [17].

Grochenig and Madych [9] raised the question of constructing multidimensional ana-
logues of the Haar basis. They defined a Haar-type orthonormal wavelet basis to be those
compactly supported orthonormal wavelet bases of L?(R"™) given by a multiresolution anal-
ysis generated from a scaling function of the form cyg(x) where x¢(z) is the characteristic
function of a compact set (). Recall that a multiresolution analysis has two basic ingredients,
which are:

(). An admissible pair (A,T") consisting of an n x n matrix A € M,,(R) which is expanding,
i.e. all eigenvalues A of A have |[A\| > 1, together with a full rank lattice I' in R™ which
is A-invariant, i.e. A(T') CT.

(ii). A scaling function ¢(z) € L*(R™) which satisfies a dilation equation

¢(z) = cyp(Az —7)

yel’
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having the matrix A as the dilation factor. Furthermore,

- d(x — B)p(x — ) dx = dg 5.

A scaling function ¢(z) must satisfy some mild further conditions to actually give a
multiresolution analysis, see Mallat [17] and Daubechies [7], Chapter 5. For the special case
of Haar—type bases, Grochenig and Madych [9] found necessary and sufficient conditions
for a compact set @ to yield a function cxg(z) which gives a multiresolution analysis with
respect to a given admissible pair (A,T"). This is stated as Proposition 2.1 in Section 2.

This paper deals with the problem of finding Haar bases for specific pairs (A4,T'). The
question of which admissible pairs (A,I") have a Haar-type wavelet basis was first raised
by Grochenig and Haas [8]. They asked whether every admissible pair (A4,I") has a Haar—
type basis. They proved that this was so in the one—dimensional case, and also in the
two—dimensional case whenever the expanding matrix A has two rational eigenvalues or
two conjugate complex eigenvalues. The object of this paper is to extend the approach of
Grochenig and Haas to prove the following result.

Theorem 1.1 FEvery two—dimensional admissible pair (A,T') has a Haar—type orthonormal
wavelet basis.

The proof follows Grochenig and Haas in reducing to the case of (A,I') with I' = Z",
and uses the criterion of Grochenig and Madych that Haar bases for I' = Z™ correspond to
self-affine tiles of measure one. The main technical innovation over the work of Grochenig
and Haas is a Fourier—analytic sufficient condition for a Haar—type orthonormal wavelet
basis given as Theorem 3.1 in Section 3. As explained at the end of Section 3, this sufficient
condition is effective in dimension two only, and gives little information in dimensions n > 3.

What happens in dimensions n > 3?7 We consider this in a separate paper [15]. In
the special case |det(A)| = 2 we show there that necessary conditions for the existence of
Haar bases include that the class number of certain algebraic number fields must be one.
These conditions provide a strong hint that in sufficiently high dimensions there exists an
admissible pair (A4,T) not possessing any Haar—type orthonormal wavelet bases. However
we know of no counterexamples at this time.

We thank K. Grochenig and A. Haas for helpful comments and discussions of their work.

2 Preliminary Reductions

In this section we reduces to the case of admissible pairs (A, I") with I' = Z", and reformulate
the main result using the criterion of Gréchenig and Madych. We first observe that in
studying Haar bases for admissible pairs (A,T"), one can always simplify the problem by
a suitable linear transformation x — Pz of R™ which takes the admissible pair (A4,T') to
(PAP~', PT"). We may choose this to make PT’' = Z", in which case A = PAP~! € M, (Z)
is an integer matrix. Therefore in the rest of this paper we suppose that A € M, (Z) is an
expanding integer matrix and that I' = Z™.



We now state the criterion of Grochenig and Madych [9] for a function cxg(z) of a
compact ) to be the scaling function of a multiresolution analysis for the admissible pair
(4,2").

Proposition 2.1 (Grochenig and Madych) Let QQ be a compact set in R™ of positive
measure. Then necessary and sufficient conditions for ¢p(x) = cxo(z) to be the scaling
function of a multiresolution analysis for a pair (A,Z™), where A = M, (Z), are as follows:

(i) There is a set D C Z™ which is a complete set of residues of Z™/AZ"™ such that the
unique solution to the set—valued functional equation

AT)= |J (T +4d) (2.1)
deD

has T = Q up to a set of measure zero.

(ii) The set T' has Lebesgue measure u(T) = 1.

Proof. This follows from Theorems 1 and 3 of [9]. Condition (ii) implies that the normal-
izing constant ¢ = 1 in exg(z). |

The solution to the functional equation (2.1) in the general case when D C R" is finite
are well-known to be unique and to be explicitly given by

T(4,D) = {3 A*d) : each d; € D}. (2.2)
k=1

Such sets T'(A,D) are called self-affine tiles when |D| = |det(A)| and u(T'(A4,D)) > 0.
Results of Bandt [1] (Theorem 1 and 3) state that if D is a complete set of residues of
Z"/AZ" then u(T(A,D)) > 0 and that T'(A4, D) is the closure of its interior. Grochenig and
Haas [8] show that there exists a subset A of Z™ such that T'(A,D) + A is a tiling of R™.
This implies that u(T'(A,D)) > 1. The criterion (ii) of Grochenig and Madych is therefore
equivalent to:

(ii’) The set T (A, D) tiles R™ with the lattice Z™.
In view of these facts, Theorem 1.1 is an immediate consequence of the following result.

Theorem 2.2 Let A be an expanding matriz in Ma(Z). Then there exists D C Z? which
is a complete set of residues of Z"|AZ"™ such that u(T(A,D)) = 1 or, equivalently, such
that T(A, D) tiles R? with the lattice Z2.

The rest of the paper proves Theorem 2.2. It is done in two parts, Theorem 4.1 in
Section 4 treats the cases where | det(A)| > 3 and Theorem 5.1 in Section 5 treats the cases
where |det(A)| = 2. In Section 3 we develop a sufficient condition for u(7T(4,D)) = 1,
stated as Theorem 3.1.

We remark that Theorem 2.2 is an existence result which does not give information
about the topological structure of the tile T'(A, D). In contrast, Grochenig and Haas [8]



develop methods which allow them to prove that certain T'(A, D) are connected. Bandt
and Gelbrich [2] study all such tiles in R™ which are topological disks. They prove that in
each dimension this set is finite, and find them all when n = 2 and |det(A)| = 2 or 3. For
general background on wavelets and fractals see [3], [4], [6], [7], and for self-affine tiles see
[11]-[15], [21], [22].

3 A Saufficient Condition for a Z"—tiling

In this section A is an expanding matrix in My(Z) and D is a complete residue system
modulo A, i.e. a complete set of residues of Z"/AZ"™. We first observe that if D' =D+ v
for some vector v € Z" then

T(A,D)=T(AD)+> A
7j=1

Since D' is still a complete residue system modulo A and T'(A,D’), T(A, D) have the same
Lebesgue measure, from now on we may without loss of generality assume that 0 € D.

We call D primitive, in the terminology of Lagarias and Wang ([13]), if Z[A,D] = Z"
where Z[A, D] is the minimal A-invariant sublattice of Z" containing

D-D:={d-d: d,d e D}

It is known that in order for u(T'(A,D)) = 1 the digit set D must be primitive ([8], [13]).
However, D being primitive is not sufficient for u(7'(A,D)) = 1, as illustrated by the
following example:

St (A NN

It is easy to check that D is a primitive complete residue system modulo A. However,
W(T(A,D)) = 3 (see [12]).

To prove Theorem 2.2 we follow the Fourier analytic approach used in [8]. Let T" =
R"/Z" be the n—torus. Define

1 .
mp(z) = D (%)exp@m(d,x)). (3.1)

The main ingredient used in the proof of Theorem 2.2 is the following sufficient condition
for 4(T(A,D)) =1 to hold in R™.

Theorem 3.1 Let A € M, (Z) be an expanding matriz and let D C Z™ be a primitive

complete residue system modulo A. Suppose that mp(x) has only finitely many zeros in T™.
Then u(T(A,D)) = 1.

To prove Theorem 3.1 we will need several lemmas. Let B = A" and let B, : T"—T"
be the canonical map induced by B. Then we have the following useful lemma.



Lemma 3.2 For all z € T™,

> Imo(y)f =1 (3:2)
yeB (v)
Proof. See [8], Lemma 5.1. |
We now define the following linear operator' Cp : L?(T")— L?*(T"),

(Cof)z) =Y |moy)f(y). (3.3)

yeB. ' (x)
It follows from Lemma 3.2 that Cp1 = 1. The following lemma, is essentially due to Lawton
and Resnikoff ([16]).
Lemma 3.3 u(T(A,D)) # 1 if and only if there exists a nonconstant trigonometric poly-
nomial f(zx) of the form

flz) = Zaj cos(2m (v, x)) (3.4)

j=1

where all aj > 0 and vj € Z" such that C’Df =f.

Proof. See [8], Proposition 5.3. |

Let f(x) be any continuous function on T™. Define

Bf ={yeT": J(y) = max f(@)} and B ={yeT": [(y) = min f(@)}.

Lemma 3.4 Let D be primitive. Suppose that there exists a nonconstant f(z) € C°(T")
such that Cpf = f. Then ET(f)U E(f) is an infinite subset of T™.

Proof. Since both E]T and E]? are nonempty, one of which, say EJT, must not contain 0.
Now, for any zg € E}?, Co f = f implies

S Imo@P(f ) — Flw) =0, (3.5)
yeB. * (w0)

Because 29 € Ey, f(y) — f(zo) > 0. So we have either mp(y) = 0 or y € E} for any

y € B'(xg), and (3.2) implies that there exists at least one yo € B '(zg) such that
Yo € E; . Since B, (yo) = 2o and 9 € E} is arbitrarily chosen, this implies that

B.(E;) 2 E}. (3.6)
We suppose that ET(f)UE™(f) is finite, and argue by contradiction. Now E7} is finite,

so it follows from (3.6) that
B.(E}) = Ej (3.7)

!This is the Fourier transform of the linear operator C studied in [8], see [8], Lemma 5.2.



which implies also that for any « € £} there is a unique y € B () such that y € E;.

So for any z € E, we have B.(z) € E; and z is the only pre-image of B.(z) in E, .
Hence mp(y) = 0 for all y € B, 1(B.(x)) except y = z. This gives |mp(z)| = 1. Because
0 € D, we must have

1
l=mp(z) = —
D]

Z exp(2mi(d, z)).

deD
Therefore (d,z) =0 (mod 1) for all d € D. Let
A= {u €Z" : (u,z) =0 (mod 1) for all z € EJ?}
Clearly A contains D and is a subgroup of Z". A is A—invariant because for any u € A and
T € E;,
(Au,z) = (u,Byz) =0 (mod 1).
Hence Z[A,D] C A. But because z # 0 (mod 1) for all z € B, this implies that A £ Z".

This contradicts the primitiveness of D. [ |

Proof of Theorem 3.1: First let f(z) be nonconstant and f(z) € C°(T™). Suppose that
Cpf = f. We show that E;r U E; C T™ must be finite. Assume this is false. Then either

E;{ or E;, say E;r, is infinite. Because T" is compact, E;r has a limit point x*.
Claim: B[ !'(z*) C E;’[ and every y € By Y(z*) is a limit point of E;’[

To prove the claim, let {z)} C EJ"[ converge to z*. We have (Cpf)(z) = f(21). So

> Imp @) ()~ flar) =0.

yEBI ! (zk)

Hence either y € E}"[ or mp(z) = 0 for all y € B! (z). But mp(x) has only finitely many
zeros in T™. Thus there exists a constant Ky such that mp(y) # 0 holds for all y € B, ' (xy,)
and k£ > Kj. So

B '({z : k> Ko}) C Ef.

But every y € B;!(z*) is a limit point in B7!({zx : k > Ko}). It follows from the
continuity of f(z) that B '(z*) C EJJ[, and thus the claim is true.

Now it follows from the claim that for all m > 0, B, ™(x*) C EJ"[ and every y € B, ™ (z*)
is a limit point in EJJ[ So
o
Ef 2 |J B™(#%).
m=
But UX_, B;™(z*) is dense in T". This implies Ef = T" and hence f(7) is a constant, a
contradiction.

Therefore E;{ U EJ? C T" must be finite, proving the claim.

We can now complete the proof of Theorem 3.1. Suppose that u(T(A,D)) # 1. Then
there exists a nonconstant trigonometric polynomial f(xz) of the form (3.4) such that Cpf =



f. Hence E? U E}T C T" is finite. But this contradicts Lemma 3.4 because D is primitive.
Hence we must have u(T(A,D)) = 1. |

Remark. The criterion of Theorem 3.1 is effective for studying most self-affine tiles in
R? but not for studying such tiles in R” for n > 3. This is because the real and imaginary
parts of the equation mp(x) = 0 then gives two equations in which the number of unknowns
is n. In two dimensions the “generic” situation is for the zero-set of mp(x) on T2 to be
zero—dimensional, hence for “generic” D the hypothesis of Theorem 3.1 are satisfied, as the
proofs in Section 4 indicate. (There are “exceptional” D, however.) In dimension n > 3
there are still two equations but n unknowns, and the hypotheses of Theorem 3.1 are not
satisfied for “generic” D.

4 Haar Bases in R*: Case |det(A)| > 3

Our object in this section is to prove:

Theorem 4.1 Let A € My(Z) be an expanding matriz with | det(A)

> 3. Then there
exists a primitive complete residue system D modulo A such that u(T(A, D)) =

1.

We accomplish this by constructing a primitive complete residue system modulo A such
that mp(x) has only finitely many zeros in T?2.

We first introduce some notation. Let gcd (A) denote the greatest common divisor of
the entries of A, and for any d € Z? let ged (d) denote the greatest common divisor of the
entries of d. For any di, do € Z?, let det([dy,ds]) denote the determinant of the matrix
whose first and second columns are d; and dy respectively. The following is a well-known
result:

Lemma 4.2 Let d = ged (A) and g = |det(A)|. Then Z*/AZ? is isomorphic to Zq® Zg;q.

Proof. We make use of the Smith normal form for A: there exist integer unimodular
matrices U, V € GL2(Z) such that

UAV = diag (s1,82) = [ 801 30 ]
2

where si|s2. (See [18], Theorem II1.9.) Since ged (A) = ged (UAV) = d, it follows that
|si| = d and |sa]| = ¢g/d. So

Z"JAZ" = 2" [UAV(Z") = Zy @ g -

[ |
Lemma 4.3 Let dy, dy, ..., dy € Z? be fized and let I}, 15 € Z? be linearly independent.
Then for sufficiently large A € Z the solutions to
cos(2m{dy + NIt z)) + SN | cos(2n(d;,z)) = 0,
J (4.1)
(I3, z) = c

is a discrete set for any c € R.



Proof. Since we can always find a unimodular integer matrix P € GLy(Z) such that Pl3
is parallel to e; (e; = [1,0]7), we may assume, without loss of generality, that I5 = ppe; for
some py € Z. So (I3,z) = c gives pox1 = ¢, T1 = ¢/po. Let do = [by,bo]” and I = [t1,12]”.
Then t3 # 0 because [}, [5 are linearly independent. We have

N
cos 2m(dy + A, z) + Z cos 2 (d;, z) =
j=1

N

(b2 + Atz)xz) + Z cos 2m(d;, x).
j=1

by + At
(b1 1)0Jr

cos 27r( »

The above expression is a trigonometric polynomial with respect to the variable x2. By
choosing a sufficiently large A, neither cos2m(by + Atg)xy nor sin2w(by + Atg)zy can be
cancelled out by terms in Z;-V:l cos 2m(d;, z). Hence

by + Mt 4l
cos 2W(M + (bo + )\tz)xg) + Z cos 2m(d;,z) # 0.
p i
j=1
Thus the solutions to (4.1) must be a discrete set. |

Lemma 4.4 Let |D| = 4. Suppose that mp(x) has infinitely many zeros in T?. Then the
digits in D form the vertices of a trapezoid.

Proof. Let D = {0, di, da, d3}. We have

dmp(z) = 1+ exp(27i(dy, x)) + exp(27i(da, x)) + exp(27i({d3, x)) = 0.

Multiply exp(27ri(d2;“d3 ,x)) to the equation we obtain
—sin2m(2F8 7y + sin 2r(2=h=ts 7y = 0, (4.2)
—cos 2m(LE L 1) + cos 2m(2h=de=da 1y 4 2 cos 2m (254, 1) = 0. (4.3)

(4.2) gives (dy —dp —d3,z) =0 (mod 1) or (dj,z) =1 (mod 1).

For (dy — ds — d3,z) =0 (mod 1) the equation (4.3) yields

do +d de —d
2 cos 27 ( 2+ 2 3) + 2cos 2m(—=—2 z) = 0.
Hence we have
(dl—dg—d3,$> = 0 (mod ].), (4 4)
(—dQ;d‘”’,x) + (—d2;d3,x> = 2 (mod 1). '
Since (%,x) + (dQQ;d?’,x) = (do,z) or (d3,z), equations (4.4) have infinitely many

solutions in T2 only if dy || di — d — d3 or d3 || di — d2 — d3. In either case, {0,dy,ds,d3}
must form the vertices of a trapezoid.

For (di,z) =1 (mod 1) the equation (4.3) yields

doy — d3

2 cos 27 ( ,x) = 0.



Hence we have
(mod 1),

(mod 1).

(4.5)

N[ N[

(dlv T >
(dy — d3, z)
Equations (4.5) have infinitely many solutions in T? only if d; || do — d3. This also implies
that {0,dy,ds,ds} form the vertices of a trapezoid. [ |

Theorem 4.5 Let A € Ma(Z) be expanding and |det(A)| > 3. Then there exists a primi-
tive complete residue system D modulo A such that mp(z) has finitely many zeros in T2.

Proof. We divide the proof into three cases.

Case 1. g =|det(A)| >3 and ged (A) = 1.

In this case Z2/AZ? is cyclic according to Lemma 4.2. So there exists a d; € Z?
such that d; generates Z2/AZ?. Let d* = dy/gcd (dy). Then d* also generates Z2/AZ?,
and ged (d*) = 1. Hence there exists a v € Z2 such that det([d*,v]) = 1. Suppose that
v = Ad* (mod A) for some A\ € Z and let v* = v — Ad*. Then v* = 0 (mod A) and
det([d*,v*]) = 1.

If ¢ = 4, then let D = {0,d*,2d*,3d* + v*}. Clearly D is a complete residue system
modulo A, and it is primitive because det([d*,3d* + v*]) = 1. Furthermore, the digits of D
do not form the vertices of a trapezoid. Hence mp(z) has finitely many zeros in T?.

Now suppose that ¢ > 4. Let A € Z be sufficiently large and let
Dy = {Av*, d*,2d*, ..., (q — 3)d*, (q — 2)d* — ", v* — d*}.

It is clear that D; is a complete residue system modulo A. Let Dy = Dy — ad* where
a = (¢ —2)/2. Then Dy \ {(v* —d*) — ad*} is centrally symmetric. So

Im(mp,(x)) = sin 27 (v* — d* — ad”, ).
Thus Im(mp,(z)) = 0 yields
200" —d* —ad*,z) =0 (mod 1). (4.6)

Since v* and v* — d* — ad* are linearly independent, it follows from Lemma 4.3 that (4.6)
together with Re(mp,(x)) = 0 yield only finitely many solutions in T?. Hence mp,(z) has
finitely many zeros in T2.

Let D = Dy — d* = Dy + (a — 1)d*. Then D is a complete residue system modulo A
with 0 € D. D is primitive because d*, v* — 2d* € D and det([d*,v* — 2d*]) = 1. Finally,
mp(x) = exp(2mi{(a — 1)d*, z))mp,(z). So mp(x) has finitely many zeros in T2.

Case 2. r=gcd(A) > 1.

Let ¢ = |det(A)| and q; = q/r. Then Z?/AZ? = Z, & Z,,. We say that the ordered
pair (dy,dy) € Z? x Z? generates Z2/AZ? if rd; = qidy = 0 (mod A) and {id; + jdy : 0 <
i <r,0<j<q} forms a complete residue system modulo A. We show that there exists a
pair (d},d}) which generates Z2/AZ? such that det([d},d3]) = 1.



To see this, choose an arbitrary pair (di, ) that generates Z2/AZ?. Set d = dy/ged (da)
and let d3 € Z2 such that det([dg,dZ]) = We have d3 = \idj + Aaods (mod A). Now
let di = d3 — Aadj. Then det([d],d5]) = 1, which also implies that ged (df) = 1. So
rd; =rAidp =0 (mod A) but td} 5_'5 0 (mod ) for any 0 < ¢ < r. Hence (d}, d5) generates
72/ AZ?.

If ¢ = 4, then we must have r = ¢; = 2. In this case let
D= {0,d’{,d§,d’{ +d5 + qv}

where v € Z? such that the digits of D do not form the vertices of a trapezoid. So mp(z)

has finitely many zeros in T2, and clearly D is a primitive complete residue system modulo
A.

Now suppose that ¢ > 4. Since r|q;, we must have ¢; > 4. Let A € Z be sufficiently
large and let D = {d;; : 0 <14 < 7,0 <j < qi} where d;; = id} + jd5 except for the
following;:

dr g1 = —di —dy, dry 0= (r—1)di = Aqdy, dog 1= (q1 = 1)dz + Agds.

Then D is a complete residue system modulo A. It is primitive because dy; = d3, di1 =
di + d5 and det([d] + d5,d5]) = 1. Let

r—1 ql—l
*: d*
u 7 1ty

dy

and D; =D — u*. Then D; \ {doo — u*,dr—1,4,—1 — u*} is centrally symmetric. So
0 =Im(mp, (z)) = —sin2nw(u*, z) + sin 27 (dy_1 4,1 — u*, x)

yields

1

(dr—1,q—1 —2u",2) =0 (mod 1) or (dr_14,-1,2) = 5 (mod 1). (4.7

Notice that d3, d,—_1,4,—1 — 2u* are linearly independent, and so are d5, d,_14,—1. Thus it
follows from Lemma 4.3 that (4.7) together with Re(mp, (z)) = 0 yield only finitely many
solutions in T2. Hence mp(z) = exp(27wi(u*,z))mp, () has finitely many zeros in T?2.

Case 3. q=|det(A)| = 3.

Let d*, v* be as in Case 1 and let D = {0,d*,v* — d*}. Then D is a complete residue
system modulo A and it is primitive because det([d*,v* — d*]) = 1. Now myp(z) = 0 gives

1 + cos2m(d*, x) + cos 2w (v* — d*,z) =0, (4.8)
sin 27 (d*, x) + sin 2w {v* — d*, x) = 0. (4.9)

It is easily checked that (4.8) and (4.9) reduce to

(d5,z) =0 (mod 1), (dj,z) =

wl N

1
- d1).
2 (mod )
Hence myp () has finitely many zeros in T2. |

Theorem 4.1 follows immediately from Theorem 4.5.

10



5 Haar Bases in R%: Case |det(A)| = 2

Our object in this section is to prove:

Theorem 5.1 Let A € My(Z) be an expanding matriz with |det(A)| = 2. If D is a
primitive complete residue system modulo A, then u(T(A,D)) = 1. Moreover, such a D
exists.

Furthermore we shall completely classify all expanding A € My(Z) with |det(A)| = 2,
and determine all primitive complete residue systems modulo A.

Call two integer matrices A and B integrally similar, and write A ~ B, if there exists
an integer unimodular matrix P € GLo(Z) such that P~'AP = B. Now, denote

0 2 0 2 11 0 2
S e B I R BN B

Lemma 5.2 Let A € My(Z) be expanding. If det(A) = —2 then A is integrally similar
to C1. If det(A) = 2 then A is integrally similar to one of the following matrices: Co, =+
Cs, 0.

Proof. Let A = [a;;] and define the weight p(A) of A to be
p(A) = —a11a9292.

Since the two eigenvalues of A satisfy |AjA2| = 2 and |A1], [A2] > 1, we have |a1; + ag2| <
|A1] 4+ |A2] < 3. Hence p(A) > —1. We prove that A ~ B for some matrix

0 b0
B =
[ bo1  bao ]

For the base case p(4) = —1 we have |a11| = |a22| = 1. Since a12a21 = —p(A) — det(A)
is either —1 or 3, either |a12| = 1 or |ag;| = 1. Without loss of generality let |az;| = 1. Then
by taking A = sign(ai1a21) we have

1 A ailr  a12 1 A ! . 0 612
0 1 a1 a 0 1 | bar b |
For p(A) = 0 we have either |a;;| = 0 or |ag2| = 0. If a;; = 0 we are done. Suppose

|a22| = 0. Then
0 1 a1l a12 0 1 71_ 0 a1
1 0|]|an O 10 | a2 an

Now assume that the hypothesis is true when the weight p(4) < r where r > 0. We
show it is also true when p(A) = r. Since |a11]|, |agz| > 1, it implies that either |asi| < |a11]

by induction on the weight p(A).

11



or |a12| < |agel, for if otherwise we would have | det(A)| = |ag1a12 — aj1a22| > 3. So without
loss of generality we assume that |ag;| < |aj1|. Let A = sign(aj1a21) and

A = 1 A ail a12 1 A - . al] — )\agl *
1= 0 1 as1 G99 0 1 o * a2 + )\0,21
Then
p(A1) = —(a11 — Aaz1)(az2 + Xa21)

= p(A) + )\20,%1 + Aasoy (CLQQ — au).
Because aji1a9e = —p(A) = —r < 0, it follows that

p(A1) p(A) + a3y — sign(aji a1 )az (a1; — azs)
p(A) + a3, — sign(aiiaz1)azian

p(4) = r.

0 bo
B = .
[ ba1  boo ]

This proves the hypothesis because A ~ A;.

IN A

Hence Ay ~ B for some

Now suppose that det(4) = —2. Then bjobe; = 2. It follows from |A;|, [A2| > 1 that
boo = 0. One can easily check that for whichever combination of b5 and b7 we always have
B ~ (). For example, if bjo = —1 and by; = —2, then PBP~! = (5 where

0 —1
03]
Suppose that det(A) = 2. Then biobe; = —2. Again it follows from |A;], [A2| > 1 that

|ba2| < 2. Denote
~ 0 2
cg_[_l 2].

It is easily checked that we will have PBP~' = Cy, + Cs, or £C4 by taking P to be one
of the following matrices:

SR S U FE O o )

Finally, C3 = QC5Q~" where

We will make use of the following criterion for u(T(A,D)) > 1.

12



Lemma 5.3 (Cohen’s Condition) Let D be a residue system of A. Then u(T(A,D)) =1
if and only if there ezists a bounded fundamental domain K of the lattice Z? which contains
a neighborhood of the origin such that |mp(B~Jxz)| > 0 where B = AT holds for all z € K
and 7 > 1.

Proof. This is proved in [9], Theorem 3. (It is a special case of the results of Cohen [5].)
|

Proof of Theorem 5.1. Because T(B,D) = PT(A, PD) where B = PAP !, it suffices
to prove the theorem for A being one of the matrices C7, Co, £C5, and +Cjy.

Case 1. A:CIZl(l) (2)]

First we observe that Dy = {0,e;} is a primitive residue system modulo A because
es = Aey € Z[A, Dy]. Furthermore, u(T(A,Dy)) = 1 because T'(A,Dy) is simply the unit
square [0, 1] x [0, 1].

Suppose D = {0, d} where d = [a,b]”. Then d = Qe; where
a 2b
Since AQ = QA, D is primitive if and only if

det(Q) = a® — 2b* = +1. (5.1)

(5.1) is a classical Pell’s equation. Its solutions are a = +p,, b = +q, for n € N, where
Pn/qn is the n-th convergent of the continued fraction of v/2. For example, the first several
(pn, qn) pairs are (1,0), (1,1), (3,2), (7,5), (17,12), (41,27), etc. (see [20]). For those D we
have u(T(A, D)) = | det(Q)|u(T(A,Dy)) = 1. So the theorem is true for A = C}.

Case 2. A:C'gzl_ol (Q)l

A proof for this case can be found in [9]. In this case the only primitive residue systems
modulo A are D = {0, d} where d = e; and d = —e;, both make T'(A4, D) a unit square.

1 1
-1 1
A proof for this case, which employed Cohen’s Condition, can also be found in [9]. In

this case the only primitive residue systems modulo A are D = {0, d} where d = +e; and
d = +es. In all four cases the corresponding tile T'(A, D) are the well-known “twin dragon”

tiles.
0o 2
-1 1|

First we observe that Dy = {0,e;} is a primitive residue system modulo A because
eg = —Aey € Z[A, Dy]. We show that u(T(A,Dy)) = 1 using Cohen’s Condition.

Case 3. A=+0C3=+=+

Case 4. A=+Cy=+

13



Let K; = [~1/2,1/2)? and denote

x 1 1
L+ = {[ .’,E; ] EKli ($1—§)2+(III2—§)2<62},
_ T 1 1
V = {[ ]7; ] 61(1 : (x1+§)2+(x2+§)2 <62}

for some small § > 0. Let K = (K; \ (VT UV )u(V*+ +[-1,0/7) U (V~ 4 [1,0]T). Then
K is a fundamental domain of the lattice Z2. Now

1
mp,(x) = 3 (1 + exp(2mi(ey, w))) = exp(7miz1) COS TLy. (5.2)
So |mp,(z)| = 0 if and only if z; = § (mod 1). But we have

=[] =[]

So it is easy to check that |mp,(B7/z)| > 0 for all z € K and j = 1,2. Also since
B72K C K, it implies |mp,(B~/z)| > 0 for all x € K and j. Hence u(T(A,Dp)) = 1 from
Cohen’s Condition.

[N
O o=
N | = =
D[ = =

Now let D = {0, d} where d = [a,b]”. Notice that d = Qe; where

a —2b
Q_[b a+b

and we have AQ = QA. So D is primitive if and only if | det(Q)| = |a® + ab + 2b%| = 1,
which implies d = £e;. Clearly, u(T'(A4,D)) =1 in either case. |
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